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It is found that the exat beta-funtion �(g) of the ontinuous 2D g�

4

model possesses two

types of dual symmetries, these being the Kramers{Wannier (KW) duality symmetry and the weak-

strong-oupling symmetry f(g) (or S-duality). All these transformations are expliitly onstruted.

The S-duality transformation f(g) is shown to onnet domains of weak and strong ouplings, i.e.,

above and below g



. Basially, it means that there is a tempting possibility to ompute multi-

loop Feynman diagrams for the �-funtion using high-temperature lattie expansions. The regular

sheme developed is found to be strongly unstable. Approximate values of the renormalized oupling

onstant g

�

+

found from duality symmetry equations are in a good agreement with the available

numerial results.

Key words: Kramers{Wannier duality, S-duality, renormalization group approuh, beta-

funtion, high-temperature expansion.
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I. INTRODUCTION

The 2D Ising model and some other lattie spin models

are known to possess the remarkable Kramers{Wannier

(KW) duality symmetry, playing an important role in

statistial mehanis, quantum �eld theory [1{3℄ as well

as in the superstring theory [4℄. The self-duality of the

isotropi 2D Ising model means that there exists an ex-

at mapping between the high-T and low-T expansions

of the partition funtion [3℄. In the transfer-matrix lan-

guage this implies that the transfer-matrix of the model

under disussion is ovariant under the duality transfor-

mation. If we assume that the ritial point is unique, the

KW self-duality would yield the exat Curie temperature

of the model. This holds for a large set of lattie spin

models inluding systems with quenhed disorder (for a

review see [3,5℄). Reently, the Kramers{Wannier duality

symmetry was extended to the ontinuous 2D g�

4

model

[6℄ in the strong-oupling regime, i.e., for g > g



.

This beta-funtion �(g) is to date known only in the

�ve-loop approximationwithin the framework of onven-

tional perturbation theory at the �xed dimension d = 2

[7,8℄.

The strong oupling expansion for the alulation of

the beta-funtion of the 2D salar g�

4

theory as an al-

ternative approah to the standard perturbation theory

was reently developed in [6℄.

It is well known from quantum �eld theory and statis-

tial mehanis that any strong oupling expansions are

losely onneted with the high-temperature (HT) series

expansions for lattie models. From the �eld-theoretial

point of view the HT series are nothing but strong ou-

pling expansions for �eld models, latties to be onsid-

ered as a tehnial devie to de�ne ut-o� �eld theories

(see [6,8℄ and referenes therein).

Calulations of beta-funtions are of great interest

in statistial mehanis and quantum �eld theory. The

beta-funtion ontains the essential information on the

renormalized oupling onstant g

�

+

, this being important

for onstruting the equation of state of the 2D Ising

model. Duality is known to impose some important on-

straints on the exat beta-funtion [10℄.

In this paper we study other duality symmetries of the

beta-funtion �(g) for the 2D g�

4

theory regarded as a

non-integrable ontinuum limit of the exatly solvable 2D

Ising model. The main purpose is to onstrut exliitly

the weak-strong (WS) oupling duality transformation

f(g) onneting domains of weak and strong ouplings,

i.e., above and below g



. The last transformation allows

one to ompute unknown yet multiloop orders (6,7, . . . )

of the �-funtions on the basis of lattie expansions [6℄.

The paper is organized as follows. In Set. II we set

up basi notations and de�ne both the orrelation length

and beta-funtion �(g). In Set. III the duality symme-

try transformation ~g = d(g) is derived. Then it is proved

that �(d(g)) = d

0

(g)�(g). An approximate expression for

d(g) is also found. Set. IV ontains an expliit deriva-

tion of the weak-strong oupling transformation whilst

in Set. V in order to illustrate our approah the sixth-

order term of �(g) is approximately omputed. Se. VI.

ontains disussion and some onluding remarks.

