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The mirosopi approah to alulating and investigating the three-dimensional (3D) Ising-like

system thermodynamis above and below the phase transition temperature T



is developed using

the olletive variables method. Mathematial desription is performed within the framework of

the higher non-Gaussian approximation (�

6

model) taking into aount the orretions to saling.

A nonuniversal fator depending on mirosopi parameters of the system is singled out in the ex-

pressions for leading ritial amplitudes and orretion-to-saling amplitudes. Numerial estimates

of the ritial region size, phase transition temperature as well as the graphs of temperature de-

pendenes of entropy and other thermodynami harateristis near T



are given for various values

of e�etive radius of the exponentially dereasing interation potential. The variation of the free

energy of the system at the phase transition point, average spin moment, and spei� heat with

inreasing ratio of the potential e�etive radius to the simple ubi lattie onstant is traed. The

results of alulations and their omparison with the other authors' data show that the �

6

model

provides a more adequate quantitative desription of the ritial behaviour of a 3D Ising-like system

than the �

4

model.

Key words: Ising model, phase transitions, ritial behaviour, thermodynamis, orretions to

saling.
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I. INTRODUCTION

A entral problem in statistial physis is the desrip-

tion of phase transitions and ritial phenomena, i.e.,

the onstrution of a mirosopi theory of phase tran-

sitions. Intensive studies of phase transitions have made

it possible to produe new onepts for an essential un-

derstanding of ritial phenomena and to reate a pow-

erful mathematial apparatus for desribing them. The

problem mentioned above was onsidered in a number

of books and artiles. In most papers devoted to the

theory of phase transitions, primary attention is given

to determining the universality lass of the systems, in-

vestigating symmetry properties irrespetive of the seed

parameters in the initial Hamiltonian, solving reurrene

relations (RR), and alulating ritial exponents. Uni-

versal exponents and ombinations of ritial amplitudes

for thermodynami harateristis are alulated for spin

systems, in partiular, for the 3D Ising model. The prob-

lem of dependene of ritial amplitudes on the miro-

sopi parameters of the system required a onsistent

analysis and ould be solved suessfully together with

the main problem in the theory of phase transitions, i.e.,

the derivation of expliit expressions for thermodynami

harateristis of the system near the phase transition

point as funtions of temperature and mirosopi pa-

rameters. Considerable progress in the solution of this

problemwas made by using the method of olletive vari-

ables (CV) generalized by Yukhnovskii [1{4℄ to the ase

of spin systems. The term olletive variables is applied

to a speial lass of variables spei� for eah individual

physial system. The set of CV ontains variables asso-

iated with order parameters. For this reason, the phase

spae of CV is most natural for desribing a phase transi-

tion. For magneti systems, the CV �

k

are the variables

assoiated with modes of spin moment density osilla-

tions, while the order parameter is assoiated with the

variable �

0

, in whih the subsript \0" orresponds to

the peak of the Fourier transform of the interation po-

tential.

This paper supplements a previous study [5℄ based on

the CV method. In [5℄, the thermodynami funtions of

the lassial n-vetor 3D magneti model near T



were

alulated in the approximation of the quarti distribu-

tion for the spin density osillation modes (�

4

model)

without taking into aount onuent orretions (or-

retions to saling). In the present paper, the results

of alulating the thermodynami harateristis of a

3D Ising-like system are obtained using the higher non-

Gaussian distribution (�

6

model). In the proess of deter-

mining these harateristis, a alulation tehnique for

orretion-to-saling terms is elaborated. The employ-

ment of the �

6

model for the investigation of the phase

transition by the CV method gives a more preise def-

inition of the alulation results and provides the basis

for quantitative analysis of the ritial behaviour of 3D

Ising-like systems inluding the nonuniversal harateris-

tis. On the other hand, the dependene of nonuniversal
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quantities on the mirosopi parameters of the system

has not been studied deeply enough so far. Suh a study

is our aim in this researh.

The atual task of the ritial phenomena physis at

the present time is elaborating the methods giving quan-

titative desription of the ritial behaviour of the system

without using any adjustable parameters. The approah

suggested in the present paper allows us to perform the

alulations for a Ising ferromagnet in real 3D spae on

the mirosopi level without any adjustable parameters.

In this ase, the new speial funtions [6{9℄ appearing in

the onstrution of the phase transition theory using the

�

6

model are exploited. We hope that our expliit rep-

resentations and plots may provide useful benhmarks

in studying the dependene of the thermodynami fun-

tions of 3D Ising-like systems on the parameters of the

interation potential and harateristis of the rystal

lattie. The obtained results an be used for interpret-

ing experimental results onerning the behaviour of real

materials in the viinity of the seond-order phase tran-

sition point, and the omputational tehnique proposed

here for thermodynami harateristis an be used for

alulating their thermodynami funtions in the ritial

region.

II. CALCULATION SCHEME FOR THE FREE

ENERGY OF ISING-LIKE SYSTEM

We onsider a 3D Ising-like system on a simple ubi

lattie with period . The Hamiltonian of suh a system

has the form

H = �

1

2

X

j;l

�(jj� lj)�

j

�

l

; (1)

where �(jj� lj) is the potential of interation of partiles

at sites j and l, �

j

is the operator of the z-omponent of

spin at the jth site, having two eigenvalues +1 and �1.

The interation potential is an exponentially dereasing

funtion

�(r

jl

) = A exp

�

�

r

jl

b

�

: (2)

Here A is a onstant, r

jl

is the interpartile distane, and

b is the radious of e�etive interation. The approxima-

tion for the Fourier transform of the interation potential

is taken in the form [3℄

~

�(k) =

�

~

�(0)(1� 2b

2

k

2

); k � B

0

;

0; B

0

< k � B;

(3)

where B is the boundary of Brillouin half-zone (B =

�=), B

0

= (b

p

2)

�1

,

~

�(0) = 8�A(b=)

3

.

