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The matrix elements and expetation values of the operators of the hyper�ne eletron-nulear

interations in many-eletron systems are presented in an analytial form, whih an be applied for

numerial alulations in the density matrix methods. The eletron-nulear spin-spin and ontat

interations are onsidered, as well as the interation between nulear-spin and eletron orbital

motions. These interations whih take part in the e�etive Breit{Pauli Hamiltonian, determine

hyper�ne struture of the basi e�ets in the spetrosopy, whih an be observed for example

in eletron spin resonane (ESR) and nulear magneti resonane (NMR) experiments. Applying

the Wigner{Ekart theorem, using the irreduible tensor-operators tehnique and the spin-spae

separation sheme, the matrix elements and expetation values of these relativisti orretions are

expressed in a form suitable for diret numeri alulations. The �nal result is presented as a produt

(or sums of produts) of fators determined by the spin and (or) the angular momentum symmetry,

and a spatial part determined by the ation of the symmetrized tensor-operators on the normalized

matrix or funtion of the spin distribution or the matrix of the harge distribution. The ation of

these spae tensor operators is the same for a given spin multiplet. This ation an be expressed

by a standard proedure, well de�ned in the theory of the irreduible tensor-operators.

Key words: eletron-nulear interation, hyper�ne struture, relativisti orretion, density ma-

trix, Clebsh{Gordon oeÆients.
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I. INTRODUCTION

In the formalism of the redued density matries and

funtions (RDM & RDF)[1{3℄, the matrix elements, as

well as expetation values of the di�erent types of spin-

involving operators take the form of a produt of spae

and spin fators [1{4℄. The spin part is determined by the

spin symmetry and is redued to 3j-symbols, while the

spatial part is determined by the ation of spae opera-

tors on the spin distribution or spin orrelations matries

or funtions [1,4,5℄. The spin distribution and spin orre-

lations matries and funtions are built from the spatial

parts of the RDMs of �rst and seond order, respetively.

In this approah, the spae-spin separation results, �rst,

from the possibility to separate the spae and spin vari-

ables in RDMs [6{9℄ and, seond, from the use of the

split RDMs in order to represent the matrix elements of

the perturbation terms in the Hamiltonian [1,4,10℄.

In terms of the RDMs and RDFs and in the sheme of

the spae-spin separation, the matrix elements and ex-

petation values of the various spin-involving operators

(presented in Refs. [1,4℄) are onneted with the relativis-

ti orretions in the Breit{Pauli Hamiltonian [1{5℄. The

matrix elements and expetation values of the operators

orresponding to the di�erent types of relativisti orre-

tions are redued to the produts of a fator determined

by the spin symmetry whih haraterize a spin state or

a transition between two states in a given spin multiplet,

and a spae part whih is independent of the spin state

or of a transition amplitude between two states. This

spae part is expressed by the ation of the spae opera-

tor, onsidered in general form, on the spae part of the

relevant spin distribution, or spin orrelations matries

or funtions.

In Refs. [11,12℄ we have taken a step further in the

treatment of the matrix elements and expetation values

of one of the main relativisti orretions, namely, the

spin-orbit interations and spin-spin, eletron-eletron

interations terms, in a form onvenient for numerial

alulations in the density matrix methods.

In the present paper we shall onsider the matrix ele-

ments and expetation values of another type of spin-

involving relativisti orretions, namely the eletron-

nulear spin-spin (dipolar) and eletron-nulear ontat

interations, as well as the interation between nulear-

spin and eletron orbital motion. These interations

terms in the e�etive Breit{Pauli Hamiltonian determine

the hyper�ne struture of the basi e�ets in the spe-

trosopy, observed for example in the EPR and NMR

experiments.

