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It is found that the exa
t beta-fun
tion �(g) of the 
ontinuous 2D g�

4

model possesses two

types of dual symmetries, these being the Kramers{Wannier (KW) duality symmetry and the weak-

strong-
oupling symmetry f(g) (or S-duality). All these transformations are expli
itly 
onstru
ted.

The S-duality transformation f(g) is shown to 
onne
t domains of weak and strong 
ouplings, i.e.,

above and below g




. Basi
ally, it means that there is a tempting possibility to 
ompute multi-

loop Feynman diagrams for the �-fun
tion using high-temperature latti
e expansions. The regular

s
heme developed is found to be strongly unstable. Approximate values of the renormalized 
oupling


onstant g

�

+

found from duality symmetry equations are in a good agreement with the available

numeri
al results.
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I. INTRODUCTION

The 2D Ising model and some other latti
e spin models

are known to possess the remarkable Kramers{Wannier

(KW) duality symmetry, playing an important role in

statisti
al me
hani
s, quantum �eld theory [1{3℄ as well

as in the superstring theory [4℄. The self-duality of the

isotropi
 2D Ising model means that there exists an ex-

a
t mapping between the high-T and low-T expansions

of the partition fun
tion [3℄. In the transfer-matrix lan-

guage this implies that the transfer-matrix of the model

under dis
ussion is 
ovariant under the duality transfor-

mation. If we assume that the 
riti
al point is unique, the

KW self-duality would yield the exa
t Curie temperature

of the model. This holds for a large set of latti
e spin

models in
luding systems with quen
hed disorder (for a

review see [3,5℄). Re
ently, the Kramers{Wannier duality

symmetry was extended to the 
ontinuous 2D g�

4

model

[6℄ in the strong-
oupling regime, i.e., for g > g




.

This beta-fun
tion �(g) is to date known only in the

�ve-loop approximationwithin the framework of 
onven-

tional perturbation theory at the �xed dimension d = 2

[7,8℄.

The strong 
oupling expansion for the 
al
ulation of

the beta-fun
tion of the 2D s
alar g�

4

theory as an al-

ternative approa
h to the standard perturbation theory

was re
ently developed in [6℄.

It is well known from quantum �eld theory and statis-

ti
al me
hani
s that any strong 
oupling expansions are


losely 
onne
ted with the high-temperature (HT) series

expansions for latti
e models. From the �eld-theoreti
al

point of view the HT series are nothing but strong 
ou-

pling expansions for �eld models, latti
es to be 
onsid-

ered as a te
hni
al devi
e to de�ne 
ut-o� �eld theories

(see [6,8℄ and referen
es therein).

Cal
ulations of beta-fun
tions are of great interest

in statisti
al me
hani
s and quantum �eld theory. The

beta-fun
tion 
ontains the essential information on the

renormalized 
oupling 
onstant g

�

+

, this being important

for 
onstru
ting the equation of state of the 2D Ising

model. Duality is known to impose some important 
on-

straints on the exa
t beta-fun
tion [10℄.

In this paper we study other duality symmetries of the

beta-fun
tion �(g) for the 2D g�

4

theory regarded as a

non-integrable 
ontinuum limit of the exa
tly solvable 2D

Ising model. The main purpose is to 
onstru
t exli
itly

the weak-strong (WS) 
oupling duality transformation

f(g) 
onne
ting domains of weak and strong 
ouplings,

i.e., above and below g




. The last transformation allows

one to 
ompute unknown yet multiloop orders (6,7, . . . )

of the �-fun
tions on the basis of latti
e expansions [6℄.

The paper is organized as follows. In Se
t. II we set

up basi
 notations and de�ne both the 
orrelation length

and beta-fun
tion �(g). In Se
t. III the duality symme-

try transformation ~g = d(g) is derived. Then it is proved

that �(d(g)) = d

0

(g)�(g). An approximate expression for

d(g) is also found. Se
t. IV 
ontains an expli
it deriva-

tion of the weak-strong 
oupling transformation whilst

in Se
t. V in order to illustrate our approa
h the sixth-

order term of �(g) is approximately 
omputed. Se
. VI.


ontains disussion and some 
on
luding remarks.

