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The thermodynami
ally equilibrium states and phase transitions in the pseudospin-ele
tron

model with the transverse �eld are studied in the weak 
oupling approximation. In the regime of

the 
onstant 
hemi
al potential the possibility of the �rst-order phase transitions between uniform

phases as well as the �rst- or the se
ond-order transitions into phase with the doubled latti
e

period is established depending on the value of �. The 
onditions of appearan
e of the phase

separation in the system at the given average ele
tron 
on
entration are analysed. The in
uen
e of

the transverse �eld (whi
h is 
onne
ted with the tunneling-like splitting) on the phase transitions

and the 
onditions of their realization is also studied in the paper. The phase diagrams are built at

the various ele
tron densities of states in the 
ondu
tion band.

Key words: pseudospin-ele
tron model, Fali
ov{Kimball model, phase transition, weak 
oupling,

phase separation, 
hess-board phase.

PACS number(s): 63.20.Ry, 64.70.Kb, 71.10.Fd, 77.80.Bh

I. INTRODUCTION

The pseudospin-ele
tron model (PEM) is one of the

models whi
h were formulated in re
ent times and are

intensively investigated in the theory of the strongly 
or-

related ele
tron systems. This model appeared in 
on-

ne
tion with the investigation of the role of the lo
ally

anharmoni
 stru
ture elements in the high temperature

super
ondu
tors (HTSC) in the formation of their ele
-

tron spe
trum and in the pairing 
orrelations whi
h lead

to the appearan
e of the super
ondu
ting state. Anhar-

moni
ity of the vibrations of ions from 
ertain sublatti
es

is des
ribed in the model with the help of pseudospin for-

malism; in the 
ase S =

1

2

two lowest vibrational states

in the anharmoni
 potential well are taken into a

ount

only.

At the standard formulation of the PEM the ele
-

tron subsystem is des
ribed by the Hubbard Hamilto-

nian whereas the intera
tion of ele
trons with anhar-

moni
 subsystem is 
aused by the in
uen
e of the in-

ternal �eld depending on the pseudospin orientations.

The model Hamiltonian in
ludes the ele
tron transfer (t-

term), ele
tron 
orrelation(U -term), pseudospin-ele
tron

intera
tion (g-term); energy of the tunneling-like split-

ting of lo
al levels (
-term) and asymmetry of the lo
al

anharmoni
 potential (h-term) are also taken into a
-


ount [1{4℄:
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The investigations of this model in re
ent years were


on
erned with the analysis of the stru
ture of the ele
-

tron spe
trum with an allowan
e for the strong short

range 
orrelations [5℄, to the investigation of the 
harge

and pseudospin 
orrelations and diele
tri
 sus
eptibility

[6,7℄ as well as pair 
orrelations of the super
undu
t-

ing type [3℄. Di�erent aspe
ts of the PEM thermody-

nami
s (in parti
ular, equilibrium and metastable states

and bistability phenomena [8℄, phase transitions between

states with di�erent pseudospin orientation and ele
tron


on
entration in the regime of the �xed ele
tron 
hemi
al

potential [9℄, transitions into the phase separated states

at the given value of the average ele
tron 
on
entration

[10℄) were the subje
t of attention too. A
tuality of su
h

investigations for HTSC obje
ts is 
onne
ted in parti
u-

lar with the problem of genesis of the 
rystal stru
ture

inhomogeneities (see, for example [11℄) or the so 
alled

stripe stru
tures [12℄ in these systems.

The simpli�ed PEM (at 
 = 0 and t = 0, but with

the in
lusion of the dire
t pseudospin-pseudospin inter-

a
tion) was the subje
t of 
onsideration in [9℄. The possi-

bility of the �rst order phase transitions between uniform

states with the jumps of the pseudospin mean value as

well as of the phase separation were revealed. Similar re-

sults were obtained for the 
ase t 6= 0, 
 = 0 at the large

values of the intera
tion 
onstant g both in the limit

U ! 1 [13℄ and for the simpli�ed variant of the model

at U = 0 [14℄; the last 
onsideration was 
arried out

in the framework of the thermodynami
ally 
onsistent

s
heme of the generalized random phase approximation

(GRPA) [15℄. The possibility of the appearan
e of the

modulated (the so-
alled 
hess-board) phase was shown

for the simpli�ed PEM (U = 0, 
 = 0) in the 
ase of

strong 
oupling (g � W , W is a half width of the ele
-

tron energy band). Phase diagrams whi
h des
ribe tran-

sitions between homogeneous and modulated phases at

the 
hange of the �eld h, the ele
tron 
hemi
al potential

� and the temperature T were built.