Using the tehnique of the irreduible tensor operators

and applying the Wigner{Ekart theorem, the matrix el-

ements and expetation values of these relativisti or-

retions are expressed as produts, or sums of produts,

of fators, determined by the spin symmetry and (or) the

orbital momentum symmetry, and a spatial part deter-
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mined by the ation of the symmetrized tensor-operators

over the normalized matrix or funtion of the spin dis-

tribution or the matrix of the harge distribution. The

ation of these spae tensor operators is the same for

a given spin multiplet and is independent of the inves-

tigated (splitting or transition) e�et. This ation is re-

dued to a standard proedure, well de�ned in the theory

of the irreduible tensor-operators. The expetation val-

ues of these relativisti orretions, whih give the value

of splitting of the energy levels, are expressed in an ana-

lytial form suitable for numerial alulations. We also

onsider the transition matrix elements of these opera-

tors, whih give the ontribution of the eletron-nulear

interations under onsideration to the orresponding in-

dued transitions.

II. SPIN DISTRIBUTION MATRICES AND

DENSITIES

A. Matrix elements in the RDM formalism

The RDM of the order s (s-RDM) of an N -eletron

system (1 � s � N ) in the state K, desribed by a wave

funtion 	

K

(�

1

; : : : ; �

N

), whih is eigenfuntion of the

operators S

2

and S

Z

, has the form [1{3, 13{16℄
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where �

i

= (r

i

; �

i

), r

i

is the position vetor of the i-th eletron and �

i

is the spin variable.

The orresponding RDF of the order s (s-RDF) is de�ned by the expression
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): (2)

The generalized transition s-RDM between the states K and K

0

desribed by 	

K

and 	

K

0

has the form [1{3℄:

�(KK

0

j�

1

; : : : ; �

s

; �

0

1

; : : : ; �
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For the transition s-RDF we have a similar expression whih follows from Eq. (2).

The expetation value of a s-partile operator, F(i

1

; i
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; : : : i

s

), an be written as
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In expression (4) Sp

i

1

;i

2

;:::i

s

denotes the operator of the integration over partile oordinates labeled with the orre-

sponding numbers, after identi�ation of the primed and unprimed oordinates.

In many-eletron theory, the expetation values and matrix elements of symmetri sums of idential operators

are of major importane. Then, for the expetation values of a symmetrized sum of idential s-partile operators,

F(i

1

; i

2

; : : : i

s

), (assuming that the numbers are ordered as follow i

k

, 1 � i

1

< i

2

< : : : < i

s

� N ), we obtain

h
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where

P

fi

s

g

means a summation over all possible sets

(i

1

; i

2

: : : ; i

N

). Usually, only RDMs or RDFs of 1st or

2nd order are of importane. Higher-order matries or

funtions are used only in spei� ases.

After separation of the spae and spin variables [1,2,6℄,

the 1-RDM takes the form
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�(�
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; �
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where the �

;

0

(r

1

; r

0

1

) are the spae omponents and the

(�) ( = �; �) are two spin one-eletron wave fun-

tions. The spae omponents form the harge and spin

distribution matries (setion II.B):
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For the expetation values of a sum of idential one-

partile operators, making use of Eq. (5) we obtain
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B. Spin distribution matries and funtions

In the spin eigenstate (with the eigenvalues S(S + 1)

andM of the operators S

2

and S

z

, respetively ) the spin

distribution matrix an be written down in the following

form [1,2,4,5℄
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The spin distribution matries q

(M)

(r

1
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0

1

) for the dif-

ferent spin eigenstates (with M = S; S � 1; : : : ;�S) an

be expressed in terms of the normalized spin distribution

matries D

S

(r

1
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0

1

), whih are independent ofM [17,18℄:
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Here K is the index of the spin state orresponding to

hS

z

i = M and K is the index orresponding to the max-

imal valueM = S and q(KKjr

1

; r

0

1

) is presented in form

(9), using the general de�nition [1,4℄
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where S

1

m

(i), m = 0;�1 are symmetrized omponents of

the spin moment S(i) of the eletron with the number i.

Similar formulas an be written for the spin distribution

funtions when r

1

= r

0

1

.

The matries of the spin distribution for the transi-

tion between the states K(SM

S

) and K

0

(S

0

M

S

0

) satisfy

relations [1,4℄
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where C

S 1 S

0
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are the Clebsh{Gordon oeÆients.

From their properties it follows that m = M
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Applying the Wigner{Ekart theorem, from (13) to the

transition between the statesK(SM

S

) andK

0

(SM

0

S

) one

obtains
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where S

1

m

;m = 0;�1 are the omponents of the sym-

metrized operator of the total spin. Eqs. (13) and (14)

are generalization of Eq. (10) for the ase of a transition

between the di�erent spin states.

