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The thermodynamically equilibrium states and phase transitions in the pseudospin-electron
model with the transverse field are studied in the weak coupling approximation. In the regime of
the constant chemical potential the possibility of the first-order phase transitions between uniform
phases as well as the first- or the second-order transitions into phase with the doubled lattice
period is established depending on the value of p. The conditions of appearance of the phase
separation in the system at the given average electron concentration are analysed. The influence of
the transverse field (which is connected with the tunneling-like splitting) on the phase transitions
and the conditions of their realization is also studied in the paper. The phase diagrams are built at
the various electron densities of states in the conduction band.
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I. INTRODUCTION

The pseudospin-electron model (PEM) is one of the
models which were formulated in recent times and are
intensively investigated in the theory of the strongly cor-
related electron systems. This model appeared in con-
nection with the investigation of the role of the locally
anharmonic structure elements in the high temperature
superconductors (HTSC) in the formation of their elec-
tron spectrum and in the pairing correlations which lead
to the appearance of the superconducting state. Anhar-
monicity of the vibrations of ions from certain sublattices
1s described in the model with the help of pseudospin for-
malism; in the case S = % two lowest vibrational states
in the anharmonic potential well are taken into account
only.

At the standard formulation of the PEM the elec-
tron subsystem is described by the Hubbard Hamilto-
nian whereas the interaction of electrons with anhar-
monic subsystem is caused by the influence of the in-
ternal field depending on the pseudospin orientations.
The model Hamiltonian includes the electron transfer (¢-
term), electron correlation(U-term), pseudospin-electron
interaction (g-term); energy of the tunneling-like split-
ting of local levels (Q-term) and asymmetry of the local
anharmonic potential (h-term) are also taken into ac-
count [1-4]:

H =" (Unigniy — p(nig +niy) + 957 (nit+niy)

K3

— hS? —QSf)—I—Ztijc;rcj. (1)

The investigations of this model in recent years were
concerned with the analysis of the structure of the elec-
tron spectrum with an allowance for the strong short
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range correlations [5], to the investigation of the charge
and pseudospin correlations and dielectric susceptibility
[6,7] as well as pair correlations of the supercunduct-
ing type [3]. Different aspects of the PEM thermody-
namics (in particular, equilibrium and metastable states
and bistability phenomena [8], phase transitions between
states with different pseudospin orientation and electron
concentration in the regime of the fixed electron chemical
potential [9], transitions into the phase separated states
at the given value of the average electron concentration
[10]) were the subject of attention too. Actuality of such
investigations for HT'SC objects is connected in particu-
lar with the problem of genesis of the crystal structure
inhomogeneities (see, for example [11]) or the so called
stripe structures [12] in these systems.

The simplified PEM (at Q@ = 0 and ¢ = 0, but with
the inclusion of the direct pseudospin-pseudospin inter-
action) was the subject of consideration in [9]. The possi-
bility of the first order phase transitions between uniform
states with the jumps of the pseudospin mean value as
well as of the phase separation were revealed. Similar re-
sults were obtained for the case ¢ # 0, Q@ = 0 at the large
values of the interaction constant g both in the limit
U — oo [13] and for the simplified variant of the model
at U = 0 [14]; the last consideration was carried out
in the framework of the thermodynamically consistent
scheme of the generalized random phase approximation
(GRPA) [15]. The possibility of the appearance of the
modulated (the so-called chess-board) phase was shown
for the simplified PEM (U = 0, Q@ = 0) in the case of
strong coupling (¢ > W, W is a half width of the elec-
tron energy band). Phase diagrams which describe tran-
sitions between homogeneous and modulated phases at
the change of the field A, the electron chemical potential
1 and the temperature 7" were built.

It should be noted that the PEM has certain similarity
to the known in literature and intensively investigated in
recent times Falicov-Kimball (FK) model [16], in which
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the interaction of localized and moving electrons is taken
into account. The mentioned model is a simplified variant
of the Hubbard model and is used at the investigations
of the mentioned above spatial inhomogeneities in the
systems with the strongly correlated electrons. The va-
riety of homogeneous and modulated phases, transitions
between them, the possibility of the phase separations is
characteristic of the Falicov-Kimball model [17-21]. In
comparison with the PEM there exists, however, a dif-
ference in the regime of thermodynamical averaging. Lo-
calized and moving particles in the electron FK model
possess the common chemical potential; this is absent
in the PEM. Besides, the term with transverse field S7
which 1s responsible for the own dynamics in localized
particle subsystem is absent in the FK model. It is evi-
dent that thermodynamics of the PEM can have its own
special features and can include the effects which are not
presented in the FK model.