We shall use here the method of CV [3℄, whih al-

lows us to alulate approximately the expression for

partition funtion and to obtain omplete expressions for

thermodynami funtions near the phase transition tem-

perature T



in addition to universal quantities (ritial

exponents).

In the CV representation for the partition funtion of

the 3D Ising model, we have

Z =

Z

exp

"

1

2

X

k

�

~

�(k)�

k

�

�k

#

J(�) (d�)

N

: (4)

Here the summation over the wave vetors k is ar-

ried out within the �rst Brillouin zone, � = 1=(kT )

is the inverse temperature, and the CV �

k

are in-

trodued by means of the funtional representation

for operators of spin density osillation modes �̂

k

=

(

p

N )

�1

P

l

�

l

exp(�ikl),

J(�) = 2

N

Z

exp

"

2�i

X

k

!

k

�

k

+

1

X

n=1

(2�i)

2n

N

1�n

�

M

2n

(2n)!

X

k

1

;:::;k

2n

!

k

1

� � �!

k

2n

Æ

k

1

+���+k

2n

3

5

(d!)

N

(5)

is the Jaobian of transition from the set of N spin vari-

ables �

l

to the set of CV �

k

, and Æ

k

1

+:::+k

2n

is the Kro-

neker symbol. The variables !

k

are onjugate to �

k

,

and umulants M

2n

assume onstant values (see [3℄).

The expression for the partition funtion (4) annot be

alulated exatly due to the presene of an in�nitely

large number of terms in the exponent (5). For this rea-

son, approximations limiting the number of terms in the

exponent of the integrand in (5) are used. A ertain ap-

proximation of the integrand in the expression for J(�)

when alulating the expliit form of the Jaobian of the

transition determines the hoie of the model (models

�

4

; �

6

, et.). For n = 1, we obtain the Gaussian approxi-

mation. It leads to lassial values of ritial exponents.

An important ondition in desribing the ritial proper-

ties of the Ising model is the use of non-Gaussian densi-

ties of measures. The simplest approximation permitting

an analysis beyond the lassial behaviour orresponds

to n = 2 and is based on quarti density of measure (�

4

model). This approximation is used for alulating ba-

si ritial exponents of thermodynami harateristis,

omplete expressions for these harateristis taking into

aount onuent orretions, and for analyzing the re-

lation for ritial amplitudes (see, for example, [10{12℄).

In view of an approximate alulation of partition fun-

tion on�ned to the �

4

model, the obtained results (rit-

ial exponents, amplitudes, and thermodynami fun-

tions) ontain a ertain dependene on the renormaliza-

tion group (RG) parameter s. This dependene beomes

muh weaker as the form of the non-Gaussian density of

measure beomes more ompliated (transition to more

ompliatedmodels �

6

(n = 3, see (5)), �

8

, and �

10

). This

is on�rmed by an analysis of the behaviour of the riti-

222



THERMODYNAMIC CHARACTERISTICS OF THREE-DIMENSIONAL ISING-LIKE SYSTEMS. . .

al exponents of orrelation length � for the models �

2m

(m = 3; 4; 5) [8,13,14℄ as well as by a diret omparison

of the urves desribing the temperature dependenes of

thermodynami harateristis alulated for the models

�

4

and �

6

at di�erent values of the parameter s [6℄. The

dependene of the results of alulations on the parame-

ter s is studied. For eah of the �

2m

models, there exists a

preferred value of the parameter s = s

�

(s

�

= 3:5862 for

the �

4

model, s

�

= 2:7349 for the �

6

model, s

�

= 2:6511

for the �

8

model, and s

�

= 2:6108 for the �

10

model)

nullifying the average value of the oeÆient in the term

with the seond power in the e�etive density of measure

at a �xed point. The values of s lose to s

�

are optimal

for the given method of alulations. The di�erene form

of RR between the oeÆients of e�etive non-Gaussian

densities of measures (expansions for the funtions ap-

pearing in these relations) operates suessfully just in

this region of s. For suh de�nite methods of division of

the phase spae of CV into layers (values of s lose to s

�

),

we obtain reliable results mathing with the experimen-

tal data and the results of theoretial investigations [3,6℄.

In this paper, the results of alulations based on the �

6

model taking into aount the sexti density of measure

while integrating the partition funtion are given for the

values of s equaling 2, 2.7349, and 3 (i.e., optimal values

for the given method of alulations).

In our earlier publiation [15℄, we proposed a new

method of alulation of the equation of state for a 3D

Ising system on mirosopi level in the approximation

of the above-mentioned �

6

model. This equation attrats

the attention of many sientists (see, for example, [16℄ in

whih the equation of state for the systems of univer-

sality lass of the 3D Ising model is analyzed by using

the �eld-theory approah with RG tehnique). The or-

retness of the hoie of the �

6

model for investigations

is on�rmed in [17,18℄, where the e�etive potential is

studied for the salar �eld theory in three dimensions in

the symmetri and spontaneously broken phases, respe-

tively. In this ase, probability distributions of average

magnetization in the 3D Ising model in an external �eld

obtained with the help of the Monte Carlo method were

used. Tsypin [17,18℄ proved that the term with the sixth

power of the variable in the e�etive potential plays an

important role. In [17℄, the values of universal four- and

six-point oupling onstants were alulated. Dimension-

less six- and eight-point e�etive oupling onstants were

alulated by Sokolov et al. [19℄ in the three-loop approx-

imation using the �eld-theory RG approah. An estimate

for the dimensionless sexti e�etive oupling onstant in

the ase of the 3D Ising model in the four-loop approxi-

mation is given in [20℄.