It should be noted that the PEM has 
ertain similarity

to the known in literature and intensively investigated in

re
ent times Fali
ov{Kimball (FK) model [16℄, in whi
h
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the intera
tion of lo
alized and moving ele
trons is taken

into a

ount. The mentioned model is a simpli�ed variant

of the Hubbard model and is used at the investigations

of the mentioned above spatial inhomogeneities in the

systems with the strongly 
orrelated ele
trons. The va-

riety of homogeneous and modulated phases, transitions

between them, the possibility of the phase separations is


hara
teristi
 of the Fali
ov{Kimball model [17{21℄. In


omparison with the PEM there exists, however, a dif-

feren
e in the regime of thermodynami
al averaging. Lo-


alized and moving parti
les in the ele
tron FK model

possess the 
ommon 
hemi
al potential; this is absent

in the PEM. Besides, the term with transverse �eld S

x

i

whi
h is responsible for the own dynami
s in lo
alized

parti
le subsystem is absent in the FK model. It is evi-

dent that thermodynami
s of the PEM 
an have its own

spe
ial features and 
an in
lude the e�e
ts whi
h are not

presented in the FK model.

There is also an analogy between the simpli�ed PEM

(
 = 0) and the ele
tron Hamiltonian of the annealed

binary alloy model (see, for example [18℄), but in this


ase the models di�er in thermodynami
al regime (in

the PEM the �eld a
ting on pseudospins is �xed, while in

the alloy model the 
omponent 
on
entrations are given

whi
h 
orresponds to the �xed value of hS

z

i).

The aim of this work is the 
onsideration of thermo-

dynami
s of the simpli�ed (U = 0) PEM in the 
ase of

weak 
oupling, when the intera
tion 
onstant g is small

in 
omparison with the width of the ele
tron band 2W .

This 
ase has not 
ome under attention by now. Work

[13℄ 
an be mentioned only; it was shown there at the


onsideration of the PEM with U = 0, 
 = 0 in the

framework of the dynami
 mean �eld method that the

ele
tron band does not split when g

<

�

W . Most of the

previous works on the PEM thermodynami
s were 
ar-

ried out for the large g 
ase basing on the approa
hes

in whi
h the splitting in ele
tron spe
trum is taken into

a

ount. The 
onsideration was restri
ted to the 
ase of


 = 0; the presen
e of the transverse �eld 
S

z

i

leads to


ertain diÆ
ulties in the GRPA s
heme. In 
ontrast to

this we do not restri
t ourselves in the present investiga-

tion to the 
ase 
 = 0 only. The 
hanges in the band

spe
trum at the weak 
oupling with pseudospins and

presen
e of the tunneling (or pseudo-tunneling) splitting


an have signi�
ant in
uen
e on the phase transition pi
-

ture, modifying thermodynami
al 
riteria of the appear-

an
e of modulated phases. In this work the 
al
ulation of

the thermodynami
al fun
tions of the PEM with U = 0

and the investigation of the thermodynami
ally stable

states and phase transitions within the uniform phases

and into the modulated phase (with the doubling of a

latti
e period) are 
arried out.

II. THERMODYNAMICS

The investigation of the PEM in the weak 
oupling

approximation will be 
arried out here analogously to

the traditional 
onsideration of the weak one-site 
or-

relation U . In the 
ase U � W the Hartree{Fo
k ap-

proximation is applied, using the de
oupling Un

�

n

��

!

U [n

�

hn

��

i + n

��

hn

�

i � hn

�

ihn

��

i℄. It gives the possi-

bility to des
ribe satisfa
torily magneti
 properties of

the Hubbard model in the 
ase when the 
orrelational

splitting of the ele
tron band is absent (see, for example

[22,23℄) (su
h splitting takes pla
e when W < U and 
an

be des
ribed in the simplest way by using the Hubbard-

I approximation). At the intermediate 
orrelation ener-

gies (U � W ) the metal-insulator transition, at whi
h

the gap in the spe
trum dissapears at the de
rease of U ,

takes pla
e in the Hubbard model.

For the simpli�ed PEM with U = 0 the intera
tion


onstant g plays the role whi
h is similar to that of the

energy U in the Hubbard model. At the de
rease of the


onstant g below the 
riti
al value (g � W ) the system

should pass to the mean �eld regime of the Hartree{Fo
k

type.