There 1s also an analogy between the simplified PEM
(€ = 0) and the electron Hamiltonian of the annealed
binary alloy model (see, for example [18]), but in this
case the models differ in thermodynamical regime (in
the PEM the field acting on pseudospins is fixed, while in
the alloy model the component concentrations are given
which corresponds to the fixed value of (S#)).

The aim of this work is the consideration of thermo-
dynamics of the simplified (' = 0) PEM in the case of
weak coupling, when the interaction constant g is small
in comparison with the width of the electron band 2W.
This case has not come under attention by now. Work
[13] can be mentioned only; it was shown there at the
consideration of the PEM with U = 0, Q@ = 0 in the
framework of the dynamic mean field method that the
electron band does not split when g < W. Most of the
previous works on the PEM thermodynamics were car-
ried out for the large ¢ case basing on the approaches
in which the splitting in electron spectrum is taken into
account. The consideration was restricted to the case of
{2 = 0; the presence of the transverse field Q57 leads to
certain difficulties in the GRPA scheme. In contrast to
this we do not restrict ourselves in the present investiga-
tion to the case 2 = 0 only. The changes in the band
spectrum at the weak coupling with pseudospins and
presence of the tunneling (or pseudo-tunneling) splitting
can have significant influence on the phase transition pic-
ture, modifying thermodynamical criteria of the appear-
ance of modulated phases. In this work the calculation of
the thermodynamical functions of the PEM with U/ = 0
and the investigation of the thermodynamically stable
states and phase transitions within the uniform phases
and into the modulated phase (with the doubling of a
lattice period) are carried out.

II. THERMODYNAMICS

The investigation of the PEM in the weak coupling
approximation will be carried out here analogously to
the traditional consideration of the weak one-site cor-
relation U. In the case U <« W the Hartree-Fock ap-

proximation is applied, using the decoupling Unsn_, —
Ung(n_s) + n_o(ns) — (no){n_s)]. It gives the possi-
bility to describe satisfactorily magnetic properties of
the Hubbard model in the case when the correlational
splitting of the electron band is absent (see, for example
[22,23]) (such splitting takes place when W < U and can
be described in the simplest way by using the Hubbard-
I approximation). At the intermediate correlation ener-
gies (U ~ W) the metal-insulator transition, at which
the gap in the spectrum dissapears at the decrease of U,
takes place in the Hubbard model.

For the simplified PEM with U/ = 0 the interaction
constant g plays the role which 1s similar to that of the
energy U in the Hubbard model. At the decrease of the
constant g below the critical value (g ~ W) the system
should pass to the mean field regime of the Hartree-Fock
type.

Basing on the above mentioned arguments we use the
approximation

gnilS; — gni(S7) 4 g(ni)Si — g(ni)(57), (2)

where the pseudospin-electron interaction is taken into
account in the spirit of the mean field approximation
(MFA) through an internal self-consistent field which
acts on electrons and pseudospins.

In the following we will consider two different cases.
The first one is the case of the uniform field, which is the
same in all lattice sites. This corresponds to the homo-
geneous pseudospin ordering and the spatially uniform
(independent on the site number) electron concentra-
tion. The second one is the case of modulation with dou-
bling of the lattice period, with which the corresponding
changes of the mean values (S7) and (n;) are connected.

A. Uniform phase

Let us consider the uniform case: (3°_ ni) = n,
(S7) = n. The Hamiltonian of the PEM in the MFA
1s as follows:

H=Hq+H+U, (3)
Hy = (90— mwnio+ 3 tijel ycio,

1,0 1,7,0
He =Y [(gn—h)S; +Q57], (4)

7

U= —gznnz —Ngnn,

here N is the number of the lattice sites. Passing to k-
representation and performing the transformation

S; =07 cosf 4 o} siné,

SY =of cosf — o7 sinf,
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Q h —
sin@:x, cosfl = /\gn’
A=+(gn—h)2+Q? (5)
we will diagonalize Hey, Hy:
He =" (91— p+ tx)nko, (6)

k,o

H :—/\Zaf,

here t, = Zi_j tijeik(R’_RJ). The electron band E, =
gn+ti in this case changes its position depending on the
average value of pseudospin 7. Its displacement with re-
spect to the chemical potential level leads to the change
of the electron states occupancy and results in the change
of the electron concentration. This in its turn influences
the value of the field acting on pseudospins and deter-
mining their mean value. This self-consistent connection
is described by the following set of equations for the pa-
rameter 7 and electron concentration n:

1 1
= S (ePlanttnmm gyt = ~ %;f(Ek —p), (7)

ko

1= (3). =4

The grand canonical potential (per one lattice site) in
the MFA is given by the expression

¢ T
= - In (14 elp—te—gn)/T
e )

—Tln (2cosh62—/\) — gnn. (8)

From the point of view of thermodynamical equilibrium
we can distinguish two regimes: (i) the constant electron
chemical potential; (ii) the given electron concentration
[6,9]. Stable equilibrium states in the regime p = const
can be found from the condition of minimum of the grand
canonical potential ® and in the regime n = const they
can be found from the condition of minimum of the free
energy I' = pun + ®.

1. Regime p = const

Tt should be noted that the set of equations (7) is in-
variant with respect to the transformation

p——p; h— 29— h,

n—2—mn;n— -1 (9)
In the symmetric case 4 = 0,h = g system (7) can be
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transformed to the form:
1 B
= Nzk:th 5(% +gm),

B

-9 pA
n= 2/\€tanh 5 (10)
where & = 1 — n. The solution
n=0, n=1(&=0) (11)

exists at any temperatures and describes disordered
phase. Besides this solution there appears at low tem-
peratures the non-zero solution i # 0, & # 0. A critical
temperature 7., which in this case corresponds to the
second order phase transition point, is determined from
the equation:

2 Q
1+ Qg—Q tanh %Ho = 0. (12)

Equation (12), which is obtained by linearization of the
set of equations (7), in the case @ — 0 reduces to the
form:

1+ ggzﬂo =0, (13)

Here
My = 2 ' 2 " d ' 14
=y Lrw=z [ aoro. 0y

where p(t) = % >, 6(t — tx) is the density of electron
states (DOS), connected with the electron transfer; the
function ¢ changes in the interval [-W, W]. In the low
temperatures limit

1. = £ p(0), (15)

g = -2
0 p(p) Yo’ 5

when the DOS at the Fermi level p(y) is finite (that takes
place for the three-dimensional lattice or for the two-

dimensional lattice when the rectangular DOS p(t) =

ﬁ is used approximately). The real DOS for the two-

dimensional lattice possesses the Van-Hove singularity
(see, for example [24])

2 4w

¢ ~ In — 16
p()|t|<<W Wz T (16)

which leads instead of (15) to the expression

4 4We
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and respectively to the equation for 7.:

(18)

The solutions of equation (12) as functions of the interac-
tion constant at different values of the transversal field
parameter £ are presented in Fig. 1 (we consider two
cases: (i) the case when the direct momentum summa-
tion is used to calculate TIy (it corresponds to the DOS
with the logarithmic singularity (16)) (ii) the case when
we use the rectangular state density). In our calculations
(here and in the following) we put W = 1.

0.12 - /
] / /,
0.08 -
_ ]
0.04 |
008 &0 oéo 10.80

Fig. 1. The dependence of the critical temperature on the
interaction constant g. Thick (thin) lines refer to the case
when the direct momentum summation (rectangular DOS) is
used when calculating Ilg, respectively.

It is worth mentioning that at the absence of singular-
ity of the DOS there exists such a critical value

Qo = gzp(O) (19)

(Qor = % for the rectangular DOS), above which (at
1 > Q) the phase transition to ordered phase disap-
pears. This is equivalent to the existence of a critical

value of g: at given €2 the phase transition is possible

when g > ger = 4/ %. In the case of the DOS with the

logarithmic singularity the critical temperature exists at
any Q values and at % > # we have an asymptotic

expresssion:

4eW —QWn?

The physical nature of the considered here phase transi-
tion at h = g, 0 = 0 (the fixed p regime) is the following:
the appearance of the ordered phase is connected with its
stabilization due to the shift of the electron band down
to the low energy values under the influence of the in-
ternal field; this ensures the corresponding gain in the

electron energy.

This mechanism remains the main reason of the phase
transition when the initial electron band is not half-filled.
In such a case (when pu # 0) we performed the investi-
gation using the numerical calculations when the set of
equations (7) is solved and using the expression (8) for
the grand canonical potential ®. The selection of the
solutions was carried out using the condition of the ab-
solute minimum of ®.

