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The mi
ros
opi
 approa
h to 
al
ulating and investigating the three-dimensional (3D) Ising-like

system thermodynami
s above and below the phase transition temperature T




is developed using

the 
olle
tive variables method. Mathemati
al des
ription is performed within the framework of

the higher non-Gaussian approximation (�

6

model) taking into a

ount the 
orre
tions to s
aling.

A nonuniversal fa
tor depending on mi
ros
opi
 parameters of the system is singled out in the ex-

pressions for leading 
riti
al amplitudes and 
orre
tion-to-s
aling amplitudes. Numeri
al estimates

of the 
riti
al region size, phase transition temperature as well as the graphs of temperature de-

penden
es of entropy and other thermodynami
 
hara
teristi
s near T




are given for various values

of e�e
tive radius of the exponentially de
reasing intera
tion potential. The variation of the free

energy of the system at the phase transition point, average spin moment, and spe
i�
 heat with

in
reasing ratio of the potential e�e
tive radius to the simple 
ubi
 latti
e 
onstant is tra
ed. The

results of 
al
ulations and their 
omparison with the other authors' data show that the �

6

model

provides a more adequate quantitative des
ription of the 
riti
al behaviour of a 3D Ising-like system

than the �

4

model.
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I. INTRODUCTION

A 
entral problem in statisti
al physi
s is the des
rip-

tion of phase transitions and 
riti
al phenomena, i.e.,

the 
onstru
tion of a mi
ros
opi
 theory of phase tran-

sitions. Intensive studies of phase transitions have made

it possible to produ
e new 
on
epts for an essential un-

derstanding of 
riti
al phenomena and to 
reate a pow-

erful mathemati
al apparatus for des
ribing them. The

problem mentioned above was 
onsidered in a number

of books and arti
les. In most papers devoted to the

theory of phase transitions, primary attention is given

to determining the universality 
lass of the systems, in-

vestigating symmetry properties irrespe
tive of the seed

parameters in the initial Hamiltonian, solving re
urren
e

relations (RR), and 
al
ulating 
riti
al exponents. Uni-

versal exponents and 
ombinations of 
riti
al amplitudes

for thermodynami
 
hara
teristi
s are 
al
ulated for spin

systems, in parti
ular, for the 3D Ising model. The prob-

lem of dependen
e of 
riti
al amplitudes on the mi
ro-

s
opi
 parameters of the system required a 
onsistent

analysis and 
ould be solved su

essfully together with

the main problem in the theory of phase transitions, i.e.,

the derivation of expli
it expressions for thermodynami



hara
teristi
s of the system near the phase transition

point as fun
tions of temperature and mi
ros
opi
 pa-

rameters. Considerable progress in the solution of this

problemwas made by using the method of 
olle
tive vari-

ables (CV) generalized by Yukhnovskii [1{4℄ to the 
ase

of spin systems. The term 
olle
tive variables is applied

to a spe
ial 
lass of variables spe
i�
 for ea
h individual

physi
al system. The set of CV 
ontains variables asso-


iated with order parameters. For this reason, the phase

spa
e of CV is most natural for des
ribing a phase transi-

tion. For magneti
 systems, the CV �

k

are the variables

asso
iated with modes of spin moment density os
illa-

tions, while the order parameter is asso
iated with the

variable �

0

, in whi
h the subs
ript \0" 
orresponds to

the peak of the Fourier transform of the intera
tion po-

tential.

This paper supplements a previous study [5℄ based on

the CV method. In [5℄, the thermodynami
 fun
tions of

the 
lassi
al n-ve
tor 3D magneti
 model near T




were


al
ulated in the approximation of the quarti
 distribu-

tion for the spin density os
illation modes (�

4

model)

without taking into a

ount 
on
uent 
orre
tions (
or-

re
tions to s
aling). In the present paper, the results

of 
al
ulating the thermodynami
 
hara
teristi
s of a

3D Ising-like system are obtained using the higher non-

Gaussian distribution (�

6

model). In the pro
ess of deter-

mining these 
hara
teristi
s, a 
al
ulation te
hnique for


orre
tion-to-s
aling terms is elaborated. The employ-

ment of the �

6

model for the investigation of the phase

transition by the CV method gives a more pre
ise def-

inition of the 
al
ulation results and provides the basis

for quantitative analysis of the 
riti
al behaviour of 3D

Ising-like systems in
luding the nonuniversal 
hara
teris-

ti
s. On the other hand, the dependen
e of nonuniversal
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quantities on the mi
ros
opi
 parameters of the system

has not been studied deeply enough so far. Su
h a study

is our aim in this resear
h.

The a
tual task of the 
riti
al phenomena physi
s at

the present time is elaborating the methods giving quan-

titative des
ription of the 
riti
al behaviour of the system

without using any adjustable parameters. The approa
h

suggested in the present paper allows us to perform the


al
ulations for a Ising ferromagnet in real 3D spa
e on

the mi
ros
opi
 level without any adjustable parameters.

In this 
ase, the new spe
ial fun
tions [6{9℄ appearing in

the 
onstru
tion of the phase transition theory using the

�

6

model are exploited. We hope that our expli
it rep-

resentations and plots may provide useful ben
hmarks

in studying the dependen
e of the thermodynami
 fun
-

tions of 3D Ising-like systems on the parameters of the

intera
tion potential and 
hara
teristi
s of the 
rystal

latti
e. The obtained results 
an be used for interpret-

ing experimental results 
on
erning the behaviour of real

materials in the vi
inity of the se
ond-order phase tran-

sition point, and the 
omputational te
hnique proposed

here for thermodynami
 
hara
teristi
s 
an be used for


al
ulating their thermodynami
 fun
tions in the 
riti
al

region.

II. CALCULATION SCHEME FOR THE FREE

ENERGY OF ISING-LIKE SYSTEM

We 
onsider a 3D Ising-like system on a simple 
ubi


latti
e with period 
. The Hamiltonian of su
h a system

has the form

H = �

1

2

X

j;l

�(jj� lj)�

j

�

l

; (1)

where �(jj� lj) is the potential of intera
tion of parti
les

at sites j and l, �

j

is the operator of the z-
omponent of

spin at the jth site, having two eigenvalues +1 and �1.