III. ELECTRON-NUCLEAR DIPOLAR

INTERACTIONS

The operator of dipole oupling between one eletron

spin magneti moment S(i) and the magneti moment

I(�) of the nuleus � an be written down in as in [1,4,5℄

whih separates eletron and nuleus variables:
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Here � = 1=2 is the �ne struture onstant, �

p

is the

struture onstant of the proton, g

0

is the g-fator for

the free eletron [19℄, g

�

is the g-fator for the nuleus

� and n

2

(i) is the unit tensor formed from the vetor

n(i) = r

�i

=r

�i

. We denote r

�i

= r

i

� R

�

, where R

�

is

the position vetor of the nuleus with number �.
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The interations, desribed by this operator, deter-

mine the hyper�ne struture of the e�ets observed in

the EPR experiments.

For any one nuleus �, the sum of one eletron opera-

tor in Eq. (15) an be written as

�

X

i

^
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The omponents of the axial vetor K(i) an be pre-

sented in the form
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is an irreduible �rst-rank tensor built

from the tensor produt of D

2

and S
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. The onstant C

an be derived from atomi spetrosopy theory [20,21℄

and its value is 10

1=2

.

Using the relations given above and expressing the

salar produt of K and I as a tensor produt of their

symmetrized forms K

1

and I

1

, Eq. (16) takes the form
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If one separates the eletron and nulear parts of the wavefuntion, for the matrix elements of the transition between

the states K and K

0

of the eletron system and K

�

and K

0

�

of the nuleus � one obtains:
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We will onsider only the transition between the states K and K

0

belonging to one and the same spin multiplet. The

transitions between di�erent spin multiplets are forbidden as an be seen from the onsideration of their symmetry

properties.

Using Eqs. (12){(14) we an express the matrix elements of the eletron part in the following form

hKSM

S

j

X

i

r

�3

�i

C

2

m

(#i; '

i

)S

1

m

0

(i)jK

0

SM

0

S

i =

Z

r

0

1

=r

1

r

�3

�1

C

2

m

(#1; '

1

)q(KK

0

jr

1

; r

0

1

)

1

m

0

dr

0

1

= hSM

S

jS

1

m

0

jSM

0

S

i

Z

r

1

r

�3

�1

C

2

m

(#1; '

1

)D

S

(r

1

)dr

1

; (23)
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where S

1

m

are the symmetrized omponents of the to-

tal spin S of the many eletron system and D

S
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1

) =

q(K Kjr
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1

)

1

0

=S is the normalized spin distribution

funtion, i.e the spin density, whih is the same within

any given spin multiplet.

Applying the Wigner{Ekart theorem to the matrix

element in Eq. (23) we obtain
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Finally, for the matrix elements of the operator
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of the

eletron system and K

�

and K

0

�

of the nulear system

one obtains

hKSM

S

K

�

j

^

H

SS

en

jK

0

SM

0

S

K

0

�

i =

p

15 g

0

��

p

1

p

2S + 1

X

�

g

�

X

q

(�1)

q

�

X

m;m

0

C

2 1 1

mm

0

q

C

S 1 S

M

S

m

0

M

0

S

Z

r

�3

�1

C

2

m

(#

1

; '

1

)D

S

(r

1

)dr

1

hK

�

jI

1

�q

(�)jK

0

�

i: (25)

In partiular for a given eletroni term, this matrix element takes the form

hKSM

S

K

�

j

^

H

SS

en

jKSM

S

K

0

�

i =

p

15g

0

��

p

1

p

2S + 1

X

�

g

�

X

q

(�1)

q

X

m

C

2 1 1

m 0 q

M

S

�

Z

r

�3

�1

C

2

m

(#i; '

i

)D

S

(r

1

)dr

1

hK

�

jI

1

�q

(�)jK

0

�

i: (26)

The expetation value (26) gives the width of the spetral line splitting due to the eletron-nuleus spin-spin inter-

ation.

