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It is found that the exact beta-function 3(g) of the continuous 2D g®* model possesses two
types of dual symmetries, these being the Kramers—Wannier (KW) duality symmetry and the weak-
strong-coupling symmetry f(g) (or S-duality). All these transformations are explicitly constructed.
The S-duality transformation f(g) is shown to connect domains of weak and strong couplings, i.e.,
above and below g.. Basically, it means that there is a tempting possibility to compute multi-
loop Feynman diagrams for the g-function using high-temperature lattice expansions. The regular
scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling

constant g} found from duality symmetry equations are in a good agreement with the available

numerical results.
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I. INTRODUCTION

The 2D Ising model and some other lattice spin models
are known to possess the remarkable Kramers—Wannier
(KW) duality symmetry, playing an important role in
statistical mechanics, quantum field theory [1-3] as well
as in the superstring theory [4]. The self-duality of the
isotropic 2D Ising model means that there exists an ex-
act mapping between the high-7" and low-T" expansions
of the partition function [3]. In the transfer-matrix lan-
guage this implies that the transfer-matrix of the model
under discussion is covariant under the duality transfor-
mation. If we assume that the critical point is unique, the
KW self-duality would yield the exact Curie temperature
of the model. This holds for a large set of lattice spin
models including systems with quenched disorder (for a
review see [3,5]). Recently, the Kramers—Wannier duality
symmetry was extended to the continuous 2D ¢@* model
[6] in the strong-coupling regime, i.e., for ¢ > g..

This beta-function 3(g) is to date known only in the
five-loop approximation within the framework of conven-
tional perturbation theory at the fixed dimension d = 2
[7,8].

The strong coupling expansion for the calculation of
the beta-function of the 2D scalar ¢g®* theory as an al-
ternative approach to the standard perturbation theory
was recently developed in [6].

It is well known from quantum field theory and statis-
tical mechanics that any strong coupling expansions are
closely connected with the high-temperature (HT) series
expansions for lattice models. From the field-theoretical
point of view the HT series are nothing but strong cou-
pling expansions for field models, lattices to be consid-
ered as a technical device to define cut-off field theories
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(see [6,8] and references therein).

Calculations of beta-functions are of great interest
in statistical mechanics and quantum field theory. The
beta-function contains the essential information on the
renormalized coupling constant g% , this being important
for constructing the equation of state of the 2D Ising
model. Duality is known to impose some important con-
straints on the exact beta-function [10].

In this paper we study other duality symmetries of the
beta-function 3(g) for the 2D g®* theory regarded as a
non-integrable continuum limit of the exactly solvable 2D
Ising model. The main purpose is to construct exlicitly
the weak-strong (WS) coupling duality transformation
f(g) connecting domains of weak and strong couplings,
1.e., above and below g.. The last transformation allows
one to compute unknown yet multiloop orders (6,7,...)
of the f-functions on the basis of lattice expansions [6].

The paper is organized as follows. In Sect. II we set
up basic notations and define both the correlation length
and beta-function B(g). In Sect. IIT the duality symme-
try transformation § = d(g) is derived. Then it is proved
that 3(d(g)) = d'(¢9)5(g). An approximate expression for
d(g) is also found. Sect. TV contains an explicit deriva-
tion of the weak-strong coupling transformation whilst
in Sect. V in order to illustrate our approach the sixth-
order term of 3(g) is approximately computed. Sec. VI.
contains disussion and some concluding remarks.

II. CORRELATION LENGTH AND COUPLING
CONSTANT

We begin by considering the classical Hamiltonian of
the 2D Ising model (in the absence of an external mag-
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netic field), defined on a square lattice with periodic
boundary conditions; as usual:

H=-J> oio;, (2.1)
(7])

where (i, j) indicates that the summation is over all the
nearest-neighboring sites; o; = +1 are spin variables and
J 18 a spin coupling. The standard definition of the spin-
pair correlation function reads:

G(R) = (croo) , (2.2)

where (...) stands for a thermal average.