—1.98 1

1 -2.01 1

—2.08 35~ 7.00

0.60 -

£ 0.00

—0-60 35~ 1.00

2.00 -

H1.85 -

! '78.9 0

0.95 1.00

Fig. 2. The field dependence of the electron concentra-
tion, pseudospin mean value and grand canonical potential;
T = 0.008.
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The typical dependencies n(h),n(h), ®(h) at certain
temperature are shown in Fig. 2 (the case p = W, Q=10
is presented, rectangular density of states was used).

h |
: (6)

(3)

Zg._
2g—g%/2W-

(2)

(5)
(4)

q°/2W1
,u

W g/2 W+g/2

I t T T T
-W—lg/2 -W+g/2
1

(1) |

_9/2.

1
1
1
1
1
1
|
1
|
1
1
1
1
1
1
1
1
1
1
I
I
-
1
1
1
1
1
I

Fig. 3. The ground state diagram (7" = 0, = 0). Regions
with the different n,n values are separated by the dashed
lines and the solid line (the phase transition line): (1) n =0,
m=1/2 (2) n=0,n=1/2 (3) n = 1/2, n = 1+ {& — 55
(4)n:—1/2,n:1+%+2w,(5)n_2 n = —1/2; (6)
n=2n=1/2.

.
h ,
1

29._

(1)
(@)

-W-g/2
’
]

| —g/2-

Fig. 4. The (h, p) phase diagram (7" = 0.004, © = 0.12).
Regions with different n,n values are separated by dashed
lines and a solid line (the phase transition line):

I
W—I:g /2 Wg/2
I
I
I
1

~Onm Ll h . ~2,n~ L L2
(1)n~0,n~2\/m7 (z)nN2777~2 (h—2g)2+92'

The system undergoes the first order phase transition
with jumps of the mean values of the electron concen-
tration and pseudospin at the change of the field h, the
phase transition point is determined using the Maxwell
rule. The similar transition takes place at the change
of the chemical potential at fixed h. The dependences
n(h),n(h) in the case Q@ # 0 are similar to that in the
case 2 = 0, the presence of the tunneling-like splitting
decreases the temperature of the phase transition at the
fixed values of p and h.
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The regions of coexistence of phases with different
values of the electron concentration and pseudospin are
shown in the plane (u, h) at @ =0 and © # 0 in Figs. 3
and 4.

In the case Q = 0, T'= 0 the phase transition line can
be found in the analytic form:

2 W 2
w-Lpcwalin=L(05+—+1L)
2 g 9

2 2W
—W—I—g<u<W—— h_g—l—gu (21)
2 W
2
g Wy
g I oh=9g- 2 A
W <u<W—|— g 2W(05+ g)

In the case €2 # 0 numerical calculation is applied to
determine the phase transition line; in the regions (1),
(2) the electron concentration n is near (but not ex-
actly equal) to 0 or 2 respectively at low temperatures; at
T = 0 the phase transition takes place for the following
values of the chemical potential:

20w\ 3 g 20w\ 3
1— Jil1—
9 <g2 ) <u<W—|—2 <g2 )

w4

(22)

Phase transition lines in the plane (T, h) at different
values of p are shown in Fig. 5. Such line is vertical for the
case u = 0 only; for the case i # 0 the line is bent. This
gives a possibility of the first order phase transition at
the change of temperature (with the jumps of the param-
eters 1, n). The slopes of the phase equilibrium curves are
opposite for g > 0 and ¢ < 0. The lines of the critical
points, in which the corresponding equilibrium curves at
different p end, are shown for the cases Q = 0,8 # 0; the
calculations are carried out using rectangular density of
states.

0.07 7
p=-08_____* 0 w=0.8
1, 0=0"1\,
// \\
{ p=t =1
[/ Y et ~
1 Q=0.1 -\ |\
III ‘\“
B ! [
11 ¥
]
! |
4 \
! !
i Y
1 |
!I .II
0.00 — — 71—
—0.10 O.%O 1.10

Fig. 5. The critical temperature lines (dashed lines) and
the phase transition lines (solid lines) for € = 0 and 2 = 0.1
(the case of the rectangular DOS).



PHASE TRANSITIONS IN PSEUDOSPIN-ELECTRON MODEL AT WEAK COUPLING

Similar phase diagrams were obtained using direct mo-
mentum summation for square lattice (Fig. 6). As in
the previous case the maximum critical temperature is
achieved at p = 0.