II. CORRELATION LENGTH AND COUPLING

CONSTANT

We begin by 
onsidering the 
lassi
al Hamiltonian of

the 2D Ising model (in the absen
e of an external mag-
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neti
 �eld), de�ned on a square latti
e with periodi


boundary 
onditions; as usual:

H = �J

X

hi;ji

�

i

�

j

; (2.1)

where hi; ji indi
ates that the summation is over all the

nearest-neighboring sites; �

i

= �1 are spin variables and

J is a spin 
oupling. The standard de�nition of the spin-

pair 
orrelation fun
tion reads:

G(R) = h�

R

�

0

i ; (2.2)

where h: : :i stands for a thermal average.

The statisti
al me
hani
s de�nition of the 
orrelation

length is given by [11℄

�

2

=

d lnG(p)

dp

2

�

�

�

�

�

p=0

: (2.3)

The quantity �

2

is known to be 
onveniently expressed

in terms of the spheri
al moments of the spin 
orrelation

fun
tion itself, namely

�

l

=

X

R

(R=a)

l

G(R) (2.4)

with a being some latti
e spa
ing. It is easy to see that

�

2

=

�

2

2d�

0

; (2.5)

where d is the spatial dimension (in our 
ase d = 2).

In order to extend the KW duality symmetry to the


ontinuous �eld theory we have a need for a \latti
e"

model de�nition of the 
oupling 
onstant g, equivalent to

the 
onventional one exploited in the RG approa
h. The

renormalization 
oupling 
onstant g of the g�

4

theory is


losely related to the fourth derivative of the \Helmholtz

free energy", namely �

4

F (T;m)=�m

4

, with respe
t to

the order parameter m = h�i. It 
an be de�ned as fol-

lows (see [11℄)

g(T; h) = �

(�

2

�=�h

2

)

�

2

�

d

+ 3

(��=�h)

2

�

3

�

d

; (2.6)

where � is the homogeneous magneti
 sus
eptibility

� =

Z

d

2

xG(x) : (2.7)

It is in fa
t easy to show that g(T; h) in Eq. (2.6) is merely

the standard four-spin 
orrelation fun
tion taken at zero

external momenta. The renormalized 
oupling 
onstant

of the 
riti
al theory is de�ned by the double limit

g

�

= lim

h!0

lim

T!T




g(T; h) (2.8)

and it is well known that these limits do not 
ommute

with ea
h other. As a result, g

�

is a path-dependent quan-

tity in the thermodynami
 (T; h) plane [11℄.

Here we are mainly 
on
erned with the 
oupling 
on-

stant on the iso
hor line g(T > T




; h = 0) in the disor-

dered phase and with its 
riti
al value

g

�

+

= lim

T!T

+




g(T; h = 0) = �

�

2

�=�h

2

�

2

�

d

�

�

�

�

�

h=0

: (2.9)

The \latti
e" 
oupling 
onstant g

�

+

de�ned in Eq. (2.9)

is a given fun
tion of the temperature T




.

III. KRAMERS{WANNIER SYMMETRY

The standard KW duality tranformation is known to

be as follows [1{3℄

sinh(2

~

K) =

1

sinh(2K)

: (3.1)

We shall see that it will be more 
onvenient to deal with

a new variable s = exp(2K) tanh(K), where K = J=T .

It follows from the de�nition that s transforms as

~s = 1=s; this implies that the 
orrelation length of the

2D Ising model given by �

2

= s=(1 � s)

2

is a self-dual

quantity [6℄. Now, on the one hand, we have the formal

relation

�

ds(g)

d�

=

ds(g)

dg

�(g) ; (3.2)

where s(g) is de�ned as the inverse fun
tion of g(s), i.e.,

g(s(g)) = g and the beta-fun
tion is given, as usual, by

�

dg

d�

= �(g) : (3.3)

On the other hand, it is known from [6℄

�

ds

d�

=

2s(1� s)

(1 + s)

: (3.4)

Therefore, from Eqs. (3.2){(3.4), a useful representation

of the beta-fun
tion in terms of the s(g) fun
tion follows

�(g) =

2s(g)(1 � s(g))

(1 + s(g)) (ds(g)=dg)

: (3.5)

If one assumes that the �xed point is not singular, then

from this equation it would follow that ! = �

0

(g)j

g=g




=
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1 in an agreement with the 
lassi
al paper [14℄. (If not,

another approa
h, see in [15℄ and a dis
ussion in [6℄).

Let us de�ne the dual 
oupling 
onstant ~g and the

duality transformation fun
tion d(g) as

s(~g) =

1

s(g)

; ~g � d(g) = s

�1

(

1

s(g)

) ; (3.6)

where s

�1

(x) stands for the inverse fun
tion of x = s(g).

