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The microscopic approach to calculating and investigating the three-dimensional (3D) Ising-like
system thermodynamics above and below the phase transition temperature 7. is developed using
the collective variables method. Mathematical description is performed within the framework of
the higher non-Gaussian approximation (p® model) taking into account the corrections to scaling.
A nonuniversal factor depending on microscopic parameters of the system is singled out in the ex-
pressions for leading critical amplitudes and correction-to-scaling amplitudes. Numerical estimates
of the critical region size, phase transition temperature as well as the graphs of temperature de-
pendences of entropy and other thermodynamic characteristics near 7. are given for various values
of effective radius of the exponentially decreasing interaction potential. The variation of the free
energy of the system at the phase transition point, average spin moment, and specific heat with
increasing ratio of the potential effective radius to the simple cubic lattice constant is traced. The
results of calculations and their comparison with the other authors’ data show that the p® model
provides a more adequate quantitative description of the critical behaviour of a 3D Ising-like system
than the p* model.
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I. INTRODUCTION

A central problem in statistical physics is the descrip-
tion of phase transitions and critical phenomena, 1.e.,
the construction of a microscopic theory of phase tran-
sitions. Intensive studies of phase transitions have made
it possible to produce new concepts for an essential un-
derstanding of critical phenomena and to create a pow-
erful mathematical apparatus for describing them. The
problem mentioned above was considered in a number
of books and articles. In most papers devoted to the
theory of phase transitions, primary attention is given
to determining the universality class of the systems, in-
vestigating symmetry properties irrespective of the seed
parameters in the initial Hamiltonian, solving recurrence
relations (RR), and calculating critical exponents. Uni-
versal exponents and combinations of critical amplitudes
for thermodynamic characteristics are calculated for spin
systems, in particular, for the 3D Ising model. The prob-
lem of dependence of critical amplitudes on the micro-
scopic parameters of the system required a consistent
analysis and could be solved successfully together with
the main problem in the theory of phase transitions, 1.e.,
the derivation of explicit expressions for thermodynamic
characteristics of the system near the phase transition
point as functions of temperature and microscopic pa-
rameters. Considerable progress in the solution of this
problem was made by using the method of collective vari-
ables (CV) generalized by Yukhnovskii [1-4] to the case

of spin systems. The term collective variables is applied
to a special class of variables specific for each individual
physical system. The set of CV contains variables asso-
ciated with order parameters. For this reason, the phase
space of CV is most natural for describing a phase transi-
tion. For magnetic systems, the CV py are the variables
associlated with modes of spin moment density oscilla-
tions, while the order parameter is associated with the
variable pg, in which the subscript “0” corresponds to
the peak of the Fourier transform of the interaction po-
tential.

This paper supplements a previous study [5] based on
the CV method. In [5], the thermodynamic functions of
the classical n-vector 3D magnetic model near 7. were
calculated in the approximation of the quartic distribu-
tion for the spin density oscillation modes (p* model)
without taking into account confluent corrections (cor-
rections to scaling). In the present paper, the results
of calculating the thermodynamic characteristics of a
3D Ising-like system are obtained using the higher non-
Gaussian distribution (p° model). In the process of deter-
mining these characteristics, a calculation technique for
correction-to-scaling terms is elaborated. The employ-
ment of the p% model for the investigation of the phase
transition by the CV method gives a more precise def-
inition of the calculation results and provides the basis
for quantitative analysis of the critical behaviour of 3D
Ising-like systems including the nonuniversal characteris-
tics. On the other hand, the dependence of nonuniversal
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quantities on the microscopic parameters of the system
has not been studied deeply enough so far. Such a study
is our aim in this research.

The actual task of the critical phenomena physics at
the present time is elaborating the methods giving quan-
titative description of the critical behaviour of the system
without using any adjustable parameters. The approach
suggested in the present paper allows us to perform the
calculations for a Ising ferromagnet in real 3D space on
the microscopic level without any adjustable parameters.
In this case, the new special functions [6—9] appearing in
the construction of the phase transition theory using the
p° model are exploited. We hope that our explicit rep-
resentations and plots may provide useful benchmarks
in studying the dependence of the thermodynamic func-
tions of 3D Ising-like systems on the parameters of the
interaction potential and characteristics of the crystal
lattice. The obtained results can be used for interpret-
ing experimental results concerning the behaviour of real
materials in the vicinity of the second-order phase tran-
sition point, and the computational technique proposed
here for thermodynamic characteristics can be used for
calculating their thermodynamic functions in the critical
region.

II. CALCULATION SCHEME FOR THE FREE
ENERGY OF ISING-LIKE SYSTEM

We consider a 3D Ising-like system on a simple cubic
lattice with period ¢. The Hamiltonian of such a system
has the form

H=—g 3 (i - oo (1)

where ®(|j —1|) is the potential of interaction of particles
at sites j and 1, o5 is the operator of the z-component of
spin at the jth site, having two eigenvalues +1 and —1.
The interaction potential is an exponentially decreasing
function

O(ry) = Aexp (—%) : (2)

Here A is a constant, rj is the interparticle distance, and
b 1s the radious of effective interaction. The approxima-
tion for the Fourier transform of the interaction potential
is taken in the form [3]

P ®(0)(1 — 2b%k?), k< B,
<I>(l<:)—{ (0)( 0. ) . <§k§B, (3)

where B is the boundary of Brillouin half-zone (B =

r/e), B' = (bv/2)~1, ®(0) = 81 A(b/c).
We shall use here the method of CV [3], which al-

lows us to calculate approximately the expression for
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partition function and to obtain complete expressions for
thermodynamic functions near the phase transition tem-
perature T in addition to universal quantities (critical
exponents).