The statistical mechanics definition of the correlation
length is given by [11]

_ dInG(p)

&2 ppe (2.3)

p=0

The quantity €2 is known to be conveniently expressed
in terms of the spherical moments of the spin correlation
function itself, namely

=3 (R/a)G(R)

R

(2.4)

with a being some lattice spacing. It i1s easy to see that

2 H2
&=l (25)
where d is the spatial dimension (in our case d = 2).

In order to extend the KW duality symmetry to the
continuous field theory we have a need for a “lattice”
model definition of the coupling constant g, equivalent to
the conventional one exploited in the RG approach. The
renormalization coupling constant g of the g®* theory is
closely related to the fourth derivative of the “Helmholtz
free energy”, namely 9*F (T, m)/0m*, with respect to
the order parameter m = (®). It can be defined as fol-
lows (see [11])

(97 x/0h?)
x2E4

(Ox/0h)?

g(Ta h) = - X3€d )

(2.6)
where y is the homogeneous magnetic susceptibility

X = /dsz(x). (2.7)

Tt is in fact easy to show that ¢(7', k) in Eq. (2.6) is merely
the standard four-spin correlation function taken at zero
external momenta. The renormalized coupling constant
of the critical theory is defined by the double limit

* = lim li T h
o = Jim i o(T0)

(2.8)
and 1t is well known that these limits do not commute
with each other. As a result, ¢* is a path-dependent quan-
tity in the thermodynamic (T, k) plane [11].

Here we are mainly concerned with the coupling con-
stant on the isochor line ¢(T' > T., h = 0) in the disor-
dered phase and with its critical value

_9*x/on’

2¢d
X€ h=0

gy = lim g(T,h=0)= (2.9)

T—TF

The “lattice” coupling constant g% defined in Eq. (2.9)
is a given function of the temperature 7.

III. KRAMERS-WANNIER SYMMETRY

The standard KW duality tranformation is known to
be as follows [1-3]

sinh(2K) = (3.1)

1
sinh(2K)

We shall see that it will be more convenient to deal with
a new variable s = exp(2K) tanh(K), where K = J/T.

It follows from the definition that s transforms as
§ = 1/s; this implies that the correlation length of the
2D Ising model given by £? = s/(1 — s)? is a self-dual
quantity [6]. Now, on the one hand, we have the formal
relation

ds(g) _

€dg_dg

(3.2)

where s(g) is defined as the inverse function of g(s), i.e.,
g(s(g)) = g and the beta-function is given, as usual, by

dg
5d—€ =pB(g) - (3.3)
On the other hand, it is known from [6]
ds _ 2s(1—3s)
€d€  (1+3s) (34)

Therefore, from Eqs. (3.2)-(3.4), a useful representation
of the beta-function in terms of the s(g) function follows

2s(g)(1 — s(g))
(1+s(g)) (ds(g)/dg)

Blg) = (3.5)

If one assumes that the fixed point is not singular, then
from this equation it would follow that w = §'(¢)|g=4. =
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1 in an agreement with the classical paper [14]. (If not,
another approach, see in [15] and a discussion in [6]).

Let us define the dual coupling constant g and the
duality transformation function d(g) as

1
s(g) = —; g=d(g) =sH(— .

(@) g=d(g) (S(g)) ;o (3.6)
where s™1(x) stands for the inverse function of x = s(g).
It 1s easy to check that a further application of the du-
ality map d(g) gives back the original coupling constant,
i.e., d(d(g)) = g, as it should be. Notice also that the def-
inition of the duality transformation given by Eq. (3.6)
has a form similiar to the standard KW duality equation,
Eq. (3.1).

Consider now the symmetry properties of 3(g). We
shall see that the KW duality symmetry property, Eq.
(3.1), results in the beta-function being covariant under
the operation ¢ — d(g):

Bld(g)) = d'(9)8(g) - (3.7)
To prove it let us evaluate 3(d(g)). Then Eq. (3.5) yields

25(3)(1 = 5(7)

T R
Bearing in mind Eq. (3.6) one is led to
fd(g) = D (3.9)

(9)(1+5(9)) (ds(3)/dg)

The derivative in the r.h.s. of Eq. (3.9) should be rewrit-
ten in terms of s(g) and d(g). It can be easily done by

applying Eq. (3.6):

ds(g)
d

1
@ 20T (3.10)

@
SIES

Substituting the r.h.s. of Eq. (3.10) into Eq. (3.9) one
obtains the desired symmetry relation, Eq. (3.7).

Therefore, the self-duality of the model allows us to
determine the fixed point value in another way, namely
from the duality equation d(g*) = g*.

Making use of a rough approximation for s(g), one gets

[6]

[\]

@ 2+4 2
s(g) 2 —4+ — ~ —
g 9> g

12
1—-12/g g—12°

(3.11)

Combining this Padé-approximant with the definition of
d(g), Eq. (3.6), one is led to

39— 35
g—12 °

d(g) =4 (3.12)
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The fixed point of this function, d(¢™) = ¢*, is easily
seen to be g7 = 14. The recent numerical and analytical
estimates yield g5 = 14.69 (see [6,12,13] and references
therein).

It is worth mentioning that the above-described ap-
proach may be regarded as another method for evalu-
ating g7, fully equivalent to the standard beta-function
method.