In this paper, the �

6

model is used for developing the

method of alulation of expressions for thermodynami

funtions of the 3D Ising system taking into aount the

terms determining the orretion to saling. The alula-

tions are made above and below the phase transition tem-

perature T



(high- and low-temperature regions). The

obtained expressions for basi ritial amplitudes and

the amplitudes of the �rst onuent orretion make it

possible to analyze their dependene on mirosopi pa-

rameters of the system (the range b of potential and the

lattie onstant ).

We shall proeed from the expression for partition

funtion in the approximation of the �

6

model. Putting

n = 3 in (5) and arrying out integration in (4) with re-

spet to the variables �

k

and !

k

with indies B

0

< k � B,

followed by the integration with respet to N

0

variables

!

k

, we obtain

Z = 2

N

2

(N

0

�1)=2

e

a

0

0

N

0

Z

exp

2

4

�

1

2

X

k�B

0

d

0

(k)�

k

�

�k

�

3

X

l=2

a

0

2l

(2l)!(N

0

)

l�1

X

k

1

;:::;k

2l

�B

0

�

k

1

� � ��

k

2l

Æ

k

1

+���+k

2l

3

5

(d�)

N

0

: (6)

Here

N

0

= Ns

�3

0

; s

0

= B=B

0

= �

p

2b=; d

0

(k) = a

0

2

� �

~

�(k): (7)

The oeÆients a

0

2l

are de�ned as

a

0

0

= lnQ(M); Q(M) = (12s

3

0

)

1=4

�

�1

I

0

(�

0

; �

0

);

a

0

2

= (12s

3

0

)

1=2

F

2

(�

0

; �

0

); a

0

4

= 12s

3

0

C(�

0

; �

0

); a

0

6

= (12s

3

0

)

3=2

N (�

0

; �

0

) (8)

and are funtions of s

0

, i.e., of the ratio b= (see Table 1). In this expressions, the role of the arguments is played by

the quantities

�

0

=

p

3s

3=2

0

; �

0

=

8

p

3

15s

3=2

0

: (9)
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The speial funtion C(�

0

; �

0

) and N (�

0

; �

0

) have the form

C(�

0

; �

0

) = �F

4

(�

0

; �

0

) + 3F

2

2

(�

0

; �

0

); N (�

0

; �

0

) = F

6

(�

0

; �

0

)� 15F

4

(�

0

; �

0

)F

2

(�

0

; �

0

) + 30F

3

2

(�

0

; �

0

); (10)

where

F

2l

(�

0

; �

0

) = I

2l

(�

0

; �

0

)=I

0

(�

0

; �

0

); I

2l

(�

0

; �

0

) =

1

Z

0

t

2l

exp(��

0

t

2

� t

4

� �

0

t

6

) dt: (11)

b b

I

b

II

b

III

 2 5 7

a

0

0

�1:0196 �0:9863 �0:9764 �0:9218 �0:9193 �0:9190 �0:9189

a

0

2

0.7023 0.7820 0.8083 0.9887 0.9986 0.9999 1.0000

a

0

4

0.2212 0.2163 0.2086 0.0220 0.0028 0.0002 0.0000

a

0

6

0.4379 0.3895 0.3547 0.0031 0.0000 0.0000 0.0000

Table 1. Values of oeÆients a

0

2l

for various b.

It an be seen from Table 1 that a

0

2

! 1 for b � ,

a

0

2l

! 0 for l � 2, and the integrand in formula (6)

has the form lose to the Gaussian distribution. In the

ase when the range of the potential and the lattie on-

stant are ommensurate, the oeÆients a

0

2l

di�er from

zero for all values of l � 0, and we must take into a-

ount in the exponent of the integrand in (6) the terms

proportional to higher degrees of the variable �

k

in addi-

tion to the Gaussian term. Heneforth, we shall onsider

just this ase. The value of b = b

I

= =(2

p

3) orre-

sponds to the interation between nearest neighbours,

b = b

II

= 0:3379 to the interation between the near-

est and next-nearest neighbours, and b = b

III

= 0:3584

to the nearest, next-nearest, and third neighbours [21℄.

At these values of b and small values of the wave ve-

tors k, the paraboli approximation of the Fourier trans-

form of the exponentially dereasing interation poten-

tial orresponds to the analogous approximation of the

Fourier transform for the interation potentials of the

above-mentioned neighbours.

The inrease in the number of terms in expressions (5)

and (6) orresponds to a ompliation of the form of the

non-Gaussian density of measure (ompliation of the

model). Critial phenomena in a 3D Ising ferromagnet

within the CV method an be desribed quantitatively

even in the �

6

model approximation. The on�nement to

the quarti approximation in formulas (5) and (6) allows

us to go beyond the lassial analysis and to desribe

all qualitative aspets of the seond-order phase tran-

sition, while the sexti approximation ensures a more

adequate quantitative desription of the ritial proper-

ties of a spin system. This is on�rmed by alulation

as well as an analysis of the behaviour of the oeÆients

in the initial expression for partition funtion and the

ritial exponent of the orrelation length � for the se-

quene of �

4

; �

6

; �

8

, and �

10

models [3,8,13,14℄ as well

as by the alulation and omparison of thermodynami

funtions for the models �

4

and �

6

[6℄ and by ompari-

son of the results of our alulations with other available

data (see, for example, [6,7℄). The analysis of the above-

mentioned sequene of the model was neessary for esti-

mating the onvergene of the proedure for alulating

the ritial exponent �, for �nding its dependene on the

RG parameter s, and for establishing whether it is expe-

dient to use higher densities of measures. It was found

that as the form of the density of measure beomes more

ompliated, the dependene of the ritial exponent �

on the RG parameter s beomes weaker gradually, and

starting from the sexti density of measure, the value of

the exponent �, having a tendeny to saturation with

inreasing m (whih haraterizes the order of the �

2m

model or determines the summation limit in formula (5),

m = 2; 3; 4; 5) hanges insigni�antly. It is also interest-

ing that for m � 3, the numerial values of the oeÆ-

ients a

0

2l

appearing in the partition funtion (relations

similar to (8) and (6)) vary insigni�antly upon an in-

rease in the order of the density of measure, i. e., upon

an inrease in the number of terms in (5).