It is easy to 
he
k that a further appli
ation of the du-

ality map d(g) gives ba
k the original 
oupling 
onstant,

i.e., d(d(g)) = g, as it should be. Noti
e also that the def-

inition of the duality transformation given by Eq. (3.6)

has a form similiar to the standard KW duality equation,

Eq. (3.1).

Consider now the symmetry properties of �(g). We

shall see that the KW duality symmetry property, Eq.

(3.1), results in the beta-fun
tion being 
ovariant under

the operation g! d(g):

�(d(g)) = d

0

(g)�(g) : (3.7)

To prove it let us evaluate �(d(g)). Then Eq. (3.5) yields

�(d(g)) =

2s(~g)(1� s(~g))

(1 + s(~g)) (ds(~g)=d~g)

: (3.8)

Bearing in mind Eq. (3.6) one is led to

�(d(g)) =

2s(g) � 2

s(g)(1 + s(g)) (ds(~g)=d~g)

: (3.9)

The derivative in the r.h.s. of Eq. (3.9) should be rewrit-

ten in terms of s(g) and d(g). It 
an be easily done by

applying Eq. (3.6):

ds(~g)

d~g

=

d

d~g

1

s(g)

= �

s

0

(g)

s

2

(g)

1

d

0

(g)

: (3.10)

Substituting the r.h.s. of Eq. (3.10) into Eq. (3.9) one

obtains the desired symmetry relation, Eq. (3.7).

Therefore, the self-duality of the model allows us to

determine the �xed point value in another way, namely

from the duality equation d(g

�

) = g

�

.

Making use of a rough approximation for s(g), one gets

[6℄

s(g) '

2

g

+

24

g

2

'

2

g

1

1� 12=g

=

2

g � 12

: (3.11)

Combining this Pad�e-approximant with the de�nition of

d(g), Eq. (3.6), one is led to

d(g) = 4

3g � 35

g � 12

: (3.12)

The �xed point of this fun
tion, d(g

�

) = g

�

, is easily

seen to be g

�

+

= 14. The re
ent numeri
al and analyti
al

estimates yield g

�

+

= 14:69 (see [6,12,13℄ and referen
es

therein).

It is worth mentioning that the above-des
ribed ap-

proa
h may be regarded as another method for evalu-

ating g

�

+

, fully equivalent to the standard beta-fun
tion

method.

IV. STRONG-WEAK COUPLING DUALITY

The beta-fun
tion of the model under dis
ussion pos-

sesses a spe
i�
 algebrai
 property (3.6) (KW duality)

whi
h allows to develop the weak-strong-duality trans-

formation f(g) 
onne
ting both the weak-
oupling and

strong 
oupling regimes.

Nowadays both the �ve-loop approximation results [9℄

and the strong 
oupling expansion for the beta-fun
tion

[6℄ are known rather well. These are given by

�

1

(g) = 2g � 2g

2

+ 1:432347241g

3

� 1:861532885g

4

+ 3:164776688g

5

� 6:520837458g

6

+ O(g

7

) ; (4.1)

�

2

(g) = �2g +

12

�

�

9

�

2

g

+

27

�

3

g

2

+

81

8�

4

g

3

�

3645

16�

5

g

4

�

15309

32�

6

g

5

+

2187

64�

7

g

6

+O(g

�7

) : (4.2)

Here indi
es 1; 2 stand for the weak and strong 
ou-

pling regimes respe
tively. The main goal of this Se
-

tion is to determine a dual transformation f(g) su
h as

f [f(g)℄ = g relating beta-fun
tions �

1

(g) and �

2

(g).

From Eq. (3.5) one 
an easily �nd the fun
tions

S

1

(g); S

2

(g) and their inverse fun
tions G

1

(s) = S

�1

1

(g),

G

2

(s) = S

�1

2

(g) 
orresponding to the two regimes. Sim-

ple but 
umbersome 
al
ulations lead to

G

1

(s) = s+ s

2

+ 0:3580868104s

3

� 0:1166327797s

4

� 0:1968226859s

5

� 0:1299831557s

6

+ O(s

7

);

S

1

(g) = g � g

2

+ 1:6419131896g

3

� 3:09293317g

4

+ 6:361881481g

5

� 13:78545095g

6

+ O(g

7

) ;

s 2 [0; 1℄ ; g 2 [0; g

�

℄ ; (4.3)