IV. ELECTRON-NUCLEAR CONTACT INTERACTION

The term of the eletron-nulear ontat interation in the e�etive Breit{Pauli Hamiltonian has the form as in

[1,4,5℄

^

H

SS

en(ont)

=

8

3

�g

0

��

p

X

�;i

g

�

Æ(r

�i

)I(�) � S(i): (27)

These interations (and the operator

^

H

SS

en

as well) determine the hyper�ne struture of the e�ets in the EPR

experiments.

Expressing the salar produt of I(�) and S(i) in Eq. (27) in terms of their symmetrized omponents we obtain

^

H

SS

en(ont)

=

8

3

�g

0

��

p

X

�;i

g

�

Æ(r

�i

)

X

m

(�1)

m

S

1

m

(i)I

1

�m

(�): (28)

Separating the wave funtion into the eletron and nulear part, for the matrix element of

^

H

SS

en(ont)

one easily obtains

hKSM

S

K

�

j

^

H

SS

en(ont)

jK

0

SM

0

S

K

0

�

i =

8

3

�g

0

��

p

X

�

g

�

�

X

m

(�1)

m

hKSM

S

j

X

i

Æ(r

�i

)S

1

m

(i)jK

0

SM

0

S

ihK

�

jI

1

�m

(�)jK

0

�

i: (29)

Using the same proedure as in setion III, for the �rst matrix element in this expression we have
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hKSM

S

j

X

i

Æ(r

�i

)S

1

m

(i)jK

0

SM

0

S

i = C

S 1 S

M

S

m M

0

S

=C

S1S

S0S

�

Z

r

0

1

=r

1

Æ(r

�1

)q(KK

0

jr

1

; r

0

1

)

1

0

dr

1

= hSM

S

jS

1

m

jSM

0

S

i

�

Z

r

1

Æ(r

�1

)D

S

(r

1

)dr

1

=

r

3

2

1

p

2S + 1

C

S 1 S

M

S

m M

0

S

D

S

(R

�

): (30)

Finally for the matrix element of

^

H

SS

en(ont)

, we obtain

hKSM

S

K

�

j

^

H

SS

en(ont)

jK

0

SM

0

S

K

0

�

i =

8

3

r

3

2

�g

0

��

p

1

p

2S + 1

�

X

�

g

�

X

m

(�1)

m

C

S 1 S

M

S

m M

0

S

D

S

(R

�

)hK

�

jI

1

�m

(�)jK

0

�

i: (31)

For a given term Eq. (30) formally takes the following simple form:

hKSM

S

K

�

j

^

H

SS

en(ont)

jKSM

S

K

0

�

i

8

3

r

3

2

�g

0

��

p

1

p

2S + 1

X

�

g

�

M

S

D

S

(R

�

)hK

�

jI

1

�0

(�)jK

0

�

i: (32)

V. NUCLEAR-ELECTRON SPIN-ORBITAL

INTERACTION

The interation between the magneti moment of nu-

lei and the orbital eletroni motion whih ontribute

to the e�ets of hemial shifts in NMR-experiments an

be desribed by the operator

^

H

LS

en

in the form [1,4,5℄:

^

H

LS

en

= 2��

p

X

�;i

g

�

r

�3

�i

I(�) � L

�

(i): (33)

Here, in the absene of external magneti �elds L

�

(i) is

the angular moment of the i-th eletron aording to the

nuleus �

L

�

(i) = L

(i)=�

= r

�i

� p(i) = r

i

� p(i)�R

�

� p(i):

(34)

Expressing the salar produt in (33) in terms of sym-

metrizied omponents of I(�) and L

�

(i) the operator

^

H

LS

en

takes the form

^

H

LS

en

= 2��

p

X

�;i

g

�

r

�3

�i

X

m

(�1)

m

I

1

�m

(�)(L

�

(i))

1

m

: (35)

In partiular if one supposes that the origin of oordi-

nate system is on the nuleus the operator (35) an be

written down as

a

^

H

LS

en

= 2��

p

g

�

X

i

r

�3

i

X

m

(�1)

m

I

1

�m

(�)L

1

m

(i); (36)

where L

1

m

(i) are the spherial omponents of the orbital

angular moment of the i-th eletron, i.e L(i) = r

i

�p(i).