II. CORRELATION LENGTH AND COUPLING

CONSTANT

We begin by onsidering the lassial Hamiltonian of

the 2D Ising model (in the absene of an external mag-
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neti �eld), de�ned on a square lattie with periodi

boundary onditions; as usual:

H = �J

X

hi;ji

�

i

�

j

; (2.1)

where hi; ji indiates that the summation is over all the

nearest-neighboring sites; �

i

= �1 are spin variables and

J is a spin oupling. The standard de�nition of the spin-

pair orrelation funtion reads:

G(R) = h�

R

�

0

i ; (2.2)

where h: : :i stands for a thermal average.

The statistial mehanis de�nition of the orrelation

length is given by [11℄

�

2

=

d lnG(p)

dp

2

�

�

�

�

�

p=0

: (2.3)

The quantity �

2

is known to be onveniently expressed

in terms of the spherial moments of the spin orrelation

funtion itself, namely

�

l

=

X

R

(R=a)

l

G(R) (2.4)

with a being some lattie spaing. It is easy to see that

�

2

=

�

2

2d�

0

; (2.5)

where d is the spatial dimension (in our ase d = 2).

In order to extend the KW duality symmetry to the

ontinuous �eld theory we have a need for a \lattie"

model de�nition of the oupling onstant g, equivalent to

the onventional one exploited in the RG approah. The

renormalization oupling onstant g of the g�

4

theory is

losely related to the fourth derivative of the \Helmholtz

free energy", namely �

4

F (T;m)=�m

4

, with respet to

the order parameter m = h�i. It an be de�ned as fol-

lows (see [11℄)

g(T; h) = �

(�

2

�=�h

2

)

�

2

�

d

+ 3

(��=�h)

2

�

3

�

d

; (2.6)

where � is the homogeneous magneti suseptibility

� =

Z

d

2

xG(x) : (2.7)

It is in fat easy to show that g(T; h) in Eq. (2.6) is merely

the standard four-spin orrelation funtion taken at zero

external momenta. The renormalized oupling onstant

of the ritial theory is de�ned by the double limit

g

�

= lim

h!0

lim

T!T



g(T; h) (2.8)

and it is well known that these limits do not ommute

with eah other. As a result, g

�

is a path-dependent quan-

tity in the thermodynami (T; h) plane [11℄.

Here we are mainly onerned with the oupling on-

stant on the isohor line g(T > T



; h = 0) in the disor-

dered phase and with its ritial value

g

�

+

= lim

T!T

+



g(T; h = 0) = �

�

2

�=�h

2

�

2

�

d

�

�

�

�

�

h=0

: (2.9)

The \lattie" oupling onstant g

�

+

de�ned in Eq. (2.9)

is a given funtion of the temperature T



.

III. KRAMERS{WANNIER SYMMETRY

The standard KW duality tranformation is known to

be as follows [1{3℄

sinh(2

~

K) =

1

sinh(2K)

: (3.1)

We shall see that it will be more onvenient to deal with

a new variable s = exp(2K) tanh(K), where K = J=T .

It follows from the de�nition that s transforms as

~s = 1=s; this implies that the orrelation length of the

2D Ising model given by �

2

= s=(1 � s)

2

is a self-dual

quantity [6℄. Now, on the one hand, we have the formal

relation

�

ds(g)

d�

=

ds(g)

dg

�(g) ; (3.2)

where s(g) is de�ned as the inverse funtion of g(s), i.e.,

g(s(g)) = g and the beta-funtion is given, as usual, by

�

dg

d�

= �(g) : (3.3)

On the other hand, it is known from [6℄

�

ds

d�

=

2s(1� s)

(1 + s)

: (3.4)

Therefore, from Eqs. (3.2){(3.4), a useful representation

of the beta-funtion in terms of the s(g) funtion follows

�(g) =

2s(g)(1 � s(g))

(1 + s(g)) (ds(g)=dg)

: (3.5)

If one assumes that the �xed point is not singular, then

from this equation it would follow that ! = �

0

(g)j

g=g



=
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1 in an agreement with the lassial paper [14℄. (If not,

another approah, see in [15℄ and a disussion in [6℄).