The intera
tion potential is an exponentially de
reasing

fun
tion

�(r

jl

) = A exp

�

�

r

jl

b

�

: (2)

Here A is a 
onstant, r

jl

is the interparti
le distan
e, and

b is the radious of e�e
tive intera
tion. The approxima-

tion for the Fourier transform of the intera
tion potential

is taken in the form [3℄

~

�(k) =

�

~

�(0)(1� 2b

2

k

2

); k � B

0

;

0; B

0

< k � B;

(3)

where B is the boundary of Brillouin half-zone (B =

�=
), B

0

= (b

p

2)

�1

,

~

�(0) = 8�A(b=
)

3

.

We shall use here the method of CV [3℄, whi
h al-

lows us to 
al
ulate approximately the expression for

partition fun
tion and to obtain 
omplete expressions for

thermodynami
 fun
tions near the phase transition tem-

perature T




in addition to universal quantities (
riti
al

exponents).

In the CV representation for the partition fun
tion of

the 3D Ising model, we have

Z =

Z

exp

"

1

2

X

k

�

~

�(k)�

k

�

�k

#

J(�) (d�)

N

: (4)

Here the summation over the wave ve
tors k is 
ar-

ried out within the �rst Brillouin zone, � = 1=(kT )

is the inverse temperature, and the CV �

k

are in-

trodu
ed by means of the fun
tional representation

for operators of spin density os
illation modes �̂

k

=

(

p

N )

�1

P

l

�

l

exp(�ikl),

J(�) = 2

N

Z

exp

"

2�i

X

k

!

k

�

k

+

1

X

n=1

(2�i)

2n

N

1�n

�

M

2n

(2n)!

X

k

1

;:::;k

2n

!

k

1

� � �!

k

2n

Æ

k

1

+���+k

2n

3

5

(d!)

N

(5)

is the Ja
obian of transition from the set of N spin vari-

ables �

l

to the set of CV �

k

, and Æ

k

1

+:::+k

2n

is the Kro-

ne
ker symbol. The variables !

k

are 
onjugate to �

k

,

and 
umulants M

2n

assume 
onstant values (see [3℄).

The expression for the partition fun
tion (4) 
annot be


al
ulated exa
tly due to the presen
e of an in�nitely

large number of terms in the exponent (5). For this rea-

son, approximations limiting the number of terms in the

exponent of the integrand in (5) are used. A 
ertain ap-

proximation of the integrand in the expression for J(�)

when 
al
ulating the expli
it form of the Ja
obian of the

transition determines the 
hoi
e of the model (models

�

4

; �

6

, et
.). For n = 1, we obtain the Gaussian approxi-

mation. It leads to 
lassi
al values of 
riti
al exponents.

An important 
ondition in des
ribing the 
riti
al proper-

ties of the Ising model is the use of non-Gaussian densi-

ties of measures. The simplest approximation permitting

an analysis beyond the 
lassi
al behaviour 
orresponds

to n = 2 and is based on quarti
 density of measure (�

4

model). This approximation is used for 
al
ulating ba-

si
 
riti
al exponents of thermodynami
 
hara
teristi
s,


omplete expressions for these 
hara
teristi
s taking into

a

ount 
on
uent 
orre
tions, and for analyzing the re-

lation for 
riti
al amplitudes (see, for example, [10{12℄).

In view of an approximate 
al
ulation of partition fun
-

tion 
on�ned to the �

4

model, the obtained results (
rit-

i
al exponents, amplitudes, and thermodynami
 fun
-

tions) 
ontain a 
ertain dependen
e on the renormaliza-

tion group (RG) parameter s. This dependen
e be
omes

mu
h weaker as the form of the non-Gaussian density of

measure be
omes more 
ompli
ated (transition to more


ompli
atedmodels �

6

(n = 3, see (5)), �

8

, and �

10

). This

is 
on�rmed by an analysis of the behaviour of the 
riti-
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al exponents of 
orrelation length � for the models �

2m

(m = 3; 4; 5) [8,13,14℄ as well as by a dire
t 
omparison

of the 
urves des
ribing the temperature dependen
es of

thermodynami
 
hara
teristi
s 
al
ulated for the models

�

4

and �

6

at di�erent values of the parameter s [6℄. The

dependen
e of the results of 
al
ulations on the parame-

ter s is studied. For ea
h of the �

2m

models, there exists a

preferred value of the parameter s = s

�

(s

�

= 3:5862 for

the �

4

model, s

�

= 2:7349 for the �

6

model, s

�

= 2:6511

for the �

8

model, and s

�

= 2:6108 for the �

10

model)

nullifying the average value of the 
oeÆ
ient in the term

with the se
ond power in the e�e
tive density of measure

at a �xed point. The values of s 
lose to s

�

are optimal

for the given method of 
al
ulations. The di�eren
e form

of RR between the 
oeÆ
ients of e�e
tive non-Gaussian

densities of measures (expansions for the fun
tions ap-

pearing in these relations) operates su

essfully just in

this region of s. For su
h de�nite methods of division of

the phase spa
e of CV into layers (values of s 
lose to s

�

),

we obtain reliable results mat
hing with the experimen-

tal data and the results of theoreti
al investigations [3,6℄.

In this paper, the results of 
al
ulations based on the �

6

model taking into a

ount the sexti
 density of measure

while integrating the partition fun
tion are given for the

values of s equaling 2, 2.7349, and 3 (i.e., optimal values

for the given method of 
al
ulations).

In our earlier publi
ation [15℄, we proposed a new

method of 
al
ulation of the equation of state for a 3D

Ising system on mi
ros
opi
 level in the approximation

of the above-mentioned �

6

model. This equation attra
ts

the attention of many s
ientists (see, for example, [16℄ in

whi
h the equation of state for the systems of univer-

sality 
lass of the 3D Ising model is analyzed by using

the �eld-theory approa
h with RG te
hnique). The 
or-

re
tness of the 
hoi
e of the �

6

model for investigations

is 
on�rmed in [17,18℄, where the e�e
tive potential is

studied for the s
alar �eld theory in three dimensions in

the symmetri
 and spontaneously broken phases, respe
-

tively. In this 
ase, probability distributions of average

magnetization in the 3D Ising model in an external �eld

obtained with the help of the Monte Carlo method were

used. Tsypin [17,18℄ proved that the term with the sixth

power of the variable in the e�e
tive potential plays an

important role. In [17℄, the values of universal four- and

six-point 
oupling 
onstants were 
al
ulated. Dimension-

less six- and eight-point e�e
tive 
oupling 
onstants were


al
ulated by Sokolov et al. [19℄ in the three-loop approx-

imation using the �eld-theory RG approa
h. An estimate

for the dimensionless sexti
 e�e
tive 
oupling 
onstant in

the 
ase of the 3D Ising model in the four-loop approxi-

mation is given in [20℄.