Basing on the above mentioned arguments we use the

approximation

gn

i

S

z

i

! gn

i

hS

z

i

i + ghn

i

iS

z

i

� ghn

i

ihS

z

i

i; (2)

where the pseudospin-ele
tron intera
tion is taken into

a

ount in the spirit of the mean �eld approximation

(MFA) through an internal self-
onsistent �eld whi
h

a
ts on ele
trons and pseudospins.

In the following we will 
onsider two di�erent 
ases.

The �rst one is the 
ase of the uniform �eld, whi
h is the

same in all latti
e sites. This 
orresponds to the homo-

geneous pseudospin ordering and the spatially uniform

(independent on the site number) ele
tron 
on
entra-

tion. The se
ond one is the 
ase of modulation with dou-

bling of the latti
e period, with whi
h the 
orresponding


hanges of the mean values hS

z

i

i and hn

i

i are 
onne
ted.

A. Uniform phase

Let us 
onsider the uniform 
ase: h

P

�

n

i�

i = n,

hS

z

i

i = �. The Hamiltonian of the PEM in the MFA

is as follows:

H = H

el

+H

s

+ U; (3)

H
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=

X

i;�

(g� � �)n

i;�

+

X

i;j;�

t

i;j




y
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;

H

s
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X

i

[(gn� h)S

z

i
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S

x

i

℄; (4)

U = �g

X

i

n� = �Ngn�;

here N is the number of the latti
e sites. Passing to k-

representation and performing the transformation

S

z

i

= �

z

i


os � + �
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sin � =




�

; 
os � =

h� gn

�

;

� =

p

(gn � h)

2

+ 


2

(5)

we will diagonalize H

el

, H

s

:

H

el

=

X

k;�

(g� � �+ t

k

)n

k�

; (6)

H

s

= ��

X

i

�

z

i

;

here t

k

=

P

i�j

t

ij

e

ik(R

i

�R

j

)

. The ele
tron band E

k

=

g�+ t

k

in this 
ase 
hanges its position depending on the

average value of pseudospin �. Its displa
ement with re-

spe
t to the 
hemi
al potential level leads to the 
hange

of the ele
tron states o

upan
y and results in the 
hange

of the ele
tron 
on
entration. This in its turn in
uen
es

the value of the �eld a
ting on pseudospins and deter-

mining their mean value. This self-
onsistent 
onne
tion

is des
ribed by the following set of equations for the pa-

rameter � and ele
tron 
on
entration n:

n =

1

N

X

k�

(e

�(g�+t

k

��)

+ 1)

�1

�

1

N

X

k�

f(E

k

� �); (7)

� =

h� gn

2�

tanh

�

��

2

�

; � =

1

T

:

The grand 
anoni
al potential (per one latti
e site) in

the MFA is given by the expression

�

N

= �

T

N

X

k;�

ln

�

1 + e

(��t

k

�gn)=T

�

� T ln

�

2
osh

��

2

�

� gn�: (8)

From the point of view of thermodynami
al equilibrium

we 
an distinguish two regimes: (i) the 
onstant ele
tron


hemi
al potential; (ii) the given ele
tron 
on
entration

[6,9℄. Stable equilibrium states in the regime � = 
onst


an be found from the 
ondition of minimumof the grand


anoni
al potential � and in the regime n = 
onst they


an be found from the 
ondition of minimum of the free

energy F = �n+ �.

1. Regime � = 
onst

It should be noted that the set of equations (7) is in-

variant with respe
t to the transformation

�!��; h! 2g � h;

n! 2� n; � !��: (9)

In the symmetri
 
ase � = 0; h = g system (7) 
an be

transformed to the form:

� =

1

N

X

k

th

�

2

(t

k

+ g�);

� =

g

2�

� tanh

��

2

; (10)

where � = 1� n. The solution

� = 0; n = 1 (� = 0) (11)

exists at any temperatures and des
ribes disordered

phase. Besides this solution there appears at low tem-

peratures the non-zero solution � 6= 0, � 6= 0. A 
riti
al

temperature T




, whi
h in this 
ase 
orresponds to the

se
ond order phase transition point, is determined from

the equation:

1 +

g

2

2


tanh

�


2

�

0

= 0: (12)

Equation (12), whi
h is obtained by linearization of the

set of equations (7), in the 
ase 
 ! 0 redu
es to the

form:

1 +

�

4

g

2

�

0

= 0; (13)

Here

�

0

=

2

N

X

k

f

0

(t

k

) = 2

Z

W

�W

dt �(t)f

0

(t); (14)

where �(t) =

1

N

P

k

Æ(t � t

k

) is the density of ele
tron

states (DOS), 
onne
ted with the ele
tron transfer; the

fun
tion t

k


hanges in the interval [�W;W ℄. In the low

temperatures limit

�

0

= �2�(�)

�

�

�

�=0

; T




=

g

2

2

�(0); (15)

when the DOS at the Fermi level �(�) is �nite (that takes

pla
e for the three-dimensional latti
e or for the two-

dimensional latti
e when the re
tangular DOS �(t) =

1

2W

is used approximately). The real DOS for the two-

dimensional latti
e possesses the Van-Hove singularity

(see, for example [24℄)

�(t)

�

�

�

jtj�W

�

2

W�

2

ln

4W

jtj

(16)

whi
h leads instead of (15) to the expression

�

0

�

=

�

4

W�

2

ln

4We

2T

(17)
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and respe
tively to the equation for T




:

1 =

2g

2

�

2


W

tanh

�


2

ln

4We

2T

: (18)

The solutions of equation (12) as fun
tions of the intera
-

tion 
onstant at di�erent values of the transversal �eld

parameter 
 are presented in Fig. 1 (we 
onsider two


ases: (i) the 
ase when the dire
t momentum summa-

tion is used to 
al
ulate �

0

(it 
orresponds to the DOS

with the logarithmi
 singularity (16)) (ii) the 
ase when

we use the re
tangular state density). In our 
al
ulations

(here and in the following) we put W = 1.

Fig. 1. The dependen
e of the 
riti
al temperature on the

intera
tion 
onstant g. Thi
k (thin) lines refer to the 
ase

when the dire
t momentum summation (re
tangular DOS) is

used when 
al
ulating �

0

, respe
tively.

It is worth mentioning that at the absen
e of singular-

ity of the DOS there exists su
h a 
riti
al value





r

= g

2

�(0) (19)

(



r

=

g

2

2W

for the re
tangular DOS), above whi
h (at


 > 



r

) the phase transition to ordered phase disap-

pears. This is equivalent to the existen
e of a 
riti
al

value of g: at given 
 the phase transition is possible

when g > g


r

=

q




�(0)

. In the 
ase of the DOS with the

logarithmi
 singularity the 
riti
al temperature exists at

any 
 values and at




g

�

g

W

we have an asymptoti


expresssion:

T




�

4eW

2

exp

�

�
W�

2

2g

2

�

: (20)

The physi
al nature of the 
onsidered here phase transi-

tion at h = g; � = 0 (the �xed � regime) is the following:

the appearan
e of the ordered phase is 
onne
ted with its

stabilization due to the shift of the ele
tron band down

to the low energy values under the in
uen
e of the in-

ternal �eld; this ensures the 
orresponding gain in the

ele
tron energy.

This me
hanism remains the main reason of the phase

transition when the initial ele
tron band is not half-�lled.

In su
h a 
ase (when � 6= 0) we performed the investi-

gation using the numeri
al 
al
ulations when the set of

equations (7) is solved and using the expression (8) for

the grand 
anoni
al potential �. The sele
tion of the

solutions was 
arried out using the 
ondition of the ab-

solute minimum of �.

Fig. 2. The �eld dependen
e of the ele
tron 
on
entra-

tion, pseudospin mean value and grand 
anoni
al potential;

T = 0:008.
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The typi
al dependen
ies �(h); n(h);�(h) at 
ertain

temperature are shown in Fig. 2 (the 
ase � = W;
 = 0

is presented, re
tangular density of states was used).

Fig. 3. The ground state diagram (T = 0;
 = 0). Regions

with the di�erent n; � values are separated by the dashed

lines and the solid line (the phase transition line): (1) n = 0;

� = 1=2; (2) n = 0, � = 1=2; (3) � = 1=2, n = 1 +

�

W

�

g

2W

;

(4) � = �1=2, n = 1 +

�

W

+

g

2W

; (5) n = 2, � = �1=2; (6)

n = 2, � = 1=2.

Fig. 4. The (h; �) phase diagram (T = 0:004, 
 = 0:12).