In the CV representation for the partition function of
the 3D Ising model, we have

7= [ex [g §ﬁ<i><k>pkp_k] J(e) (o). (4)

Here the summation over the wave vectors k 1s car-
ried out within the first Brillouin zone, 8 = 1/(kT)
is the inverse temperature, and the CV px are in-
troduced by means of the functional representation
for operators of spin density oscillation modes px =

(VN)~1 21: orexp(—ikl),

J(p) = QN/eXp [271'1' Zwkpk + Z (271'1')2” Ni-n
k n=1
M2n

< (@) (5)

E Wk o Wko, 6k1+"'+k2n
ki, kon

is the Jacobian of transition from the set of N spin vari-
ables o1 to the set of CV py, and dx, 4. yk,, is the Kro-
necker symbol. The variables wy are conjugate to py,
and cumulants Mo, assume constant values (see [3]).
The expression for the partition function (4) cannot be
calculated exactly due to the presence of an infinitely
large number of terms in the exponent (5). For this rea-
son, approximations limiting the number of terms in the
exponent of the integrand in (5) are used. A certain ap-
proximation of the integrand in the expression for J(p)
when calculating the explicit form of the Jacobian of the
transition determines the choice of the model (models
pt, p%, etc.). For n = 1, we obtain the Gaussian approxi-
mation. It leads to classical values of critical exponents.
An important condition in describing the critical proper-
ties of the Ising model is the use of non-Gaussian densi-
ties of measures. The simplest approximation permitting
an analysis beyond the classical behaviour corresponds
to n = 2 and is based on quartic density of measure (p*
model). This approximation is used for calculating ba-
sic critical exponents of thermodynamic characteristics,
complete expressions for these characteristics taking into
account confluent corrections, and for analyzing the re-
lation for critical amplitudes (see, for example, [10-12]).
In view of an approximate calculation of partition func-
tion confined to the p* model, the obtained results (crit-
ical exponents, amplitudes, and thermodynamic func-
tions) contain a certain dependence on the renormaliza-
tion group (RG) parameter s. This dependence becomes
much weaker as the form of the non-Gaussian density of
measure becomes more complicated (transition to more
complicated models p® (n = 3, see (5)), p%, and p!?). This
is confirmed by an analysis of the behaviour of the criti-
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cal exponents of correlation length v for the models p?™
(m = 3,4,5) [8,13,14] as well as by a direct comparison
of the curves describing the temperature dependences of
thermodynamic characteristics calculated for the models
p* and p® at different values of the parameter s [6]. The
dependence of the results of calculations on the parame-
ter s is studied. For each of the p?™ models, there exists a
preferred value of the parameter s = s* (s* = 3.5862 for
the p* model, s* = 2.7349 for the p® model, s* = 2.6511
for the p® model, and s* = 2.6108 for the p'° model)
nullifying the average value of the coefficient in the term
with the second power in the effective density of measure
at a fixed point. The values of s close to s* are optimal
for the given method of calculations. The difference form
of RR between the coefficients of effective non-Gaussian
densities of measures (expansions for the functions ap-
pearing in these relations) operates successfully just in
this region of s. For such definite methods of division of
the phase space of CV into layers (values of s close to s*),
we obtain reliable results matching with the experimen-
tal data and the results of theoretical investigations [3,6].
In this paper, the results of calculations based on the p°
model taking into account the sextic density of measure
while integrating the partition function are given for the
values of s equaling 2, 2.7349, and 3 (i.e., optimal values
for the given method of calculations).

In our earlier publication [15], we proposed a new
method of calculation of the equation of state for a 3D
Ising system on microscopic level in the approximation
of the above-mentioned p® model. This equation attracts
the attention of many scientists (see, for example, [16] in
which the equation of state for the systems of univer-
sality class of the 3D Ising model is analyzed by using
the field-theory approach with RG technique). The cor-

3

1 1 1 1
_ oNo(N'=1)/2 alN 1 1 _
7 =272 e /exp 5 E d' (k) pxp-x E

E<B! 1=2

Here

N’ = Nsg?, so = B/B' = nv/2b/c,

The coefficients a’2l are defined as

ap = InQ(M),

ay = (1255) 2 (1, €),

ay, = 1253’0(7}’,5’),

rectness of the choice of the p® model for investigations
is confirmed in [17,18], where the effective potential is
studied for the scalar field theory in three dimensions in
the symmetric and spontaneously broken phases, respec-
tively. In this case, probability distributions of average
magnetization in the 3D Ising model in an external field
obtained with the help of the Monte Carlo method were
used. Tsypin [17,18] proved that the term with the sixth
power of the variable in the effective potential plays an
important role. In [17], the values of universal four- and
six-point coupling constants were calculated. Dimension-
less six- and eight-point effective coupling constants were
calculated by Sokolov et al. [19] in the three-loop approx-
imation using the field-theory RG approach. An estimate
for the dimensionless sextic effective coupling constant in
the case of the 3D Ising model in the four-loop approxi-
mation is given in [20].