An advantage of the CV method in the desription of

phase transitions is the presene of a variable assoiated

with the order parameter among the CV �

k

. Suh a vari-

able for the Ising model is �

0

. We annot single out the

ontribution from �

0

alone in expression (6) sine all the

variables �

k

are interonneted. We shall use the method

of \layer-by-layer" integration of (6) with respet to vari-

ables �

k

proposed by Yukhnovskii [3℄. The integration

begins from the variables �

k

with a large value of k (of

the order of the Brillouin half-zone boundary) and termi-
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nates at �

k

with k ! 0. For this purpose, we divide the

phase spae of the CV �

k

into layers with the division pa-

rameter s. In eah nth layer (orresponding to the region

of wave vetors B

n+1

< k � B

n

; B

n+1

= B

n

=s; s > 1),

the Fourier transform of the potential

~

�(k) is replaed

by its average value (arithmeti mean in the given ase).

To simplify the presentation, we assume that the orre-

tion for the potential averaging is zero, although it an

be taken into aount if neessary [3℄. Inluding this or-

retion leads to a nonzero value of the ritial exponent �

haraterizing the behaviour of the pair orrelation fun-

tion for T = T



. As a result of step-by-step alulation of

partition funtion, the number of integration variables

in the expression for this quantity dereases gradually.

After the integration over n+ 1 layers of the CV spae,

we obtain

Z = 2

N

2

(N

n+1

�1)=2

Q

0

Q

1

� � �Q

n

[Q(P

n

)℄

N

n+1

Z

W

(n+1)

6

(�) (d�)

N

n+1

: (12)

Here N

n+1

= N

0

s

�3(n+1)

, and

Q

0

=

h

e

a

0

0

Q(d)

i

N

0

; Q

1

= [Q(P )Q(d

1

)℄

N

1

; : : : ;

Q

n

= [Q(P

n�1

)Q(d

n

)℄

N

n

; Q(d

n

) = 2

�

24=a

(n)

4

�

1=4

I

0

(h

n

; �

n

); (13)

Q(P

n

) = �

�1

�

s

3

a

(n)

4

=C(h

n

; �

n

)

�

1=4

I

0

(�

n

; �

n

):

The basi arguments

h

n

= d

n

(B

n+1

; B

n

)(6=a

(n)

4

)

1=2

; �

n

=

p

6

15

a

(n)

6

=(a

(n)

4

)

3=2

(14)

are determined by the mean value of the oeÆient d

n

(k) in the nth layer of the phase spae of CV, i.e., by

d

n

(B

n+1

; B

n

) as well as the quantities a

(n)

4

and a

(n)

6

. The e�etive sexti density of measure of the (n + 1)th blok

struture W

(n+1)

6

(�) has the form

W

(n+1)

6

(�) = exp

2

4

�

1

2

X

k�B

n+1

d

n+1

(k)�

k

�

�k

�

3

X

l=2

a

(n+1)

2l

(2l)!N

l�1

n+1

X

k

1

;:::;k

2l

�B

n+1

�

k

1

� � ��

k

2l

Æ

k

1

+���+k

2l

3

5

: (15)

Here B

n+1

= B

0

s

�(n+1)

, d

n+1

(k) = a

(n+1)

2

� �

~

�(k), a

(n+1)

2l

are renormalized values of the oeÆients a

0

2l

after

integration over n+ 1 layers of the phase spae of CV. The intermediate variables �

n

, �

n

are funtions of h

n

and �

n

and are de�ned as

�

n

= (6s

3

)

1=2

F

2

(h

n

; �

n

)[C(h

n

; �

n

)℄

�1=2

; �

n

=

p

6

15

s

�3=2

N (h

n

; �

n

)[C(h

n

; �

n

)℄

�3=2

; (16)

where the form of the speial funtions C(h

n

; �

n

)

and N (h

n

; �

n

) is given by (10). The oeÆients

d

n

(B

n+1

; B

n

); a

(n)

4

, and a

(n)

6

are onneted with the o-

eÆients for the (n + 1)th layer through the RR [8,22℄

whose solutions [15,22℄ are used for alulating the free

energy of the system.

The basi idea of the alulation of expliit expres-

sions for free energy and other thermodynami funtions

of the system near T



on mirosopi level (� < �

�

�

10

�2

; � = (T � T



)=T



) lies in the separate inlusion of

ontributions from short-wave and long-wave modes of

spin moment density osillations [3,10,23℄.