Let us de�ne the dual oupling onstant ~g and the

duality transformation funtion d(g) as

s(~g) =

1

s(g)

; ~g � d(g) = s

�1

(

1

s(g)

) ; (3.6)

where s

�1

(x) stands for the inverse funtion of x = s(g).

It is easy to hek that a further appliation of the du-

ality map d(g) gives bak the original oupling onstant,

i.e., d(d(g)) = g, as it should be. Notie also that the def-

inition of the duality transformation given by Eq. (3.6)

has a form similiar to the standard KW duality equation,

Eq. (3.1).

Consider now the symmetry properties of �(g). We

shall see that the KW duality symmetry property, Eq.

(3.1), results in the beta-funtion being ovariant under

the operation g! d(g):

�(d(g)) = d

0

(g)�(g) : (3.7)

To prove it let us evaluate �(d(g)). Then Eq. (3.5) yields

�(d(g)) =

2s(~g)(1� s(~g))

(1 + s(~g)) (ds(~g)=d~g)

: (3.8)

Bearing in mind Eq. (3.6) one is led to

�(d(g)) =

2s(g) � 2

s(g)(1 + s(g)) (ds(~g)=d~g)

: (3.9)

The derivative in the r.h.s. of Eq. (3.9) should be rewrit-

ten in terms of s(g) and d(g). It an be easily done by

applying Eq. (3.6):

ds(~g)

d~g

=

d

d~g

1

s(g)

= �

s

0

(g)

s

2

(g)

1

d

0

(g)

: (3.10)

Substituting the r.h.s. of Eq. (3.10) into Eq. (3.9) one

obtains the desired symmetry relation, Eq. (3.7).

Therefore, the self-duality of the model allows us to

determine the �xed point value in another way, namely

from the duality equation d(g

�

) = g

�

.

Making use of a rough approximation for s(g), one gets

[6℄

s(g) '

2

g

+

24

g

2

'

2

g

1

1� 12=g

=

2

g � 12

: (3.11)

Combining this Pad�e-approximant with the de�nition of

d(g), Eq. (3.6), one is led to

d(g) = 4

3g � 35

g � 12

: (3.12)

The �xed point of this funtion, d(g

�

) = g

�

, is easily

seen to be g

�

+

= 14. The reent numerial and analytial

estimates yield g

�

+

= 14:69 (see [6,12,13℄ and referenes

therein).

It is worth mentioning that the above-desribed ap-

proah may be regarded as another method for evalu-

ating g

�

+

, fully equivalent to the standard beta-funtion

method.

IV. STRONG-WEAK COUPLING DUALITY

The beta-funtion of the model under disussion pos-

sesses a spei� algebrai property (3.6) (KW duality)

whih allows to develop the weak-strong-duality trans-

formation f(g) onneting both the weak-oupling and

strong oupling regimes.

Nowadays both the �ve-loop approximation results [9℄

and the strong oupling expansion for the beta-funtion

[6℄ are known rather well. These are given by

�

1

(g) = 2g � 2g

2

+ 1:432347241g

3

� 1:861532885g

4

+ 3:164776688g

5

� 6:520837458g

6

+ O(g

7

) ; (4.1)

�

2

(g) = �2g +

12

�

�

9

�

2

g

+

27

�

3

g

2

+

81

8�

4

g

3

�

3645

16�

5

g

4

�

15309

32�

6

g

5

+

2187

64�

7

g

6

+O(g

�7

) : (4.2)

Here indies 1; 2 stand for the weak and strong ou-

pling regimes respetively. The main goal of this Se-

tion is to determine a dual transformation f(g) suh as

f [f(g)℄ = g relating beta-funtions �

1

(g) and �

2

(g).