In this paper, the p® model is used for developing the
method of calculation of expressions for thermodynamic
functions of the 3D Ising system taking into account the
terms determining the correction to scaling. The calcula-
tions are made above and below the phase transition tem-
perature T (high- and low-temperature regions). The
obtained expressions for basic critical amplitudes and
the amplitudes of the first confluent correction make it
possible to analyze their dependence on microscopic pa-
rameters of the system (the range b of potential and the
lattice constant c).

We shall proceed from the expression for partition
function in the approximation of the p® model. Putting
n =3 in (b) and carrying out integration in (4) with re-
spect to the variables px and wy with indices B’ < k < B,
followed by the integration with respect to N’ variables
wk, we obtain

pk1 .. 'Pk215k1+~~+k21 (dp)N . (6)
ki,...,ku<B’

d'(k) = ay — g (k). (7)

QM) = (1259) 7~ Lo (', &),

ag = (1255)°*N (i, ¢') (8)

and are functions of sg, i.e., of the ratio b/c (see Table 1). In this expressions, the role of the arguments is played by

the quantities

W =337,

¢=

83

= ~ (9)
1553/
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The special function C'(5/,£’) and N(n',¢’) have the form

C(n',¢) = —Fs(n', &)+ 3F; (0, ¢),

where

Fo(n', &) = Iu(n', €Y/ Io(n', &), Iu(n',&) = / t? exp(—n't? —t* — ¢'t%) dt.
0

N0 &) = Fs(, &) — 15Fa(n) , &V Falnf ,€') + 30F3 (1, &),

(10)

b b1 brt birt

C

2c He Tc

!
Qg

!
ay

!
Qg

—1.0196 —0.9863 —0.9764 —0.9218 —0.9193 —0.9190 —0.9189
ab 0.7023 0.7820 0.8083 0.9887 0.9986 0.9999
0.2212 0.2163 0.2086 0.0220 0.0028 0.0002 0.0000
0.4379 0.3895 0.3547 0.0031

1.0000

0.0000 0.0000 0.0000

Table 1. Values of coeflicients a’2l for various b.

It can be seen from Table 1 that ab — 1 for b > ¢,
ab, — 0 for { > 2, and the integrand in formula (6)
has the form close to the Gaussian distribution. In the
case when the range of the potential and the lattice con-
stant are commensurate, the coefficients af,; differ from
zero for all values of [ > 0, and we must take into ac-
count in the exponent of the integrand in (6) the terms
proportional to higher degrees of the variable py in addi-
tion to the Gaussian term. Henceforth, we shall consider
just this case. The value of b = by = c/(2\/§) corre-
sponds to the interaction between nearest neighbours,
b = b1 = 0.3379¢ to the interaction between the near-
est and next-nearest neighbours, and b = by = 0.3584¢
to the nearest, next-nearest, and third neighbours [21].
At these values of b and small values of the wave vec-
tors k, the parabolic approximation of the Fourier trans-
form of the exponentially decreasing interaction poten-
tial corresponds to the analogous approximation of the
Fourier transform for the interaction potentials of the
above-mentioned neighbours.

The increase in the number of terms in expressions (5)
and (6) corresponds to a complication of the form of the
non-Gaussian density of measure (complication of the
model). Critical phenomena in a 3D Ising ferromagnet
within the CV method can be described quantitatively
even in the p® model approximation. The confinement to
the quartic approximation in formulas (5) and (6) allows
us to go beyond the classical analysis and to describe
all qualitative aspects of the second-order phase tran-
sition, while the sextic approximation ensures a more
adequate quantitative description of the critical proper-
ties of a spin system. This is confirmed by calculation
as well as an analysis of the behaviour of the coefficients
in the initial expression for partition function and the
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critical exponent of the correlation length v for the se-
quence of p*, p® p8 and p'° models [3,8,13,14] as well
as by the calculation and comparison of thermodynamic
functions for the models p* and p® [6] and by compari-
son of the results of our calculations with other available
data (see, for example, [6,7]). The analysis of the above-
mentioned sequence of the model was necessary for esti-
mating the convergence of the procedure for calculating
the critical exponent v, for finding its dependence on the
RG parameter s, and for establishing whether it is expe-
dient to use higher densities of measures. It was found
that as the form of the density of measure becomes more
complicated, the dependence of the critical exponent v
on the RG parameter s becomes weaker gradually, and
starting from the sextic density of measure, the value of
the exponent v, having a tendency to saturation with
increasing m (which characterizes the order of the p?™
model or determines the summation limit in formula (5),
m = 2,3,4,5) changes insignificantly. Tt is also interest-
ing that for m > 3, the numerical values of the coeffi-
clents af, appearing in the partition function (relations
similar to (8) and (6)) vary insignificantly upon an in-
crease 1n the order of the density of measure, 1. e., upon
an increase in the number of terms in (5).