Short-wave modes are haraterized by a RG symme-

try and are desribed by a non-Gaussian density of mea-

sure. They orrespond to the region of ritial regime

(CR) observed above as well as below T



. In this ase, the

RG method is used (see, for example, [24℄). The alu-

lation of the expression desribing the ontribution from
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short-wave modes of spin moment density osillations to

free energy involves the summation of partial free ener-

gies over the layers of the phase spae of CV up to the

point, at whih the system leaves the CR region. In this

ase, it is important to obtain an expliit dependene on

the number of the layer. For this purpose, the solutions

of RR are used. Taking into aount the larger eigen-

value (E

1

> 1) of the RG linear transformation matrix,

we an desribe the main singularity for spei� heat

near T



. Smaller eigenvalues (E

2

< 1 and E

3

< 1) are re-

sponsible for the emergene of orretions to saling. The

inlusion of short-wave modes of spin density osillations

leads to a renormalization of the dispersion of the dis-

tribution desribing long-wave modes. The region of the

limiting Gaussian regime (LGR) for T > T



or the region

of the inverse Gaussian regime (IGR) for T < T



is asso-

iated with these long-wave modes. The utuations in

the LGR region are haraterized by the Gaussian distri-

bution. In ontrast to the LGR, the IGR is desribed by a

non-Gaussian measure density. The distribution aquires

the Gaussian form only as a result of separating the free

energy of the ordering. The way, in whih the ontribu-

tion from long-wave modes of osillations to free energy

of the system is taken into aount, di�ers qualitatively

from the method of alulating the short-wave part of

partition funtion. The alulation of this ontribution

is based on the use of the Gaussian density of measure

as the basis density. We have developed a diret method

of alulations with the results obtained by taking into

aount the short-wave modes as initial parameters.

It should be noted that our alulations are valid in

a small neighbourhood of T



. The solutions of RR make

it possible to alulate the size of this ritial region.

Indeed, using these solutions and the ondition for the

existene of CR (the exit from this regime for n ! 1,

desribed by terms proportional to E

n

1

, does not prevail

over the entry to this regime, whih is desribed by terms

proportional to E

n

2

and E

n

3

), we an determine the tem-

perature range � < �

�

, in whih the CR orresponding

to the presene of strongly orrelated spin bloks ours.

The value of �

�

is equal to the magnitude of the small-

est root of the three equations obtained on the basis of

solutions of RR. The value of �

�

determined in this way

is of the order of a few hundredths for ommensurate b

and  [25℄. For large values of b, it is important to take

orretly into aount the entry to the CR. In this ase,

the value of �

�

an be obtained by imposing the ondi-

tion that the entry to CR prevails over the exit from this

regime for n! n

0

, where the layer number n

0

as a fun-

tion of b an be determined from RR [8,22℄, for example,

proeeding from the relation for a

(n)

4

(see Table 2). The

data ontained in Table 2 show that the ritial region

is pratially absent for large b. This is not surprising

sine the ondition b �  orresponds to the transition

to the model with long-range interation, whih is based

on the Gaussian distribution of spin density osillation

modes (see (6) and Table 1) and demonstrates the las-

sial ritial behaviour.

A distintive feature of RR solutions is a spei� de-

pendene of one of their oeÆients on temperature.

The expression for this oeÆient an be used to derive

an equation for the quantity �



~

�(0) determining the

phase transition temperature (see [22℄). A diret analyti

method for alulating the phase transition temperature

in the �

4

model approximation is developed in [21,26℄.

b 4 5 7

n

0

7 8 9

�

�

0:8266� 10

�8

0:6274� 10

�9

0:4680� 10

�10

Table 2. Values of n

0

and �

�

for large values of the inter-

ation potential range b and the RG parameter s = 3.

The alulations for a 3D Ising-like system in these pa-

pers are illustrated by the onsideration of the simple

ubi lattie ase. The inuene of the short-wave part

of the Fourier transform of the exponentially dereas-

ing interation potential (

~

�(k) is the small onstant at

B

0

< k � B) on T



is studied. Our numerial value �



J =

0:211 (�

4

model) [21℄ for the ase when the potential pa-

rameters orrespond to the nearest-neighbour interation

with the onstant J aords with the onlusions of other

authors, for example, with the value (�



J)

�1

= 4:5103

(or �



J = 0:2217) [27,28℄ or �



J = 0:221654(1) [29℄ al-

ulated using the high-temperature series data. Similar

values are also obtained using the real spae RG method

based on the umulant expansion (�



J = 0:22401 [30℄)

and the Monte Carlo method (�



J = 0:221654�0:000006

[31℄, �



J = 0:2216595 � 0:0000026 [32{34℄). Liu and

Fisher [35℄ preferred �



J = 0:221692, �



J = 0:221630,

and �



J = 0:221620 for the simple ubi Ising lattie and

the three seleted values of the suseptibility exponent

 ( = 1:250,  = 1:2395, and  = 1:237), respetively.

The dependene of �



A (A is the onstant appearing in

the interation potential (2)) on the ratio of the poten-

tial range b to the lattie onstant  is shown in Fig. 1

for the �

6

model. Here and below, the urves are plotted

for the RG parameters s = 3.

Fig. 1. Dependene of the inverse phase transition tem-

perature on the ratio of the interation potential range to the

lattie onstant.
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Calulating separately the ontributions to free energy

from short- and long-wave modes of spin density osil-

lations (F

+

CR

and F

LGR

at T > T



or F

�

CR

and F

IGR

at

T < T



), we an obtain the omplete expression for the

free energy of the system:

F =

8

<

:

F

0

+ F

+

CR

+ F

LGR

; T > T



;

F

0

+ F

�

CR

+ F

IGR

; T < T



:

(17)

Here F

0

= �kTN ln 2 is the free energy of N noninter-

ating spins. Detailed alulations of the ontributions

to free energy of the system from short- and long-wave

modes and the oeÆients of omplete expressions for

thermodynami harateristis are presented in [36,37℄.

The paper [36℄ was devoted to the ritial behaviour of

a 3D Ising-like system in the high-temperature region.