In this paper, the �

6

model is used for developing the

method of 
al
ulation of expressions for thermodynami


fun
tions of the 3D Ising system taking into a

ount the

terms determining the 
orre
tion to s
aling. The 
al
ula-

tions are made above and below the phase transition tem-

perature T




(high- and low-temperature regions). The

obtained expressions for basi
 
riti
al amplitudes and

the amplitudes of the �rst 
on
uent 
orre
tion make it

possible to analyze their dependen
e on mi
ros
opi
 pa-

rameters of the system (the range b of potential and the

latti
e 
onstant 
).

We shall pro
eed from the expression for partition

fun
tion in the approximation of the �

6

model. Putting

n = 3 in (5) and 
arrying out integration in (4) with re-

spe
t to the variables �

k

and !

k

with indi
es B

0

< k � B,

followed by the integration with respe
t to N

0

variables

!

k

, we obtain

Z = 2

N

2

(N

0

�1)=2

e

a

0

0

N

0

Z

exp

2

4

�

1

2

X

k�B

0

d

0

(k)�

k

�

�k

�

3

X

l=2

a

0

2l

(2l)!(N

0

)

l�1

X

k

1

;:::;k

2l

�B

0

�

k

1

� � ��

k

2l

Æ

k

1

+���+k

2l

3

5

(d�)

N

0

: (6)

Here

N

0

= Ns

�3

0

; s

0

= B=B

0

= �

p

2b=
; d

0

(k) = a

0

2

� �

~

�(k): (7)

The 
oeÆ
ients a

0

2l

are de�ned as

a

0

0

= lnQ(M); Q(M) = (12s

3

0

)

1=4

�

�1

I

0

(�

0

; �

0

);

a

0

2

= (12s

3

0

)

1=2

F

2

(�

0

; �

0

); a

0

4

= 12s

3

0

C(�

0

; �

0

); a

0

6

= (12s

3

0

)

3=2

N (�

0

; �

0

) (8)

and are fun
tions of s

0

, i.e., of the ratio b=
 (see Table 1). In this expressions, the role of the arguments is played by

the quantities

�

0

=

p

3s

3=2

0

; �

0

=

8

p

3

15s

3=2

0

: (9)
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The spe
ial fun
tion C(�

0

; �

0

) and N (�

0

; �

0

) have the form

C(�

0

; �

0

) = �F

4

(�

0

; �

0

) + 3F

2

2

(�

0

; �

0

); N (�

0

; �

0

) = F

6

(�

0

; �

0

)� 15F

4

(�

0

; �

0

)F

2

(�

0

; �

0

) + 30F

3

2

(�

0

; �

0

); (10)

where

F

2l

(�

0

; �

0

) = I

2l

(�

0

; �

0

)=I

0

(�

0

; �

0

); I

2l

(�

0

; �

0

) =

1

Z

0

t

2l

exp(��

0

t

2

� t

4

� �

0

t

6

) dt: (11)

b b

I

b

II

b

III


 2
 5
 7


a

0

0

�1:0196 �0:9863 �0:9764 �0:9218 �0:9193 �0:9190 �0:9189

a

0

2

0.7023 0.7820 0.8083 0.9887 0.9986 0.9999 1.0000

a

0

4

0.2212 0.2163 0.2086 0.0220 0.0028 0.0002 0.0000

a

0

6

0.4379 0.3895 0.3547 0.0031 0.0000 0.0000 0.0000

Table 1. Values of 
oeÆ
ients a

0

2l

for various b.

It 
an be seen from Table 1 that a

0

2

! 1 for b � 
,

a

0

2l

! 0 for l � 2, and the integrand in formula (6)

has the form 
lose to the Gaussian distribution. In the


ase when the range of the potential and the latti
e 
on-

stant are 
ommensurate, the 
oeÆ
ients a

0

2l

di�er from

zero for all values of l � 0, and we must take into a
-


ount in the exponent of the integrand in (6) the terms

proportional to higher degrees of the variable �

k

in addi-

tion to the Gaussian term. Hen
eforth, we shall 
onsider

just this 
ase. The value of b = b

I

= 
=(2

p

3) 
orre-

sponds to the intera
tion between nearest neighbours,

b = b

II

= 0:3379
 to the intera
tion between the near-

est and next-nearest neighbours, and b = b

III

= 0:3584


to the nearest, next-nearest, and third neighbours [21℄.

At these values of b and small values of the wave ve
-

tors k, the paraboli
 approximation of the Fourier trans-

form of the exponentially de
reasing intera
tion poten-

tial 
orresponds to the analogous approximation of the

Fourier transform for the intera
tion potentials of the

above-mentioned neighbours.

The in
rease in the number of terms in expressions (5)