An advantage of the CV method in the description of
phase transitions is the presence of a variable associated
with the order parameter among the CV pg. Such a vari-
able for the Ising model is pg. We cannot single out the
contribution from pg alone in expression (6) since all the
variables pg are interconnected. We shall use the method
of “layer-by-layer” integration of (6) with respect to vari-
ables px proposed by Yukhnovskii [3]. The integration
begins from the variables py with a large value of k (of
the order of the Brillouin half-zone boundary) and termi-
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nates at px with & — 0. For this purpose, we divide the
phase space of the CV pg into layers with the division pa-
rameter s. In each nth layer (corresponding to the region
of wave vectors Bpy1 < k < By, Bag1 = Bn/s,s > 1),
the Fourier transform of the potential <i>(k’) is replaced
by its average value (arithmetic mean in the given case).
To simplify the presentation, we assume that the correc-
tion for the potential averaging is zero, although it can

7 = 2N oWt =D1200Q1 - Q,[Q(P,

Here Ny4q = N’s=3(n+1) and

be taken into account if necessary [3]. Including this cor-
rection leads to a nonzero value of the critical exponent 7
characterizing the behaviour of the pair correlation func-
tion for 7" = T.. As a result of step-by-step calculation of
partition function, the number of integration variables
in the expression for this quantity decreases gradually.
After the integration over n + 1 layers of the CV space,
we obtain

W W) (). (12)

@ =[te@]” . @ = @)@ ...,

@ = QPR Q) =2 (28/a") " ol ), (13)

Q(P,) =71 (53ag”>/c(hn, an))1/410(77n,5n).

The basic arguments

n \/6 n n
hn = du(Bagr, Ba) (/a7 o = 2 ag (@) (14)

are determined by the mean value of the coefficient d,(k) in the nth layer of the phase space of CV, i.e., by
dyn(Bny1, Bn) as well as the quantities aﬁl”) and a(6n). The effective sextic density of measure of the (n + 1)th block

structure Wén-l_l)(p) has the form

, 1
W (p) = exp | 3

E<Bni1 =2

Z dpy1 (k) prp—x — Z (;)2;? Z

(n+1)
Pki " Pky 6k1+'“+k2l . (15)
nt+l ki, ka<Baga

Here B,41 = B's~(n+1) dnt1(k) = a(2n+1) — ﬁé(k’), a(27+1) are renormalized values of the coefficients af; after
integration over n + 1 layers of the phase space of CV. The intermediate variables n,, &, are functions of h, and «a,

and are defined as

e = (65°)2Fy (hy, 0)[C (i, )]~ Y2,

where the form of the special functions C(h,,ay)
and N(hy,ap) is given by (10). The coefficients
dyn(Bnt1, Bn), ain), and a6n) are connected with the co-
efficients for the (n + 1)th layer through the RR [8,22]
whose solutions [15,22] are used for calculating the free
energy of the system.

The basic idea of the calculation of explicit expres-
sions for free energy and other thermodynamic functions
of the system near T; on microscopic level (7 < 7% ~

gnzﬁ

\/65_3/2]\7(/1”,an)[(](hn,an)]_?’/z, (16)

1072, 7 = (T — T.)/T¢) lies in the separate inclusion of
contributions from short-wave and long-wave modes of
spin moment density oscillations [3,10,23].

Short-wave modes are characterized by a RG symme-
try and are described by a non-Gaussian density of mea-
sure. They correspond to the region of critical regime
(CR) observed above as well as below T¢. In this case, the
RG method is used (see, for example, [24]). The calcu-
lation of the expression describing the contribution from
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short-wave modes of spin moment density oscillations to
free energy involves the summation of partial free ener-
gies over the layers of the phase space of CV up to the
point, at which the system leaves the CR region. In this
case, 1t is important to obtain an explicit dependence on
the number of the layer. For this purpose, the solutions
of RR are used. Taking into account the larger eigen-
value (E; > 1) of the RG linear transformation matrix,
we can describe the main singularity for specific heat
near T;. Smaller eigenvalues (F2 < 1 and E3 < 1) are re-
sponsible for the emergence of corrections to scaling. The
inclusion of short-wave modes of spin density oscillations
leads to a renormalization of the dispersion of the dis-
tribution describing long-wave modes. The region of the
limiting Gaussian regime (LGR) for T' > T or the region
of the inverse Gaussian regime (IGR) for T' < T is asso-
ciated with these long-wave modes. The fluctuations in
the LGR region are characterized by the Gaussian distri-
bution. In contrast to the LGR, the IGR is described by a
non-Gaussian measure density. The distribution acquires
the Gaussian form only as a result of separating the free
energy of the ordering. The way, in which the contribu-
tion from long-wave modes of oscillations to free energy
of the system is taken into account, differs qualitatively
from the method of calculating the short-wave part of
partition function. The calculation of this contribution
is based on the use of the Gaussian density of measure
as the basis density. We have developed a direct method
of calculations with the results obtained by taking into
account the short-wave modes as initial parameters.