From Eq. (3.5) one an easily �nd the funtions

S

1

(g); S

2

(g) and their inverse funtions G

1

(s) = S

�1

1

(g),

G

2

(s) = S

�1

2

(g) orresponding to the two regimes. Sim-

ple but umbersome alulations lead to

G

1

(s) = s+ s

2

+ 0:3580868104s

3

� 0:1166327797s

4

� 0:1968226859s

5

� 0:1299831557s

6

+ O(s

7

);

S

1

(g) = g � g

2

+ 1:6419131896g

3

� 3:09293317g

4

+ 6:361881481g

5

� 13:78545095g

6

+ O(g

7

) ;

s 2 [0; 1℄ ; g 2 [0; g

�

℄ ; (4.3)

G

2

(s) =

3

4�s

+

9

2�

�

9s

4�

+

18s

2

�

�

108s

3

�

+

618s

4

�

�

3474s

5

�

+

19494s

6

�

+ O(s

7

);
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S

2

(g) =

2 � 3

8�g

+

24 � 3

2

(8�g)

2

+

264 � 3

3

(8�g)

3

+

2976 � 3

4

(8�g)

4

+

35136 � 3

5

(8�g)

5

+

423680 � 3

6

(8�g)

6

+

5149824 � 3

7

(8�g)

7

+

63275520 � 3

8

(8�g)

8

+O(g

�9

) ;

s 2 [0; 1℄ ; g 2 [g

�

;1) : (4.4)

Having been equipped with these formulas one may

easily onstrut two branhes of the same duality trans-

formation funtion f

12

(g) and f

21

(g) de�ned in di�erent

domains of g. The funtions are

1

f

21

(g)

�

1

G

2

(S

1

(g))

=

4�g

3

�

28�g

2

3

+ 220:5059303g

3

� 1766:8145g

4

+14816:94007g

5

�127842:5955g

6

;

g 2 [0; g

�

℄ ; f

21

(g) 2 [g

�

;1℄; (4.5)

f

12

(g) � G

1

(S

2

(g)) =

3

4�g

+

63

16�

2

g

2

+

0:61714739472

g

3

+

0:9560453953

g

4

+

1:502156783

g

5

+

2:368311503

g

6

+ O(g

7

) ;

g 2 [g

�

;1) ; f

12

(g) 2 [0; g

�

℄ : (4.6)

The funtions found above look like inversion, but they

are not so simple. An interesting nontrivial example of

the 2D model disordered Dira fermions was disovered

in [16℄. It was shown that the beta-funtion of the (non-

integrable) model under onsideration also exhibits the

strong-weak oupling duality suh as g

�

!

1

g

[16℄.

It is worth noting that the transformation found is

dual indeed

f

12

(f

21

(g)) = f

21

(f

12

(g)) � g : (4.7)

Moreover, by de�nition weak-strong oupling expan-

sions of �(g) are related to eah other in the following

way:

�

2

(g) =

�

1

(f

12

(g))

f

0

12

(g)

; (4.8)

�

1

(g) =

�

2

(f

21

(g))

f

0

21

(g)

: (4.9)

It is rather amusing that Eq. (4.6) looks like a geo-

metri series. Making use of the Pad�e method we arrive

at

f

12

(g) �

0:2387324146g

2

� 0:0745907136g+ 0:0850867165

g

3

� 1:983571753g

2

+ 1:086109562g� 0:6919672492

;

g 2 [g

�

;1) ; f

12

(g) 2 [0; g

�

℄ : (4.10)

The weak-strong duality equation and strong-oupling expansion yield the following numerial values

f

12

(g) � g = 0; g

�

= 14:38 �

2

(g

�

) = 0; g

�

= 14:63; (4.11)

being in good agreement with modern estimates [17{19℄.

V. HIGHER-ORDER TERMS FOR BETA-FUNCTION

Finally, let us onsider how one an ompute the �(g) in the multiloop approximation via the strong-oupling

expansion and the S-duality funtion. In order to �nd that one should exploit Eq. (4.8),Eq. (4.2) and the approximate

expression for f

12

(g) given by Eq. (4.10).