IV. STRONG-WEAK COUPLING DUALITY

The beta-function of the model under discussion pos-
sesses a specific algebraic property (3.6) (KW duality)
which allows to develop the weak-strong-duality trans-
formation f(g) connecting both the weak-coupling and
strong coupling regimes.

Nowadays both the five-loop approximation results [9]
and the strong coupling expansion for the beta-function
[6] are known rather well. These are given by

Bi(g) = 29 — 2¢* + 1.432347241¢° — 1.861532885¢*

+ 3.164776688¢° — 6.520837458¢° + O(¢7) , (4.1)

12 i 27 81

g2 | 8rigs

_ 3645 _ 15309 n 2187
16759t 32m%¢5 ° 64n7gS

+0(g™") . (4.2)

Here indices 1,2 stand for the weak and strong cou-
pling regimes respectively. The main goal of this Sec-
tion is to determine a dual transformation f(g) such as
flf(g)] = g relating beta-functions £1(g) and Fa(g).

From Eq. (3.5) one can easily find the functions
S1(g), So(g) and their inverse functions G4 (s) = S7'(g),
Go(s) = S5 (g) corresponding to the two regimes. Sim-
ple but cumbersome calculations lead to

G1(s) = s+ s> + 0.3580868104s> — 0.1166327797s*
— 0.1968226859s° — 0.1299831557s° 4+ O(s"),
Si(g) = g — g% 4+ 1.64191318964° — 3.092933174*

+ 6.361881481¢° — 13.78545095¢° + O(g") ,

3 9 9s  18s2  108s3
G =it T s T T a

618s* 34745  19494s°
+ - +

™ ™ ™

+0(s"),
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S()_§+24~32 264 -3% 2976 - 34
2= 8rg  (8mg)?  (8mg)3 (8mg)*

35136-3%> 423680-3° 5149824 .37

(87g)® (87g) (8mg)7?
63275520 - 3%
Y T 4 O(g0
(8mg)® +0l™)
s €[0,1], g€lfg”,00). (4.4)

Having been equipped with these formulas one may
easily construct two branches of the same duality trans-
formation function f12(g) and fa1(g) defined in different
domains of g. The functions are

1 1 drg  28mg? 3
= =—< _ + 220.5059303¢
le(g) GZ(SI (g)) 3 3
— 1766.8145¢%+14816.94007¢° — 127842.59554°,
g S [Oag*] ; f21(g) S [g*,OO], (45)
_ 3 63 0.61714739472
fi2(g) = G1(Sa2(9)) = Irg T T6n2g 7

1.502156783

0.9560453953
+ 5

4

2.368311503

7 +0(g"),

fi2(g) €10,97] . (4.6)

g €y, 00),

The functions found above look like inversion, but they
are not so simple. An interesting nontrivial example of
the 2D model disordered Dirac fermions was discovered
in [16]. Tt was shown that the beta-function of the (non-
integrable) model under consideration also exhibits the
strong-weak coupling duality such as ¢* — é [16].

It is worth noting that the transformation found is

dual indeed

Ji2(fo1(9)) = for(fr2(9)) =9 - (4.7)

Moreover, by definition weak-strong coupling expan-
sions of f(g) are related to each other in the following
way:

B1(f12(9))

Pola) = fiale) 7 (4.8)
_ Pa(farlg))
Bilg) = ) (4.9)

It is rather amusing that Eq. (4.6) looks like a geo-
metric series. Making use of the Padé method we arrive
at

g g
Fialg) ~ 0.23873241469% — 0.0745907136g + 0.0850867165
1219) = g% — 1.983571753¢2% + 1.086109562¢g — 0.6919672492 °
The weak-strong duality equation and strong-coupling expansion yield the following numerical values
fi2(9) —g =0, 9" =14.38 B2(g™) =0, g* = 14.63, (4.11)

being in good agreement with modern estimates [17-19].

V. HIGHER-ORDER TERMS FOR BETA-FUNCTION

Finally, let us consider how one can compute the 3(g) in the multiloop approximation via the strong-coupling
expansion and the S-duality function. In order to find that one should exploit Eq. (4.8),Eq. (4.2) and the approximate

expression for fi12(g) given by Eq. (4.10).

After some tedious but routine calculations we arrive to some polynomial of 7th degree for 31 (g):

Bi(g) = 29 — 297 + 1.4323472414% — 1.861532885¢" + 3.164776688¢° — 6.520837458¢° — 331.4547434".