and (6) 
orresponds to a 
ompli
ation of the form of the

non-Gaussian density of measure (
ompli
ation of the

model). Criti
al phenomena in a 3D Ising ferromagnet

within the CV method 
an be des
ribed quantitatively

even in the �

6

model approximation. The 
on�nement to

the quarti
 approximation in formulas (5) and (6) allows

us to go beyond the 
lassi
al analysis and to des
ribe

all qualitative aspe
ts of the se
ond-order phase tran-

sition, while the sexti
 approximation ensures a more

adequate quantitative des
ription of the 
riti
al proper-

ties of a spin system. This is 
on�rmed by 
al
ulation

as well as an analysis of the behaviour of the 
oeÆ
ients

in the initial expression for partition fun
tion and the


riti
al exponent of the 
orrelation length � for the se-

quen
e of �

4

; �

6

; �

8

, and �

10

models [3,8,13,14℄ as well

as by the 
al
ulation and 
omparison of thermodynami


fun
tions for the models �

4

and �

6

[6℄ and by 
ompari-

son of the results of our 
al
ulations with other available

data (see, for example, [6,7℄). The analysis of the above-

mentioned sequen
e of the model was ne
essary for esti-

mating the 
onvergen
e of the pro
edure for 
al
ulating

the 
riti
al exponent �, for �nding its dependen
e on the

RG parameter s, and for establishing whether it is expe-

dient to use higher densities of measures. It was found

that as the form of the density of measure be
omes more


ompli
ated, the dependen
e of the 
riti
al exponent �

on the RG parameter s be
omes weaker gradually, and

starting from the sexti
 density of measure, the value of

the exponent �, having a tenden
y to saturation with

in
reasing m (whi
h 
hara
terizes the order of the �

2m

model or determines the summation limit in formula (5),

m = 2; 3; 4; 5) 
hanges insigni�
antly. It is also interest-

ing that for m � 3, the numeri
al values of the 
oeÆ-


ients a

0

2l

appearing in the partition fun
tion (relations

similar to (8) and (6)) vary insigni�
antly upon an in-


rease in the order of the density of measure, i. e., upon

an in
rease in the number of terms in (5).

An advantage of the CV method in the des
ription of

phase transitions is the presen
e of a variable asso
iated

with the order parameter among the CV �

k

. Su
h a vari-

able for the Ising model is �

0

. We 
annot single out the


ontribution from �

0

alone in expression (6) sin
e all the

variables �

k

are inter
onne
ted. We shall use the method

of \layer-by-layer" integration of (6) with respe
t to vari-

ables �

k

proposed by Yukhnovskii [3℄. The integration

begins from the variables �

k

with a large value of k (of

the order of the Brillouin half-zone boundary) and termi-
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nates at �

k

with k ! 0. For this purpose, we divide the

phase spa
e of the CV �

k

into layers with the division pa-

rameter s. In ea
h nth layer (
orresponding to the region

of wave ve
tors B

n+1

< k � B

n

; B

n+1

= B

n

=s; s > 1),

the Fourier transform of the potential

~

�(k) is repla
ed

by its average value (arithmeti
 mean in the given 
ase).

To simplify the presentation, we assume that the 
orre
-

tion for the potential averaging is zero, although it 
an

be taken into a

ount if ne
essary [3℄. In
luding this 
or-

re
tion leads to a nonzero value of the 
riti
al exponent �


hara
terizing the behaviour of the pair 
orrelation fun
-

tion for T = T




. As a result of step-by-step 
al
ulation of

partition fun
tion, the number of integration variables

in the expression for this quantity de
reases gradually.

After the integration over n+ 1 layers of the CV spa
e,

we obtain

Z = 2

N

2

(N

n+1

�1)=2

Q

0

Q

1

� � �Q

n

[Q(P

n

)℄

N

n+1

Z

W

(n+1)

6

(�) (d�)

N

n+1

: (12)

Here N

n+1

= N

0

s

�3(n+1)

, and

Q

0

=

h

e

a

0

0

Q(d)

i

N

0

; Q

1

= [Q(P )Q(d

1

)℄

N

1

; : : : ;

Q

n

= [Q(P

n�1

)Q(d

n

)℄

N

n

; Q(d

n

) = 2

�

24=a

(n)

4

�

1=4

I

0

(h

n

; �

n

); (13)

Q(P

n

) = �

�1

�

s

3

a

(n)

4

=C(h

n

; �

n

)

�

1=4

I

0

(�

n

; �

n

):

The basi
 arguments

h

n

= d

n

(B

n+1

; B

n

)(6=a

(n)

4

)

1=2

; �

n

=

p

6

15

a

(n)

6

=(a

(n)

4

)

3=2

(14)

are determined by the mean value of the 
oeÆ
ient d

n

(k) in the nth layer of the phase spa
e of CV, i.e., by

d

n

(B

n+1

; B

n

) as well as the quantities a

(n)

4

and a

(n)

6

. The e�e
tive sexti
 density of measure of the (n + 1)th blo
k

stru
ture W

(n+1)

6

(�) has the form

W

(n+1)

6

(�) = exp

2

4

�

1

2

X

k�B

n+1

d

n+1

(k)�

k

�

�k

�

3

X

l=2

a

(n+1)

2l

(2l)!N

l�1

n+1

X

k

1

;:::;k

2l

�B

n+1

�

k

1

� � ��

k

2l

Æ

k

1

+���+k

2l

3

5

: (15)

Here B

n+1

= B

0

s

�(n+1)

, d

n+1

(k) = a

(n+1)

2

� �

~

�(k), a

(n+1)

2l

are renormalized values of the 
oeÆ
ients a

0

2l

after

integration over n+ 1 layers of the phase spa
e of CV. The intermediate variables �

n

, �

n

are fun
tions of h

n

and �

n

and are de�ned as

�

n

= (6s

3

)

1=2

F

2

(h

n

; �

n

)[C(h

n

; �

n

)℄

�1=2

; �

n

=

p

6

15

s

�3=2

N (h

n

; �

n

)[C(h

n

; �

n

)℄

�3=2

; (16)

where the form of the spe
ial fun
tions C(h

n

; �

n

)

and N (h

n

; �

n

) is given by (10). The 
oeÆ
ients

d

n

(B

n+1

; B

n

); a

(n)

4

, and a

(n)

6

are 
onne
ted with the 
o-

eÆ
ients for the (n + 1)th layer through the RR [8,22℄

whose solutions [15,22℄ are used for 
al
ulating the free

energy of the system.

The basi
 idea of the 
al
ulation of expli
it expres-

sions for free energy and other thermodynami
 fun
tions

of the system near T




on mi
ros
opi
 level (� < �

�

�

10

�2

; � = (T � T




)=T




) lies in the separate in
lusion of


ontributions from short-wave and long-wave modes of

spin moment density os
illations [3,10,23℄.