The low-temperature region was onsidered in [37℄. The

alulations are performed on the basis of the �

6

model

taking into aount the �rst onuent orretion (whih

is determined by the term proportional to �

�

1

(T > T



)

or j� j

�

1

(T < T



), �

1

= � lnE

2

= lnE

1

). We disregard

the seond onuent orretion (whih is determined by

the term proportional to �

�

2

(T > T



) or j� j

�

2

(T < T



),

�

2

= � lnE

3

= lnE

1

). This is due to the fat that the on-

tribution from the �rst onuent orretion to thermody-

nami funtions of the model near T



is more signi�ant

than the small ontribution from the seond orretion

(j� j � 1, �

1

is of the order of 0.5, and �

2

> 2, see [6℄).

Below, the �nal expressions for thermodynami hara-

teristis of the system are given in the ase of a zero

external �eld. The urves of the dependenes of these

harateristis on temperature and mirosopi parame-

ters are plotted using the alulation results in the high-

and low-temperature regions.

III. THERMODYNAMIC CHARACTERISTICS NEAR T

C

AS FUNCTIONS

OF TEMPERATURE AND MICROSCOPIC PARAMETERS OF THE SYSTEM

In aordane with (17), the total free energy of the system assumes the form

F =

8

<

:

�kTN

0

h



0

+ 

1

� + 

2

�

2

+ 

(0)+

3

�

3�

+ 

(1)+

3

�

3�+�

1

i

; T > T



;

�kTN

0

h



0

� 

1

j� j+ 

2

j� j

2

+ 

(0)�

3

j� j

3�

+ 

(1)�

3

j� j

3�+�

1

i

; T < T



;

(18)

where � = ln s= lnE

1

is the ritial exponent of the orrelation length. The terms proportional to integral powers

of � in (18) appear exlusively due to inlusion of short-wave modes of osillations. The terms proportional to �

3�

and �

3�+�

1

(nonanalyti omponent of free energy) are formed as a result of inlusion of short-wave as well as

long-wave modes of osillations. The �rst onuent orretion appears due to the smaller eigenvalue E

2

of the RG

linear transformation matrix taken into aount in the solutions of RR. All the oeÆients in expression for F (see

[36,37℄) are funtions of mirosopi parameters of the system, i.e., the e�etive radius b of the potential, the Fourier

transform

~

�(0) of the potential for k = 0, and the lattie onstant . The values of the oeÆients 

0

, 

1

, and 

2

are independent of whether alulations are made for a temperature above or below the phase transition point. The

oeÆients 

(l)�

3

(l = 0; 1) an be written as a produt of the quantity �

(l)�

3

, whih is universal relative to mirosopi

parameters, and the nonuniversal fator 

3

�



l

�

1

[36,38℄, whih is a funtion of these parameters:



(l)�

3

= 

3

�



l

�

1

�

(l)�

3

; l = 0; 1: (19)

The \+" and \�" signs refer to temperatures above and below T



, respetively. Numerial values of the oeÆients

�

(l)�

3

are given in [36,37℄.

The main advantage of the expression for F is the presene of relations onneting its oeÆients with mirosopi

parameters of the system and the oordinates of a �xed point of RR. Leading ritial amplitudes and the amplitudes of

the onuent orretion for the spei� heat and other thermodynami harateristis of the system an be presented

in a similar way.

The oeÆients of entropy, internal energy, and spei� heat an be expressed in terms of the oeÆients of free

energy. Taking into aount the �rst onuent orretion, we obtain the following expressions for entropy S, internal

energy U , and spei� heat C:

S =

8

<

:

kN

0

h

s

(0)

+ 

0

� + u

(0)+

3

�

1��

+ u

(1)+

3

�

1��+�

1

i

; T > T



;

kN

0

h

s

(0)

� 

0

j� j � u

(0)�

3

j� j

1��

� u

(1)�

3

j� j

1��+�

1

i

; T < T



;
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U =

8

<

:

kTN

0

h



1

+ u

1

� + u

(0)+

3

�

1��

+ u

(1)+

3

�

1��+�

1

i

; T > T



;

kTN

0

h



1

� u

1

j� j � u

(0)�

3

j� j

1��

� u

(1)�

3

j� j

1��+�

1

i

; T < T



;

(20)

C =

8

<

:

kN

0

h



0

+ 

(0)+

3

�

��

+ 

(1)+

3

�

�

1

��

i

; T > T



;

kN

0

h



0

+ 

(0)�

3

j� j

��

+ 

(1)�

3

j� j

�

1

��

i

; T < T



:

Here

s

(0)

= 

0

+ 

1

; 

0

= 2(

1

+ 

2

); u

1

= 

1

+ 2

2

;

u

(l)�

3

= 

3

�



l

�

1

�u

(l)�

3

; l = 0; 1;

�u

(0)�

3

= 3��

(0)�

3

; �u

(1)�

3

= (3� +�

1

)�

(1)�

3

; (21)



(l)�

3

= 

3

�



l

�

1

�

(l)�

3

; �

(0)�

3

= 3�(3� � 1)�

(0)�

3

;

�

(1)�

3

= (3� +�

1

)(3� +�

1

� 1)�

(1)�

3

;

and � = 2 � 3� is the ritial exponent of the spei�

heat.

The formula for spei� heat (see (20)) an be rewrit-

ten in the form [39,40℄

C

kN

0

=

A

�

�

j� j

��

(1 + �a

�



j� j

�

1

) + B

�

; (22)

A

�

= 

3

�

��

(0)�

3

; a

�



=



�

1

�

�

(1)�

3

�

(0)�

3

; B

�

= 

0

:

The proposed method makes it possible to alulate

suh important harateristis of the system as the av-

erage spin moment (whih plays the role of the order

parameter for the system under investigation)

h�i = h�i

(0)

j� j

�

(1 + h�i

(1)

j� j

�

1

) (23)

and the suseptibility per partile

� = �

�

j� j

�

�

1 + a

�

�

j� j

�

1

�

�

2

B

~

�(0)

: (24)

Here �

B

is the Bohr magneton, � = �=2 and  = 2�

are the ritial exponents of the average spin moment

and the suseptibility, respetively. The leading ritial

amplitudes and the amplitudes of the �rst onuent or-

retion for the average spin moment and the susepti-

bility are obtained in [36,37℄ for various values of the

interation potential range.