Taking into aount that p(i) = �ir

i

, and that

r = n

�

�r

+

1

r

r




;

where n is the normal of r and r




is the spherial part

of r one an write down L(i) = �i[n(i)�r




i

℄ [22℄.

Thus, after some alulations, one obtains

L

1

m

(i) = �

p

2

X

p;q

C

1 1 1

p q m

C

1

p

(�

i

; '

i

)(r




i

)

1

q

: (37)

Using these results for the matrix element of the opera-

tor of the nulear-eletroni spin-orbit interation whih

determine the transition between two eletroni states K

and K

0

and the nulear states K

�

and K

0

�

one obtains

hKK

�

j

a

^

H

LS

en

j K

0

K

0

�

i = 2��

p

g

�

X

m

(�1)

m

hK j

X

i

r

�3

i

L

1

m

(i) j K

0

ihK

�

j I

1

�m

j K

0

�

i; (38)
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where the matrix element for the transition of the eletroni system has the form:

hK j

X

i

r

�3

i

L

1

m

(i) j K

0

i =

Z

r

0

1

=r

1

r

�3

1

L

1

m

(i)�

1

(KK

0

j r

1

; r

0

1

)dr

1

=

�

p

2

X

p;q

C

1 1 1

p q m

Z

r

0

1

=r

1

r

�3

1

C

1

p

(�

1

; '

1

)(r




1

)

1

q

�(KK

0

j r

1

; r

0

1

)dr

1

; (39)

where �(KK

0

j r

1

; r

0

1

) is the redued density matrix of the �rst rank.

From the general formula of the matrix element of a produt of two tensor operators:

hK j f � g j Ki =

X

K

0

hK j f j K

0

ihK

0

j g j Ki

it follows that R

�

� p(i) = 0, beause the matrix element of R

�

di�ers from zero only when M

L

(i) = M

0

L

(i) while

that of p(i) di�ers from zero only when M

0

L

(i) = M

L

(i) + 1 (see [21℄). Here as usual M

L

(i) are the projetions of

orbital momenta L(i).

In the ase of onsideration for the matrix elements of operator

^

H

LS

en

, Eq.(33) one obtains

hKK

0

�

j

^

H

LS

en

j K

0

K

0

�

i = 2��

p

X

�

g

�

X

m

(�1)

m

hK j

X

i

r

�3

�i

(L

�

(i))

1

m

j K

0

ihK

�

j I

1

�m

(�) j K

0

�

i; (40)

where the matrix element of the eletroni part take the form, analogous to (39):

hK j

X

i

r

�3

�i

(L

�

(i))

1

m

j K

0

i = �

p

2

X

p;q

C

1 1 1

p q m

Z

r

0

1

=r

1

r

�3

�i

C

1

p

(�

1

; '

1

)(r




1

)

1

q

�(KK

0

j r

1

; r

0

1

)dr

1

: (41)

VI. CONCLUSION

The results presented here give the possibility to in-

lude eletron-nulear spin-spin and ontat interations

as well as the interation between nulear-spin and ele-

tron orbital motion in a density matrix theory for spin-

polarized many eletron systems in exited and degen-

erate states. These results allow not only to inlude the

onsidered relativisti orretions in the variational ap-

proah of density matrix methods but also to perform

alulations in terms of vetor-model and valene-bond

shemes.

The matrix elements and expetation values of opera-

tors with a ompliated analytial form, as for example

these of the operator of the eletron-nulear spin-spin in-

teration given by Eq. (15), are easily redued to a form

whih is very simple and suitable for the diret numerial

appliation. The only spei� omponent in the expres-

sions (25), (26), (31) and (32) is ontained in the matrix

elements of the operators

^

H

SS

en

and

^

H

SS

en(ont)

. These op-

erators must be onstruted and used in the numerial

proedure for the normalized spin distribution density,

whih is the same for a given spin multiplet and does

not depend on the onsidered transition proesses be-

tween two states K and K

0

of splitted energy levels.

The alulation of the matrix elements of the oper-

ator

^

H

LS

en

(Eqs. (39), (41)) in terms of density matrix

of �rst order is straightforward. The same holds for den-

sity funtionals built up in terms of density matries. We

ould use the loal-density funtional obtained form of

the spin distribution funtions or average loal-density

funtional approximation [23℄ for the spin distribution

matries and, at the end, the �rst order density matrix

in Kohn{Sham equations in order to inlude the onsid-

ered relativisti orretions.