Short-wave modes are 
hara
terized by a RG symme-

try and are des
ribed by a non-Gaussian density of mea-

sure. They 
orrespond to the region of 
riti
al regime

(CR) observed above as well as below T




. In this 
ase, the

RG method is used (see, for example, [24℄). The 
al
u-

lation of the expression des
ribing the 
ontribution from
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short-wave modes of spin moment density os
illations to

free energy involves the summation of partial free ener-

gies over the layers of the phase spa
e of CV up to the

point, at whi
h the system leaves the CR region. In this


ase, it is important to obtain an expli
it dependen
e on

the number of the layer. For this purpose, the solutions

of RR are used. Taking into a

ount the larger eigen-

value (E

1

> 1) of the RG linear transformation matrix,

we 
an des
ribe the main singularity for spe
i�
 heat

near T




. Smaller eigenvalues (E

2

< 1 and E

3

< 1) are re-

sponsible for the emergen
e of 
orre
tions to s
aling. The

in
lusion of short-wave modes of spin density os
illations

leads to a renormalization of the dispersion of the dis-

tribution des
ribing long-wave modes. The region of the

limiting Gaussian regime (LGR) for T > T




or the region

of the inverse Gaussian regime (IGR) for T < T




is asso-


iated with these long-wave modes. The 
u
tuations in

the LGR region are 
hara
terized by the Gaussian distri-

bution. In 
ontrast to the LGR, the IGR is des
ribed by a

non-Gaussian measure density. The distribution a
quires

the Gaussian form only as a result of separating the free

energy of the ordering. The way, in whi
h the 
ontribu-

tion from long-wave modes of os
illations to free energy

of the system is taken into a

ount, di�ers qualitatively

from the method of 
al
ulating the short-wave part of

partition fun
tion. The 
al
ulation of this 
ontribution

is based on the use of the Gaussian density of measure

as the basis density. We have developed a dire
t method

of 
al
ulations with the results obtained by taking into

a

ount the short-wave modes as initial parameters.

It should be noted that our 
al
ulations are valid in

a small neighbourhood of T




. The solutions of RR make

it possible to 
al
ulate the size of this 
riti
al region.

Indeed, using these solutions and the 
ondition for the

existen
e of CR (the exit from this regime for n ! 1,

des
ribed by terms proportional to E

n

1

, does not prevail

over the entry to this regime, whi
h is des
ribed by terms

proportional to E

n

2

and E

n

3

), we 
an determine the tem-

perature range � < �

�

, in whi
h the CR 
orresponding

to the presen
e of strongly 
orrelated spin blo
ks o

urs.

The value of �

�

is equal to the magnitude of the small-

est root of the three equations obtained on the basis of

solutions of RR. The value of �

�

determined in this way

is of the order of a few hundredths for 
ommensurate b

and 
 [25℄. For large values of b, it is important to take


orre
tly into a

ount the entry to the CR. In this 
ase,

the value of �

�


an be obtained by imposing the 
ondi-

tion that the entry to CR prevails over the exit from this

regime for n! n

0

, where the layer number n

0

as a fun
-

tion of b 
an be determined from RR [8,22℄, for example,

pro
eeding from the relation for a

(n)

4

(see Table 2). The

data 
ontained in Table 2 show that the 
riti
al region

is pra
ti
ally absent for large b. This is not surprising

sin
e the 
ondition b � 
 
orresponds to the transition

to the model with long-range intera
tion, whi
h is based

on the Gaussian distribution of spin density os
illation

modes (see (6) and Table 1) and demonstrates the 
las-

si
al 
riti
al behaviour.

A distin
tive feature of RR solutions is a spe
i�
 de-

penden
e of one of their 
oeÆ
ients on temperature.

The expression for this 
oeÆ
ient 
an be used to derive

an equation for the quantity �




~

�(0) determining the

phase transition temperature (see [22℄). A dire
t analyti


method for 
al
ulating the phase transition temperature

in the �

4

model approximation is developed in [21,26℄.

b 4
 5
 7


n

0

7 8 9

�

�

0:8266� 10

�8

0:6274� 10

�9

0:4680� 10

�10

Table 2. Values of n

0

and �

�

for large values of the inter-

a
tion potential range b and the RG parameter s = 3.

The 
al
ulations for a 3D Ising-like system in these pa-

pers are illustrated by the 
onsideration of the simple


ubi
 latti
e 
ase. The in
uen
e of the short-wave part

of the Fourier transform of the exponentially de
reas-

ing intera
tion potential (

~

�(k) is the small 
onstant at

B

0

< k � B) on T




is studied. Our numeri
al value �




J =

0:211 (�

4

model) [21℄ for the 
ase when the potential pa-

rameters 
orrespond to the nearest-neighbour intera
tion

with the 
onstant J a

ords with the 
on
lusions of other

authors, for example, with the value (�




J)

�1

= 4:5103

(or �




J = 0:2217) [27,28℄ or �




J = 0:221654(1) [29℄ 
al-


ulated using the high-temperature series data. Similar

values are also obtained using the real spa
e RG method

based on the 
umulant expansion (�




J = 0:22401 [30℄)

and the Monte Carlo method (�




J = 0:221654�0:000006

[31℄, �




J = 0:2216595 � 0:0000026 [32{34℄). Liu and

Fisher [35℄ preferred �




J = 0:221692, �




J = 0:221630,

and �




J = 0:221620 for the simple 
ubi
 Ising latti
e and

the three sele
ted values of the sus
eptibility exponent


 (
 = 1:250, 
 = 1:2395, and 
 = 1:237), respe
tively.

The dependen
e of �




A (A is the 
onstant appearing in

the intera
tion potential (2)) on the ratio of the poten-

tial range b to the latti
e 
onstant 
 is shown in Fig. 1

for the �

6

model. Here and below, the 
urves are plotted

for the RG parameters s = 3.

Fig. 1. Dependen
e of the inverse phase transition tem-

perature on the ratio of the intera
tion potential range to the

latti
e 
onstant.
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Cal
ulating separately the 
ontributions to free energy

from short- and long-wave modes of spin density os
il-

lations (F

+

CR

and F

LGR

at T > T




or F

�

CR

and F

IGR

at

T < T




), we 
an obtain the 
omplete expression for the

free energy of the system:

F =

8

<

:

F

0

+ F

+

CR

+ F

LGR

; T > T




;

F

0

+ F

�

CR

+ F

IGR

; T < T




:

(17)

Here F

0

= �kTN ln 2 is the free energy of N noninter-

a
ting spins. Detailed 
al
ulations of the 
ontributions

to free energy of the system from short- and long-wave

modes and the 
oeÆ
ients of 
omplete expressions for

thermodynami
 
hara
teristi
s are presented in [36,37℄.

The paper [36℄ was devoted to the 
riti
al behaviour of

a 3D Ising-like system in the high-temperature region.