Using the expliit expressions presented here, we an

investigate the dependenes of thermodynami hara-

teristis of a 3D Ising-like system on its mirosopi pa-

rameters. The temperature-dependene urves for the

average spin moment h�i, entropy S=kN , spei� heat

C=kN , and the suseptibility � (in the units of �

2

B

=A,

A =

~

�(0)=[8�(b=)

3

℄ is the interation potential on-

stant) near T



for di�erent values of the e�etive radius

b of the potential are shown in Figs. 2, 3, 4, and 5.

Fig. 2. Temperature dependene of average spin moment

of the system in the �

6

model approximation for various val-

ues of the e�etive radius b of the potential: b

I

= =(2

p

3);

b

II

= 0:3379; b

III

= 0:3584;  and 2.

Fig. 3. Dependene of the entropy of the system on � . No-

tation is the same as in Fig. 2.
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Fig. 4. Spei� heat of the spin system for various values

of b. Notation is the same as in Fig. 2.

Fig. 5. Temperature dependene of the suseptibility of

the system for various values of b. Notation is the same as in

Fig. 2.

Fig. 6. Dependene of the free energy of the system at the

phase transition point (� = 0) on the ratio of the e�etive

radius b of exponentially dereasing interation potential to

the simple ubi lattie onstant .

The evolution of the free energy F=N of the system

(in the units of A) at the phase transition point (� = 0)

as well as of the average spin moment h�i for � = �10

�3

and the spei� heat C=kN of the system for j� j = 10

�3

with inreasing ratio of the e�etive radius b of the po-

tential to the lattie onstant  is plotted in Figs. 6, 7,

and 8.

Fig. 7. Behaviour of the average spin moment for

� = �10

�3

with inreasing ratio b=.

Fig. 8. Evolution of the spei� heat of the system for

j� j = 10

�3

with inreasing ratio b=.

IV. CONCLUSIONS

The analyti method for alulating the thermody-

nami funtions of 3D Ising-like systems above and below

the ritial temperature T



is shematially presented in

the higher non-Gaussian approximation (�

6

model) tak-

ing into aount the �rst onuent orretion. The start-

ing point of the problem statement in the CV method

under study is the Hamiltonian of the 3D Ising model.

After the passage to the CV set, the Jaobian of transi-

tion from the spin variables to the CV is alulated to ob-
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tain a partition funtion similar to the Ginzburg{Landau

funtional. The partition funtion of the spin system is

integrated over the layers of the CV phase spae. The

orresponding renormalization group (RG) transforma-

tion an be related to the Wilson type. Although the

CV method as well as Wilson approah exploit the RG

ideas, it is based on the use of a non-Gaussian density

of measure. The main feature is the integration of short-

wave spin density osillation modes, whih is generally

done without using perturbation theory. The short-wave

modes are haraterized by the presene of the RG sym-

metry and are desribed by a non-Gaussian measure den-

sity. These modes are responsible for the formation of

ritial exponents and for renormalization of the oeÆ-

ient of the distribution desribing the long-wave modes.

The alulation for long-wavemodes of spin moment den-

sity osillations is based on using the Gaussian density

of measure as the basis density. The ontributions to the

free energy of the system from the short- and long-wave

modes are alulated separately. A alulation tehnique

for onuent orretions is elaborated in the ourse of

determining the thermodynami funtions.

The CV method allows one to alulate the partition

funtion of the system and to obtain not only the uni-

versal quantities (ritial exponents) but also the nonuni-

versal harateristis. The ritial region size and phase

transition temperature as well as the plots of tempera-

ture dependenes of the average spin moment, entropy,

spei� heat, and the suseptibility are obtained for dif-

ferent values of the interation potential range (inlud-

ing the values orresponding to the nearest-neighbour

interation and the interations between the nearest and

next-nearest neighbours and between the nearest, next-

nearest, and third neighbours). A nonuniversal fator

determined by mirosopi parameters of the system is

singled out in the expressions for leading ritial ampli-

tudes and onuent orretion amplitudes of the ther-

modynami harateristis.

The �

6

model ensures a better quantitative desrip-

tion of the ritial properties of a one-omponent spin

system than the �

4

model. This follows from the results

of our previous alulations (see, for example, [6℄) as well

as from the temperature dependenes of the average spin

moment h�i (Fig. 9) and spei� heat C=kN of the 3D

Ising model (Fig. 10). The alulations were made for a

simple ubi lattie in zero external �eld with the inter-

ation between nearest neighbours. In our alulations,

we put b = b

I

= =(2

p

3). The �

6

model approximation

inludes the �rst onuent orretion, while the approx-

imation on the basis of the �

4

model takes into aount

the �rst and seond onuent orretions (see [12,41,42℄).

The straight line 1 in Fig. 9 for the average spin moment

orresponds to the �

4

model, line 2 to the �

6

model,

and line 3 to the results obtained by Liu and Fisher

[35℄ for � = jT � T



j=T



. The high-temperature region

in Fig. 10 is presented by the urves 1, 2 and 3, while

the low-temperature region by the urves 1

0

, 2

0

and 3

0

.