G

2

(s) =

3

4�s

+

9

2�

�

9s

4�

+

18s

2

�

�

108s

3

�

+

618s

4

�

�

3474s

5

�

+

19494s

6

�

+ O(s

7

);
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S

2

(g) =

2 � 3

8�g

+

24 � 3

2

(8�g)

2

+

264 � 3

3

(8�g)

3

+

2976 � 3

4

(8�g)

4

+

35136 � 3

5

(8�g)

5

+

423680 � 3

6

(8�g)

6

+

5149824 � 3

7

(8�g)

7

+

63275520 � 3

8

(8�g)

8

+O(g

�9

) ;

s 2 [0; 1℄ ; g 2 [g

�

;1) : (4.4)

Having been equipped with these formulas one may

easily 
onstru
t two bran
hes of the same duality trans-

formation fun
tion f

12

(g) and f

21

(g) de�ned in di�erent

domains of g. The fun
tions are

1

f

21

(g)

�

1

G

2

(S

1

(g))

=

4�g

3

�

28�g

2

3

+ 220:5059303g

3

� 1766:8145g

4

+14816:94007g

5

�127842:5955g

6

;

g 2 [0; g

�

℄ ; f

21

(g) 2 [g

�

;1℄; (4.5)

f

12

(g) � G

1

(S

2

(g)) =

3

4�g

+

63

16�

2

g

2

+

0:61714739472

g

3

+

0:9560453953

g

4

+

1:502156783

g

5

+

2:368311503

g

6

+ O(g

7

) ;

g 2 [g

�

;1) ; f

12

(g) 2 [0; g

�

℄ : (4.6)

The fun
tions found above look like inversion, but they

are not so simple. An interesting nontrivial example of

the 2D model disordered Dira
 fermions was dis
overed

in [16℄. It was shown that the beta-fun
tion of the (non-

integrable) model under 
onsideration also exhibits the

strong-weak 
oupling duality su
h as g

�

!

1

g

[16℄.

It is worth noting that the transformation found is

dual indeed

f

12

(f

21

(g)) = f

21

(f

12

(g)) � g : (4.7)

Moreover, by de�nition weak-strong 
oupling expan-

sions of �(g) are related to ea
h other in the following

way:

�

2

(g) =

�

1

(f

12

(g))

f

0

12

(g)

; (4.8)

�

1

(g) =

�

2

(f

21

(g))

f

0

21

(g)

: (4.9)

It is rather amusing that Eq. (4.6) looks like a geo-

metri
 series. Making use of the Pad�e method we arrive

at

f

12

(g) �

0:2387324146g

2

� 0:0745907136g+ 0:0850867165

g

3

� 1:983571753g

2

+ 1:086109562g� 0:6919672492

;

g 2 [g

�

;1) ; f

12

(g) 2 [0; g

�

℄ : (4.10)

The weak-strong duality equation and strong-
oupling expansion yield the following numeri
al values

f

12

(g) � g = 0; g

�

= 14:38 �

2

(g

�

) = 0; g

�

= 14:63; (4.11)

being in good agreement with modern estimates [17{19℄.

V. HIGHER-ORDER TERMS FOR BETA-FUNCTION

Finally, let us 
onsider how one 
an 
ompute the �(g) in the multiloop approximation via the strong-
oupling

expansion and the S-duality fun
tion. In order to �nd that one should exploit Eq. (4.8),Eq. (4.2) and the approximate

expression for f

12

(g) given by Eq. (4.10).

After some tedious but routine 
al
ulations we arrive to some polynomial of 7th degree for �

1

(g):

�

1

(g) = 2g � 2g

2

+ 1:432347241g

3

� 1:861532885g

4

+ 3:164776688g

5

� 6:520837458g

6

� 331:454743g

7

: (5.1)

It is easily seen that the �rst 6 terms ex
ept for the 7th one are the exa
t perturbation expansion for �

1

(g) [9℄.