0.10 -
: (b)
£~0.05
000, 0380 135
M
0.10 -
| (a)
£~0.05
0'090.1' 0.5 1.1

h

Fig. 6. The critical temperature lines on the a) (7, h),
b) (T, p) planes for @ = 0 (direct momentum summation
is used).

2. Regime n = const

The values nq, n2, 71,72, betweeen which the jumps of
the electron concentration and pseudospin mean value
take place at the phase transitions in the g = const
regime, correspond to the phases which coexist in the
phase transition points. In the regime n = const the
phase separation on the phases with the above mentioned
values of n,n takes place. The instability with respect
to phase separation is confirmed by the descending be-
haviour of the chemical potential as a function of n in the
corresponding region of parameter values. It is shown in
Fig. 7, where the dependence of the band edges on the
electron concentration is depicted as well.

At the used parameter values ( = 0,h = 07,7 =
0.008) the system is unstable with respect to the phase
separation in the region n; = 1.149 < n < ny = 1.645.
The values n; and ns correspond to the Maxwell rule.

1.5 B

151 . n
T e 20

Fig. 7. The dependence of the band edges and the chemical
potential on the electron concentration. 7' = 0.008, h = 0.7,
2 = 0. (A and B denote the electron band edges for phases
which coexist in the phase separation region).

2.00 -
(b)
Q1OO _H’_’ _____ :
LN
00880080 1.00
h
2.00 -
1
(a)
£1.00 {n" '
o'/
%850 080 1.00
h
Fig. 8. (n,h)-phase diagram in the cases a) @ = O0;

b) © = 0.1. Phase separation regions for different temper-
atures are shown: a) 1 — T = 0.008, 2 — T = 0.08, 3
— T =00972;b) 1 — T = 0.008, 2 — T = 0.075, 3 —
T = 0.0903.
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Phase separation regions are shown in Fig. 8 for differ-
ent temperatures. The calculations were carried out for
square lattice using direct momentum summation when
solving the set of equations (7). At the increase of tem-
perature the separation region narrows and at 7" > T
dissapears. This means that the system becomes homoge-
neous. The presence of the tunneling-like splitting leads
to the decrease of the area of phase separation region
and to the lowering of 7.

The analytic expression for the border lines of the
phase separation region can be obtained in the case
T =0, 2 =0 and the rectangular density of states:

g2 / " 2
O<h<a =0 n'=/—h 23
DT W (23)
2 2
q g / h g 1" q
= <h<2¢g——:n = — — ——: = -4+ —
o <SPS Tyt =y Taaw oy
9’ 2
2g—ﬁ<h<2g:n/:2— —(29—h); n'=2
2.00 -

£1.00 A

0.08 8o~

0.50 1.00
h

Fig. 9. (n, h)-phase diagram in the case =0, 7' = 0; the
rectangular DOS is used.

The corresponding (n, h) phase separation diagram is
shown in Fig. 9.

It can be mentioned that at weak coupling we have
one phase separation region in the (n, k) plane while in
the strong coupling case (g > W) there exist two such
regions at the distance of order g along h axis; the mod-
ulated phase is intermediate between them [14].

B. The case of the phase with double modulation

In the framework of the carried out above investiga-
tion the phase transitions between phases with the uni-
form ordering (which are characterized by the different
values of n, 1) in the case of weak coupling were con-
sidered. As in the case g 3> W the effective interaction
between pseudospins (or electrons) which is formed by
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the direct pseudospin-electron coupling lies at the ba-
sis of such transitions. This interaction, as 1t is shown
in [14], can result in the appearance of the modulated
phase with doubling of the initial lattice period at the
large values of the constant ¢ (when the chemical poten-
tial is located between the split due to the interaction
subbands). Let us consider such possibility for the case
of weak coupling (¢ < W), which is the subject of our
investigation.

At the double modulation of the lattice period the
crystal is divided into two sublattices. We introduce the
notations: 7, = (S7,), e = ), (Niao) (@ = 1,2 is the
sublattice index), 7 is an elementary cell index. Similarly
to the case of the homogeneous phase we use the mean
field approximation and write the Hamiltonian in the

form

H:Hel+Hs+Ua (24)
He = Z(gﬁa - ﬂ)niaa + Z t%ﬁCIaUCj@g,
[Xe%es to,j 3

Hy= |(gma = h)S7, + Q5% ],

U=—yg Znana.
e

Passing to k-representation and doing an unitary trans-
formation

Chyo = COS $Ch,o + SIN ¢Cyo, (25)
Chyo = — SIN ¢Clyo + COS PClyo,

) t M= N2
sin 2¢ = ul ,C08 2¢ = I 3

/(gﬂ1;772)2 +t12c

1l =22 2 g, =412 =42 = Ztlljzeik(R,l—RjZ)

i

(gﬂ1;772)2 + tz

we will diagonalize H;:

Hel = Z(Akoc - ﬂ)ﬁkaaa (26)

ack

2
+ o —
/\lm:ngUz_i_(_l) ¢<g7712772) e

Similarly to (5) we will diagonalize H,:

Hy= =3 Xa0is, Ao =/(gna — K7+ Q2. (27)

Double modulation leads to the splitting in the elec-
tron spectrum due to the difference between the internal
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fields, acting in sublattices (the similar effect takes place
in the FK model [19]). The initial band is divided into
two subbands separated by the gap A = g|n1 — 12| (see
Fig. 10).

band edges
W — — [(1/2g(n,n,)+W?"
1/2g|n,n,|
PSQ -mmmTmmemmmmmmmomomsmsmmeoooeooooooes
-1/2gin,-n,|
W— ———— -[(172g(n, )+ W™
T T<T
[ (9

Fig. 10. The band edges for the cases T > T (homo-
geneous phase) and 7' < T (the double modulation case);
u=0h=g.

Contributions from both sublattices are present in the
equation for the electron concentration in sublattices

1 14 cos2¢ e -1
”a=m§(72 (e 41)

1-— 2 _
4 %ﬂj) (eﬁAw—u 4 1) 1 )’ (28)

which is obtained using (24)-(27). Another equation
which appears as a result of the averaging of the operator
5S¢, has the form

h —gnq 6:\04
o« = ——=—— tanh e .
U] 5 ( 5 ) # 0

(29)

The equations (28) and (29) form the system which plays
role similar to the set of equations (7) for the uniform
case. The grand canonical potential for the double mod-
ulation case can be written as follows:

TS () ()
k

A
&) — g(nim + nana).

B
— TIn (4ch 5 C 5

Solution of the obtained equation system (28) and (29)
and investigation of the thermodynamically stable states
was carried out numerically. It is established that phase
transitions from the uniform to the low-temperature
modulated phase can be of the second or the first order.
It is illustrated in Fig. 11, where the phase transition
lines at ;1 = 0 in the cases 2 = 0 and Q2 # 0 are shown

(direct momentum summation is used for calculating the
right hand sides of equations (28) and (30)).

The change of the phase transition order at the motion
along the phase equilibrium curve is shown in Fig. 12,
where the jump of the electron concentration én’ =
n? —nY in the transition point as a function of tempera-
ture is shown. The region where §n° = 0 corresponds to
the second order phase transition (solid lines in Figs. 11
and 12), the region 6n® # 0 corresponds to the first order
phase trasition (dashed lines in Figs. 11 and 12.)

0.15 -
i ”/i\\
J , N
’ /_\ N
) // ’ 2 o \\
| // // \\\ \
0104 /; W
J S W\
7 s N\ \\
E‘ i ,/ / A
,// \\\\
) ’/// \\\\
0.05 T ///’ ‘\\
1 II// “\‘
J
[}
1
i \
.40 O.%O 0.60

Fig. 11. The phase transition lines (solid and dashed lines
are the lines of the second and the first order phase transi-
tions, respectively) from the uniform phase to the phase with
double modulation (1 — Q2 =0,2 — Q2 =0.2).

1.00 H

o ]
- \
) ]

0.50 A \

008 86685 T 0.10 0.15

Fig. 12. The temperature dependence of the difference
on® = n? — ng along the phase transition line (Q = 0).

The difference dn = ny — na (as well as the difference
dn = n1 — n2) can play a role of the order parameter for
modulated phase. Coming from equations (28) and (29),
we can write the equations for dn and dn and separate
after that the contributions of the first order:

2~ 9 —t— —
Sn=—= Snl(eBlon—te—p) L 1)-1
n= o The pr-in|(e +1)
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— (ePlontte—n) 4 1)—1}, (31)
h —an 2 1 QZ
on=C S gon (3 )7) sginte) 5. 32)
<a'z>:1tnhm p= Nz,
2 2 2

Here Z;k denotes the summation over the wave vector
within the reduced Brillouin zone (when the condition
|kz| 4 [ky| < T, ais a lattice constant, is fulfilled). From
the equations (31) and (32) we obtain the following con-
dition of the appearance of nonzero solutions for én and

on:

g 1 Blgn—tr—p)+1y—1
1= 2L — gn—tr—p
DI )

S (o) eS|

(here the summation is carried out within the full Bril-
louin zone, which corresponds to the initial lattice).