It should be noted that our calculations are valid in
a small neighbourhood of T¢.. The solutions of RR make
it possible to calculate the size of this critical region.
Indeed, using these solutions and the condition for the
existence of CR (the exit from this regime for n — 1,
described by terms proportional to ET, does not prevail
over the entry to this regime, which is described by terms
proportional to E7 and E%), we can determine the tem-
perature range 7 < 7%, in which the CR corresponding
to the presence of strongly correlated spin blocks occurs.
The value of 7* is equal to the magnitude of the small-
est root of the three equations obtained on the basis of
solutions of RR. The value of 7* determined in this way
is of the order of a few hundredths for commensurate b
and ¢ [25]. For large values of b, it is important to take
correctly into account the entry to the CR. In this case,
the value of 7* can be obtained by imposing the condi-
tion that the entry to CR prevails over the exit from this
regime for n — ng, where the layer number ny as a func-
tion of b can be determined from RR, [8,22], for example,

proceeding from the relation for aﬂl”) (see Table 2). The
data contained in Table 2 show that the critical region
is practically absent for large . This is not surprising
since the condition b > ¢ corresponds to the transition
to the model with long-range interaction, which is based
on the Gaussian distribution of spin density oscillation
modes (see (6) and Table 1) and demonstrates the clas-
sical critical behaviour.

A distinctive feature of RR solutions is a specific de-
pendence of one of their coefficients on temperature.
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The expression for this coefficient can be used to derive
an equation for the quantity S.®(0) determining the
phase transition temperature (see [22]). A direct analytic
method for calculating the phase transition temperature
in the p* model approximation is developed in [21,26].

b 4de He Tc
g 7 8 9
7 0.8266 x 1078 0.6274 x 10~° 0.4680 x 10~1°

Table 2. Values of ng and 7* for large values of the inter-
action potential range b and the RG parameter s = 3.

The calculations for a 3D Ising-like system in these pa-
pers are illustrated by the consideration of the simple
cubic lattice case. The influence of the short-wave part
of the Fourier transform of the exponentially decreas-
ing interaction potential (®(k) is the small constant at
B' < k < B) on T¢ is studied. Our numerical value 8. J =
0.211 (p* model) [21] for the case when the potential pa-
rameters correspond to the nearest-neighbour interaction
with the constant J accords with the conclusions of other
authors, for example, with the value (8.J)~! = 4.5103
(or BeJ = 0.2217) [27,28] or B.J = 0.221654(1) [29] cal-
culated using the high-temperature series data. Similar
values are also obtained using the real space RG method
based on the cumulant expansion (8.J = 0.22401 [30])
and the Monte Carlo method (8.J = 0.22165440.000006
[31], B.J = 0.2216595 + 0.0000026 [32-34]). Liu and
Fisher [35] preferred §8.J = 0.221692, 5.J = 0.221630,
and f.J = 0.221620 for the simple cubic Ising lattice and
the three selected values of the susceptibility exponent
¥ (v = 1.250, v = 1.2395, and v = 1.237), respectively.
The dependence of 5. A (A is the constant appearing in
the interaction potential (2)) on the ratio of the poten-
tial range b to the lattice constant ¢ 1s shown in Fig. 1
for the p® model. Here and below, the curves are plotted
for the RG parameters s = 3.

0 P b b 1T

0.0 0.2 0.4 0.6 0.8 1.0 1.2

b/c

Fig. 1. Dependence of the inverse phase transition tem-
perature on the ratio of the interaction potential range to the
lattice constant.



THERMODYNAMIC CHARACTERISTICS OF THREE-DIMENSIONAL ISING-LIKE SYSTEMS. ..

Calculating separately the contributions to free energy
from short- and long-wave modes of spin density oscil-
lations (Fé"R and Frgar at T > 1. or Fog and Figr at
T < T¢), we can obtain the complete expression for the
free energy of the system:

Fo+ Fdg + Fugr, T > 1.,
F= 0 CR LGR (17)
F0+F(;R+FIGR, T <T..

Here Fy = —kT'N In2 is the free energy of N noninter-
acting spins. Detailed calculations of the contributions
to free energy of the system from short- and long-wave
modes and the coefficients of complete expressions for
thermodynamic characteristics are presented in [36,37].
The paper [36] was devoted to the critical behaviour of
a 3D Ising-like system in the high-temperature region.

The low-temperature region was considered in [37]. The
calculations are performed on the basis of the p® model
taking into account the first confluent correction (which
is determined by the term proportional to 721 (T > T,)
or |7|2 (T < T.), Ay = —In E3/In Ey). We disregard
the second confluent correction (which is determined by
the term proportional to 722 (T' > T.) or |7|?2 (T < T}),
Ay = —In E3/In Ey). This is due to the fact that the con-
tribution from the first confluent correction to thermody-
namic functions of the model near 7, is more significant
than the small contribution from the second correction
(I7] < 1, Ay is of the order of 0.5, and Ay > 2, see [6]).
Below, the final expressions for thermodynamic charac-
teristics of the system are given in the case of a zero
external field. The curves of the dependences of these
characteristics on temperature and microscopic parame-
ters are plotted using the calculation results in the high-
and low-temperature regions.