After some tedious but routine alulations we arrive to some polynomial of 7th degree for �

1

(g):

�

1

(g) = 2g � 2g

2

+ 1:432347241g

3

� 1:861532885g

4

+ 3:164776688g

5

� 6:520837458g

6

� 331:454743g

7

: (5.1)

It is easily seen that the �rst 6 terms exept for the 7th one are the exat perturbation expansion for �

1

(g) [9℄.

It would be tempting but wrong to regard Eq. (5.1) as a �(g)-funtion in the 7th loop approximation. In fat, the

funtion in Eq. (4.10) is approximate, so that we have to estimate an auray of our alulations.
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Suppose, that a di�erene between the \exat" duality funtion f

exat

12

(g) and the approximate one given by

Eq. (4.10) reads

f

exat

12

(g) =

0:2387324146g

2

� 0:0745907136g+ 0:0850867165

g

3

� 1:983571753g

2

+ 1:086109562g� 0:6919672492

+ b=g

7

; (5.2)

with b being an arbitrary parameter. The straightfor-

ward alulation shows that a \new" 7th loop ontribu-

tion omputed by making use of the Eq. (5.2) depends

on the �tting parameter b and di�ers vastly from the

previous one, namely:

�

1

(g) = 2g � 2g

2

+ 1:432347241g

3

� 1:861532885g

4

+ 3:164776688g

5

� 6:520837458g

6

+ (�331:454743+ 271519:803807b)g

7

: (5.3)

Thus, we see that the approah suggested above pro-

vides a regular sheme for omputing higher-order or-

retions to the �(g)-funtion on the basis of lattie high-

order expansions. In other words, one obtains a tempting

possibility to ompute (approximately) multiloop Feyn-

man diagrams on the basis of Eq. (4.9) and of high-

temperature expansions [6℄. A serious drawbak of that

sheme is that it is unstable from a mathematial point

of view.

VI. CONCLUDING REMARKS

We have shown that the �-funtion of the 2D g�

4

the-

ory does have the two types of dual symmetries: (i) the

Kramers{Wannier symmetry, and (ii) the weak-strong-

oupling symmetry (S-duality).

Our proof of the KW symmetry is based on the proper-

ties of g(s); s(g) de�ned only for 1 � s <1; g

�

+

� g <1

and therefore does not over the weak-oupling region,

0 � g � g

�

. So, the statement is that the beta-funtion

�(g) possesses the KW symmetry only in the strong-

oupling region.

In ontrast to widely held views, the KW symmetry

imposes only mild restritions on �(g). It means that

this symmetry property �xes only even derivatives of the

beta-funtion �

(2k)

(g

�

+

)(k = 0; 1; : : :) at the �xed point,

leaving the odd derivatives free, in partiular, the ritial

exponent ! responsible for orretions to saling.

We established the existene of the nontrivial weak-

strong-oupling dual funtion f(g) (S-duality) onnet-

ing two domains of both weak oupling and strong ou-

pling given both perturbative RG alulations and lat-

tie high-temperature expansions that S-funtion f(g)

an be approximately omputed. We also expliitly om-

puted high-order terms for �(g). A lose analysis of the

sheme developed shows that this is strongly unstable.

ACKNOWLEDGEMENTS

The author is most grateful to Istituto Nazionale di

Fisia Nuleare, Struttura di Pavia for kind hospitality

and the use of its failities. He has muh bene�tted from

numerous helpful disussions with G. Jug, A. I. Sokolov,

E. V. Orlov, and K. B. Varnashev.

[1℄ H. A. Kramers, G. H. Wannier, Phys. Rev. 60, 252

(1941).

[2℄ R. Savit, Rev. Mod. Phys. 52, 453 (1980).

[3℄ J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).

[4℄ S. G. Gukov, Usp. Fiz. Nauk 168, 705 (1998).

[5℄ B. N. Shalaev, Phys. Rep. 237, 129 (1994).