The low-temperature region was 
onsidered in [37℄. The


al
ulations are performed on the basis of the �

6

model

taking into a

ount the �rst 
on
uent 
orre
tion (whi
h

is determined by the term proportional to �

�

1

(T > T




)

or j� j

�

1

(T < T




), �

1

= � lnE

2

= lnE

1

). We disregard

the se
ond 
on
uent 
orre
tion (whi
h is determined by

the term proportional to �

�

2

(T > T




) or j� j

�

2

(T < T




),

�

2

= � lnE

3

= lnE

1

). This is due to the fa
t that the 
on-

tribution from the �rst 
on
uent 
orre
tion to thermody-

nami
 fun
tions of the model near T




is more signi�
ant

than the small 
ontribution from the se
ond 
orre
tion

(j� j � 1, �

1

is of the order of 0.5, and �

2

> 2, see [6℄).

Below, the �nal expressions for thermodynami
 
hara
-

teristi
s of the system are given in the 
ase of a zero

external �eld. The 
urves of the dependen
es of these


hara
teristi
s on temperature and mi
ros
opi
 parame-

ters are plotted using the 
al
ulation results in the high-

and low-temperature regions.

III. THERMODYNAMIC CHARACTERISTICS NEAR T

C

AS FUNCTIONS

OF TEMPERATURE AND MICROSCOPIC PARAMETERS OF THE SYSTEM

In a

ordan
e with (17), the total free energy of the system assumes the form

F =

8

<

:

�kTN

0

h




0

+ 


1

� + 


2

�

2

+ 


(0)+

3

�

3�

+ 


(1)+

3

�

3�+�

1

i

; T > T




;

�kTN

0

h




0

� 


1

j� j+ 


2

j� j

2

+ 


(0)�

3

j� j

3�

+ 


(1)�

3

j� j

3�+�

1

i

; T < T




;

(18)

where � = ln s= lnE

1

is the 
riti
al exponent of the 
orrelation length. The terms proportional to integral powers

of � in (18) appear ex
lusively due to in
lusion of short-wave modes of os
illations. The terms proportional to �

3�

and �

3�+�

1

(nonanalyti
 
omponent of free energy) are formed as a result of in
lusion of short-wave as well as

long-wave modes of os
illations. The �rst 
on
uent 
orre
tion appears due to the smaller eigenvalue E

2

of the RG

linear transformation matrix taken into a

ount in the solutions of RR. All the 
oeÆ
ients in expression for F (see

[36,37℄) are fun
tions of mi
ros
opi
 parameters of the system, i.e., the e�e
tive radius b of the potential, the Fourier

transform

~

�(0) of the potential for k = 0, and the latti
e 
onstant 
. The values of the 
oeÆ
ients 


0

, 


1

, and 


2

are independent of whether 
al
ulations are made for a temperature above or below the phase transition point. The


oeÆ
ients 


(l)�

3

(l = 0; 1) 
an be written as a produ
t of the quantity �


(l)�

3

, whi
h is universal relative to mi
ros
opi


parameters, and the nonuniversal fa
tor 


3

�




l

�

1

[36,38℄, whi
h is a fun
tion of these parameters:




(l)�

3

= 


3

�




l

�

1

�


(l)�

3

; l = 0; 1: (19)

The \+" and \�" signs refer to temperatures above and below T




, respe
tively. Numeri
al values of the 
oeÆ
ients

�


(l)�

3

are given in [36,37℄.

The main advantage of the expression for F is the presen
e of relations 
onne
ting its 
oeÆ
ients with mi
ros
opi


parameters of the system and the 
oordinates of a �xed point of RR. Leading 
riti
al amplitudes and the amplitudes of

the 
on
uent 
orre
tion for the spe
i�
 heat and other thermodynami
 
hara
teristi
s of the system 
an be presented

in a similar way.

The 
oeÆ
ients of entropy, internal energy, and spe
i�
 heat 
an be expressed in terms of the 
oeÆ
ients of free

energy. Taking into a

ount the �rst 
on
uent 
orre
tion, we obtain the following expressions for entropy S, internal

energy U , and spe
i�
 heat C:

S =

8

<

:

kN

0

h

s

(0)

+ 


0

� + u

(0)+

3

�

1��

+ u

(1)+

3

�

1��+�

1

i

; T > T




;

kN

0

h

s

(0)

� 


0

j� j � u

(0)�

3

j� j

1��

� u

(1)�

3

j� j

1��+�

1

i

; T < T




;
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U =

8

<

:

kTN

0

h




1

+ u

1

� + u

(0)+

3

�

1��

+ u

(1)+

3

�

1��+�

1

i

; T > T




;

kTN

0

h




1

� u

1

j� j � u

(0)�

3

j� j

1��

� u

(1)�

3

j� j

1��+�

1

i

; T < T




;

(20)

C =

8

<

:

kN

0

h




0

+ 


(0)+

3

�

��

+ 


(1)+

3

�

�

1

��

i

; T > T




;

kN

0

h




0

+ 


(0)�

3

j� j

��

+ 


(1)�

3

j� j

�

1

��

i

; T < T




:

Here

s

(0)

= 


0

+ 


1

; 


0

= 2(


1

+ 


2

); u

1

= 


1

+ 2


2

;

u

(l)�

3

= 


3

�




l

�

1

�u

(l)�

3

; l = 0; 1;

�u

(0)�

3

= 3��


(0)�

3

; �u

(1)�

3

= (3� +�

1

)�


(1)�

3

; (21)




(l)�

3

= 


3

�




l

�

1

�


(l)�

3

; �


(0)�

3

= 3�(3� � 1)�


(0)�

3

;

�


(1)�

3

= (3� +�

1

)(3� +�

1

� 1)�


(1)�

3

;

and � = 2 � 3� is the 
riti
al exponent of the spe
i�


heat.