(5.1)

It is easily seen that the first 6 terms except for the 7th one are the exact perturbation expansion for £1(g) [9].
It would be tempting but wrong to regard Eq. (5.1) as a 8(g)-function in the 7th loop approximation. In fact, the
function in Eq. (4.10) is approximate, so that we have to estimate an accuracy of our calculations.
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Suppose, that a difference between the “exact” duality function f{3*"(g) and the approximate one given by

Eq. (4.10) reads

0.23873241469% — 0.07459071369 + 0.0850867165

fi37(g) =

with b being an arbitrary parameter. The straightfor-
ward calculation shows that a “new” 7th loop contribu-
tion computed by making use of the Eq. (5.2) depends
on the fitting parameter b and differs vastly from the
previous one, namely:

Bi(g) = 29 — 2¢g” + 1.432347241¢° — 1.8615328854"
+ 3.164776688¢° — 6.520837458¢°

+ (—331.454743 + 271519.803807b)g" . (5.3)

Thus, we see that the approach suggested above pro-
vides a regular scheme for computing higher-order cor-
rections to the (g)-function on the basis of lattice high-
order expansions. In other words, one obtains a tempting
possibility to compute (approximately) multiloop Feyn-
man diagrams on the basis of Eq. (4.9) and of high-
temperature expansions [6]. A serious drawback of that
scheme is that it is unstable from a mathematical point
of view.

VI. CONCLUDING REMARKS

We have shown that the g-function of the 2D g®* the-
ory does have the two types of dual symmetries: (i) the
Kramers-Wannier symmetry, and (ii) the weak-strong-
coupling symmetry (S-duality).

g% —1.98357175392 + 1.086109562¢ — 0.6919672492

+b/g", (5.2)

Our proof of the KW symmetry is based on the proper-
ties of g(s), s(g) defined only for 1 < s < 00393 < g < o0
and therefore does not cover the weak-coupling region,
0 < g < g*. So, the statement is that the beta-function
B(g) possesses the KW symmetry only in the strong-
coupling region.

In contrast to widely held views, the KW symmetry
imposes only mild restrictions on §(g). It means that
this symmetry property fixes only even derivatives of the
beta-function ﬁ(Zk)(gj_)(k =0,1,...) at the fixed point,
leaving the odd derivatives free, in particular, the critical
exponent w responsible for corrections to scaling.

We established the existence of the nontrivial weak-
strong-coupling dual function f(g) (S-duality) connect-
ing two domains of both weak coupling and strong cou-
pling given both perturbative RG calculations and lat-
tice high-temperature expansions that S-function f(g)
can be approximately computed. We also explicitly com-
puted high-order terms for 3(g). A close analysis of the
scheme developed shows that this is strongly unstable.
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CUMETPISI KPAMEPCA BAHBLE 1 IYAJILHICTH CUJILHO-CJIABKOTO
3B’A3KY ¥ IBOBUMIPHUX IMOJIHBOBUX MOOEJIAX ®*

b. H. [llamaes
Disuxo-mexnivnudt incmumym im. A. @. Hodde, Pociticoxa axvademia nayx,
eyna. Hoarmexnivna, 26, Canxm-Ilemepbype, 194021, Pocia
Hawtonaavnudi itncmumym adeproi ¢izuxu, Vuicepcumem y Ilasii,
Bia Bact, Hasia, 6-27100, Imanin

Bnaiineno, wo rouna Gera-dyHkuizn ((g) HellepepsHOi HBOBUMIpHOI Momes 3 g®* Mae mBa TumM HyasbHOI
cumetpii, a came, nyaneHy cuMmerpito Kpamepca—Baube (KB) ta cumerpito cuibHo-cstabkoro 38’sasky f(g) (abo
S-nyasbHicTh). Yci 1l IepeTBOpeHH: OTpUMAaHO ABHO. [loKasaHO, 11O MepEeTBOPEHHA S-IyaJsIbHOCTH 3'€HHYE I0-
MeHHM 31 CAabKUMM Ta CUJIBHUMH 3B’A3KaMM, TOOTO 31 3HaYeHHAMHN BHIle 1 HIDK4Ye Bin g.. lle o3magae, mo icuye
HpuBabJIMBa MOXKJIMBICTH TTopaxyBaTu Oararomeriesl marpamu Qeiiumana mjsa G-pyHKIN], BUKOPUCTOBYIOYH BHU-
COKOTEMITEpATYPHI I'paTKOBl po3kJagn. OTprMaHa ITOCTIIOBHA CXeMa BHABIACTHCA Iy:Ke HeCTifiKoro. 3HaiimeHi
3 piBH#AHB OyasibHOI cuMerpil HaGJIDKeHI 3HadYeHH: KOHCTAHTH 3B’A3Ky ¢} [100pe ySrOIKYIOTHCH 3 BIIOMUME
YUCESIbHUME PE3YJIbTATAMHU.
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