III. THERMODYNAMIC CHARACTERISTICS NEAR 7¢: AS FUNCTIONS
OF TEMPERATURE AND MICROSCOPIC PARAMETERS OF THE SYSTEM

In accordance with (17), the total free energy of the system assumes the form

—kTN' {'yo + YT+ Y+ 'yéO)J’T?’” + 7:(),1)+T3”+A1} , T> T,

F= , 2 (0= o (D | (asa
—KTN' |50 = 7|+ 3|72 4587 |73 4507 e+ | T < T

(18)

where v = Ins/In Ey is the critical exponent of the correlation length. The terms proportional to integral powers
of 7 in (18) appear exclusively due to inclusion of short-wave modes of oscillations. The terms proportional to 73
and 73+21 (nonanalytic component of free energy) are formed as a result of inclusion of short-wave as well as
long-wave modes of oscillations. The first confluent correction appears due to the smaller eigenvalue Ey of the RG
linear transformation matrix taken into account in the solutions of RR. All the coefficients in expression for F' (see
[36,37]) are functions of microscopic parameters of the system, i.e., the effective radius b of the potential, the Fourier
transform <i>(0) of the potential for & = 0, and the lattice constant ¢. The values of the coefficients ~g, 71, and 72
are independent of whether calculations are made for a temperature above or below the phase transition point. The

(H+ OF"

coefficients v3'~ (I = 0, 1) can be written as a product of the quantity 753’~, which is universal relative to microscopic
3

parameters, and the nonuniversal factor c;cly | [36,38], which is a function of these parameters:

1T = E =01 (19)
The “4” and “—” signs refer to temperatures above and below T¢, respectively. Numerical values of the coefficients

"yél)i are given in [36,37].

The main advantage of the expression for F' is the presence of relations connecting its coefficients with microscopic
parameters of the system and the coordinates of a fixed point of RR. Leading critical amplitudes and the amplitudes of
the confluent correction for the specific heat and other thermodynamic characteristics of the system can be presented
in a similar way.

The coefficients of entropy, internal energy, and specific heat can be expressed in terms of the coefficients of free
energy. Taking into account the first confluent correction, we obtain the following expressions for entropy S, internal
energy U, and specific heat ('

kN’ {5(0) + coT + ugo)-l_rl_o‘ + ugl)-l_rl_o“l'm} , T>1T,,

kN' {5(0) — eo|T| — ugo)_|7'|1_°‘ — ugl)_|7'|1_°‘+A1} , T < 1T,
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U=
kTN’

Here
O =q04+71, co=20m+7), u =+ 27,
W = Byl 1o,
ago)i = 31/’7;(),0)i, ﬁgl)i =(3v+ Al)’?z(),l)i, (21)

cgl)i = cl?jclAlég)i, Ego)i =3v(3v— 1)1§0)i,

eVF = Br4+ ANGBYr+ A — 1)AVE,

and a = 2 — 3v is the critical exponent of the specific
heat.

The formula for specific heat (see (20)) can be rewrit-
ten in the form [39,40]

C Af N

v = T ek + BE(22)
_(1)+
A = Bl A, Cgl) £ _ .
— ¢y 3 ) c a E(O)ia — Cp.

3

The proposed method makes it possible to calculate
such important characteristics of the system as the av-
erage spin moment (which plays the role of the order
parameter for the system under investigation)

(@) = ()P (1 + (o) 7|2 (23)

and the susceptibility per particle

2
- Nz
x = TE|r|™ (1 —|—a>f|7'|A ) é(?)) (24)

Here pg is the Bohr magneton, 3 = v/2 and v = 2»
are the critical exponents of the average spin moment
and the susceptibility, respectively. The leading critical
amplitudes and the amplitudes of the first confluent cor-
rection for the average spin moment and the suscepti-
bility are obtained in [36,37] for various values of the
interaction potential range.

Using the explicit expressions presented here, we can
investigate the dependences of thermodynamic charac-
teristics of a 3D Ising-like system on its microscopic pa-
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kTN’ {’71 +urT + ugo)-"rl‘o‘ + ugl)"'rl—o“"Al} ,

71— wilr] = a7 = T e ] <

kN' {co + cgo)-l_r_o‘ + cgl)-l_TAl_o‘} ,
kN' {co + cgo)_|7'|_°‘ + cgl)_|T|A1_°‘} , T < T,.

T>1T.,
(20)

T>1T.,

rameters. The temperature-dependence curves for the
average spin moment (o), entropy S/kN, specific heat
C/kN, and the susceptibility x (in the units of p%/A,
A = ®(0)/[87(b/c)?] is the interaction potential con-
stant) near T, for different values of the effective radius
b of the potential are shown in Figs. 2, 3, 4, and 5.

7 0.5 .
E 4 0.06
4 0.4 b=c ]
303 J 0.04
= ] A
- 4 b
7 . v
4 0.2 ]
. d 0.02
0.1
! ! ! ! 3 0.0 ! ! ! ! J 0.00
—0.005 0.000 -0.005 0.000
T T

Fig. 2. Temperature dependence of average spin moment
of the system in the p® model approximation for various val-
ues of the effective radius b of the potential: by = ¢/(2v/3);
brr = 0.3379¢; brrr = 0.3584¢; ¢ and 2c.