Proceeding from equation (33), we can find a critical
temperature 7 as the maximum temperature (among
the set of temperatures which are obtained for the dif-
ferent h values) which fulfils this equation at the fixed
value of the chemical potential. This temperature is the
point of the second order phase transition to modulated
phase at the corresponding value of the field h. Fig. 13
shows the dependences of the critical temperature 77 on
the chemical potential in the cases € = 0 and @ # 0.
With the aim of comparison there are also shown in
these figures the corresponding curves for the critical
temperature 7., which describes the transitions between
the homogeneous phases (Fig. 6b). It is easy to see that
T > T, for the p values, which are less than the certain
value (|p| < po; o &= 0.4 in Fig. 13). Such condition is
fulfilled for the electron band occupation, which is close
to half-filling case. In this region the transition to modu-
lated phase at the decrease of temperature occurs sooner
than the described in paragraph II. A transition between
the uniform phases; the last transition is realized when
] > po.

Let us consider in more detail the situation in the sym-
metric case p = 0,h = g, when in the high-temperature
phase n = 1,7 = 0. Equation (33) reduces now to the
form

1:_g2 69 ! Z S (b (34)

At the density of states p(¢) which is finite at ¢ = 0, in

particular at the rectangular DOS p(t) = ﬁ, equation
(34) in the low temperature region becomes
2
g BQ 1 W
1= Q tanh 5 QWI (35)
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Fig. 13. The dependence of the critical temperature on the
chemical potential; a) @ = 0, b) © = 0.1. Solid line refers to
the case of the phase with double modulation, dashed line
refers to the transition into the homogeneous phase.

while at the presence of logarithmic singularity (16) we
have the following equation:

2 2
g 80 2 oW
= tanh — In— ] .

o e W (n T) (36)

1=

The critical temperatures 77, obtained in these both
cases are higher than the corresponding temperatures
Te ((15) and (20)) for the transitions between uniform
phases. At high € values T remains finite:

w
Tr Teexp (—

QQW) (37

gZ

for the rectangular DOS (or T~ % exp( g‘;f) in the

W2 . Wz_tz)
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(38)

Tr ~ 2Wexp (—ﬂ- QW)

V2

in the case of the DOS with logarithmic singularity.

III. CONCLUSIONS

The pseudospin-electron model is investigated in the
work in the weak coupling case (¢ < W), when the elec-
tron band remains unsplit in the uniform state. The ther-
modynamically equilibrium states of the system are con-
sidered in the two regimes: the given chemical potential
of electrons or the constant value of the electron concen-
tration. In the p = const regime the first order phase
transitions between uniform phases (with the jumps of
the electron concentration and pseudospin value) take
place in the system when the chemical potential is placed
within the electron band near its edges. In the case when
1 18 near the centre of the band, the phase with the dou-
bling of the lattice period (the chess-board phase) can ap-
pear in the system at the lowering of temperature. The
transition between the modulated and uniform phases
can be of the first as well as of the second order depend-
ing on the magnitude of the field h acting on pseudospins.
For the n = const regime the conditions of the appear-
ance of the phase separation in the region of the phase
transitions between uniform phases are established.

The obtained results, in general, are in accordance
with the data of similar investigations for the Falicov—
Kimball model at the small values of the coupling con-
stant describing the interaction between the moving and
localized particles (electrons). In [18,19,21] the possibil-
ity of transitions into modulated or phase segregated
phases was studied depending on the value of the mean
electron concentration. It was shown that at small val-
ues of n the phase separation can be realized, while near
half-filling of the band the chess-board phase is preferable
and, at last, at intermediate values of n the appearance
of phase with a noncommensurate modulation is possi-
ble. The transitions into this or that phase was fixed by
the divergences of the corresponding susceptibilities (it
should be mentioned in this connection that the usage of
a such procedure did not give to the authors a possibil-
ity to reveal the thermodynamically stable states in the
regions where the instabilities of either type (at q¢ = 0
and q = (7/a,m/a,...)) are superimposed; this problem
can be solved basing on the analysis of the behaviour of
the grand canonical potential).