The formula for spe
i�
 heat (see (20)) 
an be rewrit-

ten in the form [39,40℄

C

kN

0

=

A

�

�

j� j

��

(1 + �a

�




j� j

�

1

) + B

�

; (22)

A

�

= 


3

�

��


(0)�

3

; a

�




=




�

1

�

�


(1)�

3

�


(0)�

3

; B

�

= 


0

:

The proposed method makes it possible to 
al
ulate

su
h important 
hara
teristi
s of the system as the av-

erage spin moment (whi
h plays the role of the order

parameter for the system under investigation)

h�i = h�i

(0)

j� j

�

(1 + h�i

(1)

j� j

�

1

) (23)

and the sus
eptibility per parti
le

� = �

�

j� j

�


�

1 + a

�

�

j� j

�

1

�

�

2

B

~

�(0)

: (24)

Here �

B

is the Bohr magneton, � = �=2 and 
 = 2�

are the 
riti
al exponents of the average spin moment

and the sus
eptibility, respe
tively. The leading 
riti
al

amplitudes and the amplitudes of the �rst 
on
uent 
or-

re
tion for the average spin moment and the sus
epti-

bility are obtained in [36,37℄ for various values of the

intera
tion potential range.

Using the expli
it expressions presented here, we 
an

investigate the dependen
es of thermodynami
 
hara
-

teristi
s of a 3D Ising-like system on its mi
ros
opi
 pa-

rameters. The temperature-dependen
e 
urves for the

average spin moment h�i, entropy S=kN , spe
i�
 heat

C=kN , and the sus
eptibility � (in the units of �

2

B

=A,

A =

~

�(0)=[8�(b=
)

3

℄ is the intera
tion potential 
on-

stant) near T




for di�erent values of the e�e
tive radius

b of the potential are shown in Figs. 2, 3, 4, and 5.

Fig. 2. Temperature dependen
e of average spin moment

of the system in the �

6

model approximation for various val-

ues of the e�e
tive radius b of the potential: b

I

= 
=(2

p

3);

b

II

= 0:3379
; b

III

= 0:3584
; 
 and 2
.

Fig. 3. Dependen
e of the entropy of the system on � . No-

tation is the same as in Fig. 2.
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Fig. 4. Spe
i�
 heat of the spin system for various values

of b. Notation is the same as in Fig. 2.

Fig. 5. Temperature dependen
e of the sus
eptibility of

the system for various values of b. Notation is the same as in

Fig. 2.

Fig. 6. Dependen
e of the free energy of the system at the

phase transition point (� = 0) on the ratio of the e�e
tive

radius b of exponentially de
reasing intera
tion potential to

the simple 
ubi
 latti
e 
onstant 
.

The evolution of the free energy F=N of the system

(in the units of A) at the phase transition point (� = 0)

as well as of the average spin moment h�i for � = �10

�3

and the spe
i�
 heat C=kN of the system for j� j = 10

�3

with in
reasing ratio of the e�e
tive radius b of the po-

tential to the latti
e 
onstant 
 is plotted in Figs. 6, 7,

and 8.

Fig. 7. Behaviour of the average spin moment for

� = �10

�3

with in
reasing ratio b=
.

Fig. 8. Evolution of the spe
i�
 heat of the system for

j� j = 10

�3

with in
reasing ratio b=
.

IV. CONCLUSIONS

The analyti
 method for 
al
ulating the thermody-

nami
 fun
tions of 3D Ising-like systems above and below

the 
riti
al temperature T




is s
hemati
ally presented in

the higher non-Gaussian approximation (�

6

model) tak-

ing into a

ount the �rst 
on
uent 
orre
tion. The start-

ing point of the problem statement in the CV method

under study is the Hamiltonian of the 3D Ising model.

After the passage to the CV set, the Ja
obian of transi-

tion from the spin variables to the CV is 
al
ulated to ob-
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tain a partition fun
tion similar to the Ginzburg{Landau

fun
tional. The partition fun
tion of the spin system is

integrated over the layers of the CV phase spa
e. The


orresponding renormalization group (RG) transforma-

tion 
an be related to the Wilson type. Although the

CV method as well as Wilson approa
h exploit the RG

ideas, it is based on the use of a non-Gaussian density

of measure. The main feature is the integration of short-

wave spin density os
illation modes, whi
h is generally

done without using perturbation theory. The short-wave

modes are 
hara
terized by the presen
e of the RG sym-

metry and are des
ribed by a non-Gaussian measure den-

sity. These modes are responsible for the formation of


riti
al exponents and for renormalization of the 
oeÆ-


ient of the distribution des
ribing the long-wave modes.

The 
al
ulation for long-wavemodes of spin moment den-

sity os
illations is based on using the Gaussian density

of measure as the basis density. The 
ontributions to the

free energy of the system from the short- and long-wave

modes are 
al
ulated separately. A 
al
ulation te
hnique

for 
on
uent 
orre
tions is elaborated in the 
ourse of

determining the thermodynami
 fun
tions.

The CV method allows one to 
al
ulate the partition

fun
tion of the system and to obtain not only the uni-

versal quantities (
riti
al exponents) but also the nonuni-

versal 
hara
teristi
s. The 
riti
al region size and phase

transition temperature as well as the plots of tempera-

ture dependen
es of the average spin moment, entropy,

spe
i�
 heat, and the sus
eptibility are obtained for dif-

ferent values of the intera
tion potential range (in
lud-

ing the values 
orresponding to the nearest-neighbour

intera
tion and the intera
tions between the nearest and

next-nearest neighbours and between the nearest, next-

nearest, and third neighbours). A nonuniversal fa
tor

determined by mi
ros
opi
 parameters of the system is

singled out in the expressions for leading 
riti
al ampli-

tudes and 
on
uent 
orre
tion amplitudes of the ther-

modynami
 
hara
teristi
s.

The �

6

model ensures a better quantitative des
rip-

tion of the 
riti
al properties of a one-
omponent spin

system than the �

4

model. This follows from the results

of our previous 
al
ulations (see, for example, [6℄) as well

as from the temperature dependen
es of the average spin

moment h�i (Fig. 9) and spe
i�
 heat C=kN of the 3D

Ising model (Fig. 10). The 
al
ulations were made for a

simple 
ubi
 latti
e in zero external �eld with the inter-

a
tion between nearest neighbours. In our 
al
ulations,

we put b = b

I

= 
=(2

p

3). The �

6

model approximation

in
ludes the �rst 
on
uent 
orre
tion, while the approx-

imation on the basis of the �

4

model takes into a

ount

the �rst and se
ond 
on
uent 
orre
tions (see [12,41,42℄).

The straight line 1 in Fig. 9 for the average spin moment


orresponds to the �

4

model, line 2 to the �

6

model,

and line 3 to the results obtained by Liu and Fisher

[35℄ for � = jT � T




j=T




. The high-temperature region

in Fig. 10 is presented by the 
urves 1, 2 and 3, while

the low-temperature region by the 
urves 1

0

, 2

0

and 3

0

.