0.64 . 0.694 .
- 1 - 1
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0.62 £ ; 0693F ppo i
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0.60 £ : 0.692 F :
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052 E 1 1 1 1 I 1 1 1 1 0688 E 1 1 1 1 I 1 1 1 1
—0.005 0.000 0.005 —0.005 0.000 0.005

T T

Fig. 3. Dependence of the entropy of the system on 7. No-
tation is the same as in Fig. 2.
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Fig. 4. Specific heat of the spin system for various values
of b. Notation is the same as in Fig. 2.
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Fig. 5. Temperature dependence of the susceptibility of
the system for various values of b. Notation is the same as in
Fig. 2.
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|
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Fig. 6. Dependence of the free energy of the system at the
phase transition point (7 = 0) on the ratio of the effective
radius b of exponentially decreasing interaction potential to
the simple cubic lattice constant c.

The evolution of the free energy F/N of the system
(in the units of A) at the phase transition point (7 = 0)
as well as of the average spin moment {¢) for 7 = —1073
and the specific heat C'/kN of the system for |r| = 1073
with increasing ratio of the effective radius b of the po-
tential to the lattice constant ¢ is plotted in Figs. 6, 7,
and 8.
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Fig. 7. Behaviour of the average spin moment for
7= —10"? with increasing ratio b/c.

0.0

o

IT1=10"2

C/kN

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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Fig. 8. Evolution of the specific heat of the system for
|7| = 1072 with increasing ratio b/c.

IV. CONCLUSIONS

The analytic method for calculating the thermody-
namic functions of 3D Ising-like systems above and below
the critical temperature 7, is schematically presented in
the higher non-Gaussian approximation (p® model) tak-
ing into account the first confluent correction. The start-
ing point of the problem statement in the CV method
under study is the Hamiltonian of the 3D Ising model.
After the passage to the CV set, the Jacobian of transi-
tion from the spin variables to the CV 1s calculated to ob-
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tain a partition function similar to the Ginzburg-Landau
functional. The partition function of the spin system is
integrated over the layers of the CV phase space. The
corresponding renormalization group (RG) transforma-
tion can be related to the Wilson type. Although the
CV method as well as Wilson approach exploit the RG
ideas, it is based on the use of a non-Gaussian density
of measure. The main feature 1s the integration of short-
wave spin density oscillation modes, which is generally
done without using perturbation theory. The short-wave
modes are characterized by the presence of the RG sym-
metry and are described by a non-Gaussian measure den-
sity. These modes are responsible for the formation of
critical exponents and for renormalization of the coeffi-
cient of the distribution describing the long-wave modes.
The calculation for long-wave modes of spin moment den-
sity oscillations is based on using the Gaussian density
of measure as the basis density. The contributions to the
free energy of the system from the short- and long-wave
modes are calculated separately. A calculation technique
for confluent corrections is elaborated in the course of
determining the thermodynamic functions.

The CV method allows one to calculate the partition
function of the system and to obtain not only the uni-
versal quantities (critical exponents) but also the nonuni-
versal characteristics. The critical region size and phase
transition temperature as well as the plots of tempera-
ture dependences of the average spin moment, entropy,
specific heat, and the susceptibility are obtained for dif-
ferent values of the interaction potential range (includ-
ing the values corresponding to the nearest-neighbour
interaction and the interactions between the nearest and
next-nearest neighbours and between the nearest, next-
nearest, and third neighbours). A nonuniversal factor
determined by microscopic parameters of the system is
singled out in the expressions for leading critical ampli-
tudes and confluent correction amplitudes of the ther-
modynamic characteristics.

The p% model ensures a better quantitative descrip-
tion of the critical properties of a one-component spin
system than the p* model. This follows from the results
of our previous calculations (see, for example, [6]) as well
as from the temperature dependences of the average spin
moment (o) (Fig. 9) and specific heat C'/kN of the 3D
Ising model (Fig. 10). The calculations were made for a
simple cubic lattice in zero external field with the inter-
action between nearest neighbours. In our calculations,
we put b = by = ¢/(2v/3). The p® model approximation
includes the first confluent correction, while the approx-
imation on the basis of the p* model takes into account
the first and second confluent corrections (see [12,41,42]).
The straight line  in Fig. 9 for the average spin moment
corresponds to the p* model, line 2 to the p® model,
and line 3 to the results obtained by Liu and Fisher
[35] for 7 = |T — T¢|/T:. The high-temperature region
in Fig. 10 i1s presented by the curves 1, 2 and 3, while
the low-temperature region by the curves 1/, 2" and 3.
The curves f and I’ were obtained on the basis of the p*
model, curves 2 and 2’ in the p® model approximation,
and curves 3 and 3 correspond to the results obtained
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by Liu and Fisher [35]. It should be noted that the lat-
ter carried out a new numerical analysis of leading crit-
ical amplitudes of susceptibility, correlation length, spe-
cific heat, and spontaneous magnetization of 3D nearest-
neighbour sc, bee, and fee Ising models, as well as uni-
versal relations between these amplitudes. Modern esti-
mates of the critical temperature and exponents in [35]
are used in conjunction with biased inhomogeneous dif-
ferential approximants to extrapolate the longest avail-
able series expansions to find the critical amplitudes. As
is clearly seen from Figs. 9 and 10, the plots for the p°
model agree more closely with the Liu and Fisher’s re-
sults than the estimates in the p* model approximation.

<g>

10 10 107 10 10 !
T

Fig. 9. Temperature dependence of the order parameter of
the 3D Ising model for a simple cubic lattice. Straight line 7
corresponds to the p* model, line 2 to the p® model, and line 8
to the results obtained in [35].