It would be tempting but wrong to regard Eq. (5.1) as a �(g)-fun
tion in the 7th loop approximation. In fa
t, the

fun
tion in Eq. (4.10) is approximate, so that we have to estimate an a

ura
y of our 
al
ulations.
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Suppose, that a di�eren
e between the \exa
t" duality fun
tion f

exa
t

12

(g) and the approximate one given by

Eq. (4.10) reads

f

exa
t

12

(g) =

0:2387324146g

2

� 0:0745907136g+ 0:0850867165

g

3

� 1:983571753g

2

+ 1:086109562g� 0:6919672492

+ b=g

7

; (5.2)

with b being an arbitrary parameter. The straightfor-

ward 
al
ulation shows that a \new" 7th loop 
ontribu-

tion 
omputed by making use of the Eq. (5.2) depends

on the �tting parameter b and di�ers vastly from the

previous one, namely:

�

1

(g) = 2g � 2g

2

+ 1:432347241g

3

� 1:861532885g

4

+ 3:164776688g

5

� 6:520837458g

6

+ (�331:454743+ 271519:803807b)g

7

: (5.3)

Thus, we see that the approa
h suggested above pro-

vides a regular s
heme for 
omputing higher-order 
or-

re
tions to the �(g)-fun
tion on the basis of latti
e high-

order expansions. In other words, one obtains a tempting

possibility to 
ompute (approximately) multiloop Feyn-

man diagrams on the basis of Eq. (4.9) and of high-

temperature expansions [6℄. A serious drawba
k of that

s
heme is that it is unstable from a mathemati
al point

of view.

VI. CONCLUDING REMARKS

We have shown that the �-fun
tion of the 2D g�

4

the-

ory does have the two types of dual symmetries: (i) the

Kramers{Wannier symmetry, and (ii) the weak-strong-


oupling symmetry (S-duality).

Our proof of the KW symmetry is based on the proper-

ties of g(s); s(g) de�ned only for 1 � s <1; g

�

+

� g <1

and therefore does not 
over the weak-
oupling region,

0 � g � g

�

. So, the statement is that the beta-fun
tion

�(g) possesses the KW symmetry only in the strong-


oupling region.

In 
ontrast to widely held views, the KW symmetry

imposes only mild restri
tions on �(g). It means that

this symmetry property �xes only even derivatives of the

beta-fun
tion �

(2k)

(g

�

+

)(k = 0; 1; : : :) at the �xed point,

leaving the odd derivatives free, in parti
ular, the 
riti
al

exponent ! responsible for 
orre
tions to s
aling.

We established the existen
e of the nontrivial weak-

strong-
oupling dual fun
tion f(g) (S-duality) 
onne
t-

ing two domains of both weak 
oupling and strong 
ou-

pling given both perturbative RG 
al
ulations and lat-

ti
e high-temperature expansions that S-fun
tion f(g)


an be approximately 
omputed. We also expli
itly 
om-

puted high-order terms for �(g). A 
lose analysis of the

s
heme developed shows that this is strongly unstable.
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FIELD MODELS

SIMETR�� KRAMERSA{VAN^� � DUAL^N�ST^ SIL^NO-SLABKOGO

ZV'�ZKU U DVOVIM�RNIH POL^OVIH MODEL�H �

4

B. N. Xala
v

F�ziko-tehn�qni� �nstitut �m. A. F. �offe, Ros��s~ka akadem�� nauk,

vul. Pol�tehn�qna, 26, Sankt-Peterburg, 194021, Ros��

Na
�onal~ni� �nstitut �dernoÝ f�ziki, Un�versitet u Pav�Ý,

V�a Bas�, Pav��, 6{27100, �tal��

Zna�deno, wo toqna beta-funk
�� �(g) neperervnoÝ dvovim�rnoÝ model� z g�

4

ma
 dva tipi dual~noÝ

simetr�Ý, a same, dual~nu simetr�� Kramersa{Van~
 (KV) ta simetr�� sil~no-slabkogo zv'�zku f(g) (abo

S-dual~n�st~). Us� 
� peretvorenn� otrimano �vno. Pokazano, wo peretvorenn� S-dual~nosti z'
dnu
 do-

meni z� slabkimi ta sil~nimi zv'�zkami, tobto z� znaqenn�mi viwe � ni�qe v�d g




. Ce oznaqa
, wo �snu


privabliva mo�liv�st~ porahuvati bagatopetlev� d��grami Fe�nmana dl� �-funk
�Ý, vikoristovu�qi vi-

sokotemperaturn� �ratkov� rozkladi. Otrimana posl�dovna shema vi�vl�
t~s� du�e nest��ko�. Zna�den�

z r�vn�n~ dual~noÝ simetr�Ý nabli�en� znaqenn� konstanti zv'�zku g

�

+

dobre uzgod�u�t~s� z v�domimi

qisel~nimi rezul~tatami.
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