The 
urves 1 and 1

0

were obtained on the basis of the �

4

model, 
urves 2 and 2

0

in the �

6

model approximation,

and 
urves 3 and 3

0


orrespond to the results obtained

by Liu and Fisher [35℄. It should be noted that the lat-

ter 
arried out a new numeri
al analysis of leading 
rit-

i
al amplitudes of sus
eptibility, 
orrelation length, spe-


i�
 heat, and spontaneous magnetization of 3D nearest-

neighbour s
, b

, and f

 Ising models, as well as uni-

versal relations between these amplitudes. Modern esti-

mates of the 
riti
al temperature and exponents in [35℄

are used in 
onjun
tion with biased inhomogeneous dif-

ferential approximants to extrapolate the longest avail-

able series expansions to �nd the 
riti
al amplitudes. As

is 
learly seen from Figs. 9 and 10, the plots for the �

6

model agree more 
losely with the Liu and Fisher's re-

sults than the estimates in the �

4

model approximation.

Fig. 9. Temperature dependen
e of the order parameter of

the 3D Ising model for a simple 
ubi
 latti
e. Straight line 1


orresponds to the �

4

model, line 2 to the �

6

model, and line 3

to the results obtained in [35℄.

Fig. 10. Dependen
e of the spe
i�
 heat of the system on

� = jT � T




j=T




. Curves 1, 2 and 3 
orrespond to T > T




,


urves 1

0

, 2

0

and 3

0


orrespond to T < T




. Curves 1 and 1

0


orrespond to the �

4

model, 
urves 2 and 2

0


orrespond to

the �

6

model, and 
urves 3 and 3

0


orrespond to the results

obtained in [35℄.
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The results of 
al
ulations for a 3D Ising system on

the basis of the �

4

and �

6

models are in a

ord with

the results obtained by other authors. For example [6℄,

we found the 
riti
al exponents of the 
orrelation length

� = 0:637, spe
i�
 heat � = 0:088, the average spin mo-

ment � = 0:319, the sus
eptibility 
 = 1:275, and the

exponent of the �rst 
orre
tion to s
aling �

1

= 0:525

(�

6

model, s = s

�

), as well as universal ratios of 
rit-

i
al amplitudes of spe
i�
 heat A

+

=A

�

= 0:435, sus-


eptibility �

+

=�

�

= 6:967 and their 
ombinations P =

[1 � A

+

=A

�

℄=� = 3:054, R

+




= A

+

�

+

=[s

3

0

(h�i

(0)

)

2

℄ =

0:098 (�

4

model, s = s

�

), where s

0

= �

p

2b=
, h�i

(0)

is

the 
riti
al amplitude of the average spin moment (see

(23)). These estimates agree with the values � = 0:630,

� = 0:110, � = 0:325, 
 = 1:241, �

1

= 0:498, A

+

=A

�

=

0:465, �

+

=�

�

= 5:12, P = 3:90, R

+




= 0:052 obtained by

using the �eld-theory approa
h [43{45℄ as well as with

the values � = 0:638, � = 0:125, � = 0:312, 
 = 1:250,

�

1

= 0:50, A

+

=A

�

= 0:51, �

+

=�

�

= 5:07, R

+




= 0:059


al
ulated with the help of high-temperature expansions

[46{50℄. The methods existing at present make it possible

to 
al
ulate universal quantities to a quite high degree of

a

ura
y (see, for example, [34,35,51,52℄). The advantage

of the proposed method is the possibility of deriving an-

alyti
 expressions for the phase transition temperature

and the amplitudes of thermodynami
 
hara
teristi
s as

fun
tions of mi
ros
opi
 parameters of the initial system

(the latti
e 
onstant and parameters of the intera
tion

potential) that makes this method useful in des
ribing

the phase transitions in a wide 
lass of 3D systems.
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TERMODINAM�QN� HARAKTERISTIKI TRIVIM�RNIH �ZIN�OPOD�BNIH

SISTEM �K FUNKC�Õ M�KROSKOP�QNIH PARAMETR�V.

NABLI�ENN� MODEL� �

6

�. V. Pil�k

�nstitut f�ziki kondensovanih sistem Na
�onal~noÝ akadem�Ý nauk UkraÝni,

vul. Sv
n
�
~kogo 1, L~v�v, 79011, UkraÝna

Na osnov� metodu kolektivnih zm�nnih rozvinuto m�kroskop�qni� p�dh�d do rozrahunku ta dosl�d�enn�

termodinam�ki trivim�rnoÝ �zin�opod�bnoÝ sistemi viwe � ni�qe v�d temperaturi fazovogo perehodu T




.

Matematiqni� opis zd��sneno v me�ah viwogo ne�ausovogo nabli�enn� (model� �

6

) z urahuvann�m popra-

vok do ske�l�n�u. U virazah dl� osnovnih kritiqnih ampl�tud ta ampl�tud popravok do ske�l�n�u vid�leno

neun�versal~ni� mno�nik, �ki� zale�it~ v�d m�kroskop�qnih parametr�v sistemi. Qislov� o
�nki rozm�ru

kritiqnoÝ d�l�nki, temperaturi fazovogo perehodu, a tako� graf�ki temperaturnih zale�noste� entrop�Ý

ta �nxih termodinam�qnih harakteristik poblizu T




podano dl� r�znih znaqen~ rad�usa efektivnoÝ d�Ý

eksponen
��no spadnogo poten
��lu vza
mod�Ý. Proste�eno zm�nu v�l~noÝ ener��Ý sistemi v toq
� fazovogo

perehodu, seredn~ogo sp�novogo momentu ta teplo
mnosti z� zrostann�m v�dnoxenn� rad�usa d�Ý poten
��lu

do staloÝ prostoÝ kub�qnoÝ �ratki. Rezul~tati rozrahunk�v, Ýh z�stavlenn� z danimi �nxih avtor�v pokazu-

�t~, wo model~ �

6

, por�vn�no z modell� �

4

, zabezpequ
 adekvatn�xi� k�l~k�sni� opis kritiqnoÝ poved�nki

trivim�rnoÝ �zin�opod�bnoÝ sistemi.
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