2

/

0 Ll
10 10° 10 107 10 2 10!
T

Fig. 10. Dependence of the specific heat of the system on
7 =|T — T¢|/T:. Curves 1, 2 and 3 correspond to T > T,
curves 1', 2 and & correspond to 7' < T.. Curves I and 1’
correspond to the p* model, curves 2 and 2 correspond to
the p° model, and curves & and &' correspond to the results
obtained in [35].
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The results of calculations for a 3D Ising system on
the basis of the p* and p® models are in accord with
the results obtained by other authors. For example [6],
we found the critical exponents of the correlation length
v = 0.637, specific heat o = 0.088, the average spin mo-
ment 5 = 0.319, the susceptibility v = 1.275, and the
exponent of the first correction to scaling A; = 0.525
(p® model, s = s*), as well as universal ratios of crit-
ical amplitudes of specific heat AT/A~ = 0.435, sus-
ceptibility Tt /I'~ = 6.967 and their combinations P =
[1 — AT/A7]/a = 3.054, RY = ATTH/[s3((0)(V)?] =
0.098 (p* model, s = s*), where so = ©v/2b/c, (o)) is
the critical amplitude of the average spin moment (see
(23)). These estimates agree with the values v = 0.630,
a=0.110, 8 = 0.325, vy = 1.241, A; = 0.498, AT/A~ =

0.465 't /T~ =5.12, P = 3.90, R} = 0.052 obtained by
using the field-theory approach [43-45] as well as with
the values v = 0.638, o = 0.125, 8 = 0.312, v = 1.250,
Ay = 0.50, AY/A- = 0.51, T/~ = 5.07, RT = 0.059
calculated with the help of high-temperature expansions
[46-50]. The methods existing at present make it possible
to calculate universal quantities to a quite high degree of
accuracy (see, for example, [34,35,51,52]). The advantage
of the proposed method is the possibility of deriving an-
alytic expressions for the phase transition temperature
and the amplitudes of thermodynamic characteristics as
functions of microscopic parameters of the initial system
(the lattice constant and parameters of the interaction
potential) that makes this method useful in describing
the phase transitions in a wide class of 3D systems.
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TEPMOIOUHAMIYHI XAPAKTEPUCTUKHU TPUBUMIPHINX IBUHI OMIOAIBHUX
CHUCTEM K ®YHKIII MIKPOCKOIITYHNUX ITAPAMETPIB.
HABJIN2KEHHS MOJIIEJIT p°

I. B. Tumrox
Inemumym ¢izuxu xondencosanux cucmem Hautonarvrol axademii nayx Vepainu,
ey.a. Ceenyiyvroeo 1, Jlveis, 79011, Vipaina

Ha ocroBi MeTony KoJIeKTMBHMX 3MIHHMX PO3BHHYTO MIKPOCKOINYHMHA IAXII OO0 PO3PaxyHKY Ta IOCIIIIKEeHHT
TEPMOIMHAMIKK TPUBUMIPHOI 13MHT'OMOIIOHOI CHCTeMHU BHIIE 1 HIZKYe Bl Temieparypu ¢dpazoBoro mepexomy ..
MaremaTiarHuii onmmc 3MiHCHEHO B MeXKaX BHIIOTO Heraycosoro nabimxenns (momesi p®) 3 ypaxysanmsam nompa-
BOK 710 CKefimiury. ¥V Bupa3ax [Jid OCHOBHUX KPUTHUYIHUX aMILIITYI Ta aMILIITY/I MOMPABOK [0 CKEeWIIHT'Y BUIILJIEHO
HeyHIBEpCAJIBHUI MHOXHUK, AKAA 3a/1eKUTh BiJ MIKPOCKOIMYHUX MMapaMeTplB CUCTeMH. YHMCJI0BI OIMHKK PO3MIPY
KPUTHYHOl TUIAHKHY, TeMIeparypu ¢ha30Boro Mmepexony, a TakKox rpadlKi TeMIepaTypHUX 3ajleXXHOCTell eHnTporrii
Ta IHIIAX TEPMOAMHAMIYHMX XapaKTepuCTHK 1mo6amn3y 1. momaHo Ijs pi3sHUX 3HadeHb paalyca edeKTHBHOI i
eKCIHOHEHINHHO CITaIHOro MOTEHINAIy B3aeMomil. [IpocTexkeHo 3MiHY BIIBHOI eHepril CMCTeMH B TOYIN (pa30BOro
epexoy, CEPEIHbOro CIIHOBOTO MOMEHTY Ta TellJIOEMHOCTH 31 3POCTAaHHAM BlOHOIIEHHS pajiyca Mil HOTEHINATY
10 cTaJiol mpoctol Ky6idHol r'paTtku. Pesyabrari pospaxyHKIB, iX 3iCTaBJIEHHA 3 JaHUMH 1HIIMX aBTOPIB IMOKa3y-
F0Th, 10 Momesb p°, mopiBHAHO 3 MomesLto p*, 3abesIedye ameKBaTHIHMA KiIbKICHHH OMUC KPUTHYIHOI HOBEIIHKN
TPUBUMIPHOI 13MHI'OMOIIOHOI CHCTEMH.
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