The urves 1 and 1

0

were obtained on the basis of the �

4

model, urves 2 and 2

0

in the �

6

model approximation,

and urves 3 and 3

0

orrespond to the results obtained

by Liu and Fisher [35℄. It should be noted that the lat-

ter arried out a new numerial analysis of leading rit-

ial amplitudes of suseptibility, orrelation length, spe-

i� heat, and spontaneous magnetization of 3D nearest-

neighbour s, b, and f Ising models, as well as uni-

versal relations between these amplitudes. Modern esti-

mates of the ritial temperature and exponents in [35℄

are used in onjuntion with biased inhomogeneous dif-

ferential approximants to extrapolate the longest avail-

able series expansions to �nd the ritial amplitudes. As

is learly seen from Figs. 9 and 10, the plots for the �

6

model agree more losely with the Liu and Fisher's re-

sults than the estimates in the �

4

model approximation.

Fig. 9. Temperature dependene of the order parameter of

the 3D Ising model for a simple ubi lattie. Straight line 1

orresponds to the �

4

model, line 2 to the �

6

model, and line 3

to the results obtained in [35℄.

Fig. 10. Dependene of the spei� heat of the system on

� = jT � T



j=T



. Curves 1, 2 and 3 orrespond to T > T



,

urves 1

0

, 2

0

and 3

0

orrespond to T < T



. Curves 1 and 1

0

orrespond to the �

4

model, urves 2 and 2

0

orrespond to

the �

6

model, and urves 3 and 3

0

orrespond to the results

obtained in [35℄.
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The results of alulations for a 3D Ising system on

the basis of the �

4

and �

6

models are in aord with

the results obtained by other authors. For example [6℄,

we found the ritial exponents of the orrelation length

� = 0:637, spei� heat � = 0:088, the average spin mo-

ment � = 0:319, the suseptibility  = 1:275, and the

exponent of the �rst orretion to saling �

1

= 0:525

(�

6

model, s = s

�

), as well as universal ratios of rit-

ial amplitudes of spei� heat A

+

=A

�

= 0:435, sus-

eptibility �

+

=�

�

= 6:967 and their ombinations P =

[1 � A

+

=A

�

℄=� = 3:054, R

+



= A

+

�

+

=[s

3

0

(h�i

(0)

)

2

℄ =

0:098 (�

4

model, s = s

�

), where s

0

= �

p

2b=, h�i

(0)

is

the ritial amplitude of the average spin moment (see

(23)). These estimates agree with the values � = 0:630,

� = 0:110, � = 0:325,  = 1:241, �

1

= 0:498, A

+

=A

�

=

0:465, �

+

=�

�

= 5:12, P = 3:90, R

+



= 0:052 obtained by

using the �eld-theory approah [43{45℄ as well as with

the values � = 0:638, � = 0:125, � = 0:312,  = 1:250,

�

1

= 0:50, A

+

=A

�

= 0:51, �

+

=�

�

= 5:07, R

+



= 0:059

alulated with the help of high-temperature expansions

[46{50℄. The methods existing at present make it possible

to alulate universal quantities to a quite high degree of

auray (see, for example, [34,35,51,52℄). The advantage

of the proposed method is the possibility of deriving an-

alyti expressions for the phase transition temperature

and the amplitudes of thermodynami harateristis as

funtions of mirosopi parameters of the initial system

(the lattie onstant and parameters of the interation

potential) that makes this method useful in desribing

the phase transitions in a wide lass of 3D systems.
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TERMODINAM�QN� HARAKTERISTIKI TRIVIM�RNIH �ZIN�OPOD�BNIH

SISTEM �K FUNKC�Õ M�KROSKOP�QNIH PARAMETR�V.

NABLI�ENN� MODEL� �

6

�. V. Pil�k

�nstitut f�ziki kondensovanih sistem Na�onal~noÝ akadem�Ý nauk UkraÝni,

vul. Svn�~kogo 1, L~v�v, 79011, UkraÝna

Na osnov� metodu kolektivnih zm�nnih rozvinuto m�kroskop�qni� p�dh�d do rozrahunku ta dosl�d�enn�

termodinam�ki trivim�rnoÝ �zin�opod�bnoÝ sistemi viwe � ni�qe v�d temperaturi fazovogo perehodu T



.

Matematiqni� opis zd��sneno v me�ah viwogo ne�ausovogo nabli�enn� (model� �

6

) z urahuvann�m popra-

vok do ske�l�n�u. U virazah dl� osnovnih kritiqnih ampl�tud ta ampl�tud popravok do ske�l�n�u vid�leno

neun�versal~ni� mno�nik, �ki� zale�it~ v�d m�kroskop�qnih parametr�v sistemi. Qislov� o�nki rozm�ru

kritiqnoÝ d�l�nki, temperaturi fazovogo perehodu, a tako� graf�ki temperaturnih zale�noste� entrop�Ý

ta �nxih termodinam�qnih harakteristik poblizu T



podano dl� r�znih znaqen~ rad�usa efektivnoÝ d�Ý

eksponen��no spadnogo poten��lu vzamod�Ý. Proste�eno zm�nu v�l~noÝ ener��Ý sistemi v toq� fazovogo

perehodu, seredn~ogo sp�novogo momentu ta teplomnosti z� zrostann�m v�dnoxenn� rad�usa d�Ý poten��lu

do staloÝ prostoÝ kub�qnoÝ �ratki. Rezul~tati rozrahunk�v, Ýh z�stavlenn� z danimi �nxih avtor�v pokazu-

�t~, wo model~ �

6

, por�vn�no z modell� �

4

, zabezpequ adekvatn�xi� k�l~k�sni� opis kritiqnoÝ poved�nki

trivim�rnoÝ �zin�opod�bnoÝ sistemi.
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