[6℄ G. Jug, B. N. Shalaev, J. Phys. A 32, 7249 (1999);

Fiz. Elem. Chastits At. Yadra (Sov. J. Part. Nul.) 31,

N 7B, 215 (2000).

[7℄ G. A. Baker (Jr.), B. G. Nikel, D. I. Meiron, Phys. Rev.

B 17, 1365 (1978).

[8℄ J. Zinn-Justin, Quantum Field Theory and Critial Phe-

nomena, 3rd ed., (Clarendon Press, Oxford, 1999).

[9℄ A. I. Sokolov, E. V. Orlov, Fiz. Tverd. Tela 42, 2087

(2000).

[10℄ P. H. Damgaard, P. E. Haagensen, J. Phys. A 30, 4681

(1997).

[11℄ H. B. Tarko, M. E. Fisher, Phys. Rev. B 11, 1217 (1975).

[12℄ Shun-Yong Zinn, Sheng-Nan Lai, M. E. Fisher, Phys.

Rev. E 54, 1176 (1996).

[13℄ P. Butera, M.`Comi, Phys. Rev. B 54, 15828 (1996).

[14℄ E. Barouh, B. M. MCoy, T. T. Wu, Phys. Rev. Lett.

31, 1409 (1973).

[15℄ P. Calabrese, M. Caselle, Alessio Celi, A. Pelissetto,

E. Viari, hep{th/0005254 (2000).

[16℄ A. LeClair, Phys. Rev. Lett. 84, 1292 (2000); Labora-

toire assoie' No. 280 au CNRS (2000).

[17℄ J. L. Cardy, Phase Transitions and Critial Phenomena,

vol. 11, edited by C. Domb, J. Lebowitz (Aademi Press,

New York 1987), p. 56.

[18℄ V. Privman, M. E. Fisher, Phys. Rev. B 30, 322, (1984).

[19℄ T. W. Burkhardt, D. Derrida, Phys. Rev. B 32, 7273

(1985).

244



KRAMERS{WANNIER SYMMETRY AND STRONG-WEAK-COUPLING DUALITY IN 2D �

4

FIELD MODELS

SIMETR�� KRAMERSA{VAN^� � DUAL^N�ST^ SIL^NO-SLABKOGO

ZV'�ZKU U DVOVIM�RNIH POL^OVIH MODEL�H �

4

B. N. Xalav

F�ziko-tehn�qni� �nstitut �m. A. F. �offe, Ros��s~ka akadem�� nauk,

vul. Pol�tehn�qna, 26, Sankt-Peterburg, 194021, Ros��

Na�onal~ni� �nstitut �dernoÝ f�ziki, Un�versitet u Pav�Ý,

V�a Bas�, Pav��, 6{27100, �tal��

Zna�deno, wo toqna beta-funk�� �(g) neperervnoÝ dvovim�rnoÝ model� z g�

4

ma dva tipi dual~noÝ

simetr�Ý, a same, dual~nu simetr�� Kramersa{Van~ (KV) ta simetr�� sil~no-slabkogo zv'�zku f(g) (abo

S-dual~n�st~). Us� � peretvorenn� otrimano �vno. Pokazano, wo peretvorenn� S-dual~nosti z'dnu do-

meni z� slabkimi ta sil~nimi zv'�zkami, tobto z� znaqenn�mi viwe � ni�qe v�d g



. Ce oznaqa, wo �snu

privabliva mo�liv�st~ porahuvati bagatopetlev� d��grami Fe�nmana dl� �-funk�Ý, vikoristovu�qi vi-

sokotemperaturn� �ratkov� rozkladi. Otrimana posl�dovna shema vi�vl�t~s� du�e nest��ko�. Zna�den�

z r�vn�n~ dual~noÝ simetr�Ý nabli�en� znaqenn� konstanti zv'�zku g

�

+

dobre uzgod�u�t~s� z v�domimi

qisel~nimi rezul~tatami.
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