There exist, however, essential distinctions as com-
pared with the results obtained for the FK model. Firstly,

in papers [17,18,20,21] the regime of the fixed concentra-
tion of localized particles was used (it corresponds in
the case of the PEM to the fixation of the average value
(5%}). Such a condition can lead to the phase separation
by itself. Secondly, in contradiction to the FK model we
take into account in the PEM the tunneling-like split-
ting. Besides the general decrease of the phase transition
temperatures and narrowing of the segregation regions,
its role manifests itself in the very conditions of the real-
ization of phase transitions depending on the form of the
density of electron states. In the cases when the electron
DOS is finite at half-filling (does not possess a logarith-
mic singularity, that is characteristic of the d = 2 space
dimensionality) there exist such threshold values Qc, and
gor that at Q@ > Q.. or ¢ < g the phase transitions into
segregated phases disappear.

Though the phase transitions in the PEM at weak cou-
pling are similar to that revealed in this model in the case
of the strong interaction, g 3> W [14], the physical mech-
anisms of transitions are to a greater extent distinct. In
the case of strong coupling the electron spectrum is al-
ways split due the to one-site interaction and the mech-
anism which ensures the advantage of the transition into
the modulated phase or between the uniform ones is con-
nected with the opposite in 1ts character reconstruction
of the electron spectrum in subbands and with the corre-
sponding redistribution of the electron density of states
between them. On the other hand, at the weak coupling
a new phase which appears at the transition between
uniform phases stabilizes due to the shift of the electron
band as a whole, while the phase with a double modu-
lation appears due to the energy gain at the splitting of
the initial band at the Fermi level (the effect is similar to
the Peierls instability at the interaction with phonons).
Besides that, the dependences of the critical tempera-
tures on the coupling constant ¢ are different in both
cases: at ¢ < W T, (or T} is proportional to g?, while
at g > W the critical temperatures decrease (~ é) when
g increases (such a type of behaviour of T} for the FK
model was obtained in [17]).

Let us mention that in the framework of the applied
thermodynamocal approach we have performed the in-
vestigation of the phase transitions into uniform and
chess-board phases only. Such transitions are connected
with the instabilities described by divergencies of suscep-
tibilities x(0) = Z—Z and x(Q) where Q = (7/a,7/a,...).
The consideration of orderings of another type (includ-
ing the incommensurate ones) can be based on the in-
vestigation of singularities of the x(q) function at any q
value (the susceptibility x(q) can be expressed in terms
of the correlators (1'S7S7) or (T'n;n;)). The correspond-
ing investigation will be the subject of our subsequent
consideration.
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®A30BI IEPEXOJIM V IICEBOOCIIH-EJEKTPOHHINA MOIEJII
IIPU CJIABKINA B3AEMOIIL

I. B. Cracrok, T. C. Mucakosuu
Inemumym ¢izuxu xondencosanux cucmem Hautonarvrol axademii nayx Vepainu,
esy.a. Ceenyiyvroeo, 1, Jlveis, 79011, Vxpaina

E-mail: ista@icmp.lviv.ua

HocmimkeHo TepMOIMHAMIYHO PIBHOBaXKHI CTaHM Ta (a30Bl IIepexodr y IICEBIOCIIH-eJIEKTPOHHITT Momesal 3

MHOIEPEeYHUM IT0JIeM y HabIMmKeHHl C1abKoro 3B’A3Ky. ¥ PeKUMI MOCTIHHOrO XeMIYHOTO ITOTEHINAY BCTAHOBJIEHO

MOKJIMBICTD, 3aJI€3KHO B[l 3HAUEHHH [, IEPEXOIIB IIEPIIOTo POy MIXK OTHOPLIHMMEU dha3aMu Ta Hepuioro abo apy-

roro poay [0 a3y 3 MOABOEHHAM Ilepiofdy KpucTajidHol rparku. [IpoaHasizoBaHo yMOBY BUHUKHEHHsI B CUCTEMI

¢dasoBoro posimapyBaHH:A IpH 3adaHlil cepelHii eJTeKTpOHHINA KoHIleHTpalli. BuBYeHo TaKoXK BILIUB IIOHIEPETHOTO

nond (fKe NOB’#3aHe 3 PO3IIEIUIEHHAM TyHeJIbHOTO Tuily) Ha ¢dha30Bi Hepexonu Ta yMoBH ix peasisamii. [To6ymo-

BaHo ¢a30Bl IiATpAMU IIPHA PI3HUX T'YCTHUHAX €JIEKTPOHHUX CTAHIB Y 30HI MPOBIIHOCTH.
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