In the Barth{Hedin onstrution [24{26℄, the most

widely used in the Kohn{Sham-type alulations for

spin-polarized systems, the energy funtional is de�ned

in terms of the �rst-order density matrix. This does not

permit the desription of relativisti orretions, whih

require a two-partile density matrix. In this approah

one an only determine the inuene of an external mag-

neti �eld, and only for the ground state.

The formalism presented here and in [11,12℄ an be

used in the density matrix and density funtional meth-

ods for the determination of all relativisti orretions

desribed by Breit{Pauli Hamiltonian not only for the

ground state, but for any arbitrary state of the spin mul-

tiplet as well. The same formalism an be used for the
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alulation of the e�et of an external magneti �eld.

The use of a suitable minimization proedure, e.g., the

loal-saling transformation sheme [27{29℄, and more

preisely speaking, its formulation for spin-polarized sys-

tems [30,31℄, that keeps automatially spae and spin

symmetry, would allow diret minimization of the energy

density-matrix funtional, inluding relativisti terms.

This is an aim of our future investigations.
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NADTONK� VZA�MOD�Õ �DERNOGO SP�NU Z ELEKTRONNIMI

SISTEMAMI V METODAH MATRIC� GUSTINI

R. L. Pavlov

1

, P. P. Ra�qev

1

, M. D�m�trova{�vanov�q

2

, K. Valdemoro

3

1

�nstitut �dernih dosl�d�en~ ta �dernoÝ ener��Ý,

Bolgars~ka akadem�� nauk, Car�gradske xosse, 72,

BG{1784, Sof��, Bolgar��.

2

�nstitut f�ziki tverdogo stanu, Bolgars~ka akadem�� nauk,

Car�gradske xosse, 72, BG{1784, Sof��, Bolgar��.

3

�nstitut matematiki � fundamental~noÝ f�ziki, CSIC,

123, Serrano, Madrid, 28006, �span��

Podano v anal�tiqn�� form� matriqn� elementi ta oq�kuvan� znaqenn� operator�v nadtonkih �dernih

vzamod�� u bagatoelektronnih sistemah. Voni mo�ut~ buti zastosovan� dl� qislovih rozrahunk�v u me-

todah matri� gustini. Rozgl�nuto elektronno-�dernu, sp�n-sp�novu ta kontaktnu vzamod�� a tako� vza-

mod�� m�� �dernim sp�nom ta elektronnimi orb�tal~nimi ruhami. C� vzamod�Ý, wo na�vn� v efektivnomu

gam�l~ton��n� Bre�ta{Paul�, viznaqa�t~ nadtonku strukturu osnovnih efekt�v u spektroskop�Ý, �k� mo�na
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sposter�gati, napriklad, v eksperimentah z elektronnogo sp�novogo rezonansu (ESR) ta �dernogo magnet-

nogo rezonansu (�MR). Na p�dstav� teoremi V��nera{Ekarta � vikoristann� tehn�ki nezv�dnih tenzornih

operator�v � shemi sp�n-prostorovogo rozd�lenn� matriqn� elementi � oq�kuvan� znaqenn� ih rel�tiv�s-

ts~kih popravok vira�eno u form�, pridatn�� dl� pr�mih qislovih rozrahunk�v. Ostatoqni� rezul~tat

zapisano �k dobutok (abo suma dobutk�v) mno�nik�v, wo viznaqa�t~s� sp�nom � (abo) simetr�� kutovogo

momentu k�l~kosti ruhu ta prostorovoÝ qastini, �ka viznaqat~s� d�� simetrizovanih tenzornih ope-

rator�v na normovanu matri� abo funk�� sp�novogo rozpod�lu qi matri� zar�dovogo rozpod�lu. D��

ih prostorovih tenzornih operator�v odnakova dl� zadanoÝ sp�novoÝ mul~tipletnosti. C� d�� mo�e buti

vira�ena standartno� proeduro�, dobre oznaqeno� v teor�Ý nezv�dnih tenzornih operator�v.

254