Regions with di�erent n; � values are separated by dashed

lines and a solid line (the phase transition line):

(1) n � 0; � �

1

2

h

p

h

2

+


2

; (2) n � 2; � �

1

2

h�2g

p

(h�2g)

2

+


2

.

The system undergoes the �rst order phase transition

with jumps of the mean values of the ele
tron 
on
en-

tration and pseudospin at the 
hange of the �eld h, the

phase transition point is determined using the Maxwell

rule. The similar transition takes pla
e at the 
hange

of the 
hemi
al potential at �xed h. The dependen
es

n(h); �(h) in the 
ase 
 6= 0 are similar to that in the


ase 
 = 0, the presen
e of the tunneling-like splitting

de
reases the temperature of the phase transition at the

�xed values of � and h.

The regions of 
oexisten
e of phases with di�erent

values of the ele
tron 
on
entration and pseudospin are

shown in the plane (�; h) at 
 = 0 and 
 6= 0 in Figs. 3

and 4.

In the 
ase 
 = 0, T = 0 the phase transition line 
an

be found in the analyti
 form:

�W �

g

2

< � < �W +

g

2

: h =

g

2

2W

�

0:5 +

W

g

+

�

g

�

2

�W +

g

2

< � < W �

g

2

: h = g +

g

W

� (21)

W �

g

2

< � < W +

g

2

: h = 2g �

g

2

2W

�

0:5 +

W

g

�

�

g

�

2

:

In the 
ase 
 6= 0 numeri
al 
al
ulation is applied to

determine the phase transition line; in the regions (1),

(2) the ele
tron 
on
entration n is near (but not ex-

a
tly equal) to 0 or 2 respe
tively at low temperatures; at

T = 0 the phase transition takes pla
e for the following

values of the 
hemi
al potential:

�W �

g

2

s

1�

�

2
W

g

2

�

2

3

< � < W +

g

2

s

1�

�

2
W

g

2

�

2

3

:

(22)

Phase transition lines in the plane (T; h) at di�erent

values of � are shown in Fig. 5. Su
h line is verti
al for the


ase � = 0 only; for the 
ase � 6= 0 the line is bent. This

gives a possibility of the �rst order phase transition at

the 
hange of temperature (with the jumps of the param-

eters �; n). The slopes of the phase equilibrium 
urves are

opposite for � > 0 and � < 0. The lines of the 
riti
al

points, in whi
h the 
orresponding equilibrium 
urves at

di�erent � end, are shown for the 
ases 
 = 0;
 6= 0; the


al
ulations are 
arried out using re
tangular density of

states.

Fig. 5. The 
riti
al temperature lines (dashed lines) and

the phase transition lines (solid lines) for 
 = 0 and 
 = 0:1

(the 
ase of the re
tangular DOS).
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Similar phase diagrams were obtained using dire
t mo-

mentum summation for square latti
e (Fig. 6). As in

the previous 
ase the maximum 
riti
al temperature is

a
hieved at � = 0.

Fig. 6. The 
riti
al temperature lines on the a) (T; h),

b) (T; �) planes for 
 = 0 (dire
t momentum summation

is used).

2. Regime n = 
onst

The values n

1

; n

2

, �

1

; �

2

, betweeen whi
h the jumps of

the ele
tron 
on
entration and pseudospin mean value

take pla
e at the phase transitions in the � = 
onst

regime, 
orrespond to the phases whi
h 
oexist in the

phase transition points. In the regime n = 
onst the

phase separation on the phases with the above mentioned

values of n; � takes pla
e. The instability with respe
t

to phase separation is 
on�rmed by the des
ending be-

haviour of the 
hemi
al potential as a fun
tion of n in the


orresponding region of parameter values. It is shown in

Fig. 7, where the dependen
e of the band edges on the

ele
tron 
on
entration is depi
ted as well.

At the used parameter values (
 = 0; h = 0:7; T =

0:008) the system is unstable with respe
t to the phase

separation in the region n

1

= 1:149 < n < n

2

= 1:645.

The values n

1

and n

2


orrespond to the Maxwell rule.

Fig. 7. The dependen
e of the band edges and the 
hemi
al

potential on the ele
tron 
on
entration. T = 0:008, h = 0:7;


 = 0. (A and B denote the ele
tron band edges for phases

whi
h 
oexist in the phase separation region).

Fig. 8. (n; h)-phase diagram in the 
ases a) 
 = 0;

b) 
 = 0:1. Phase separation regions for di�erent temper-

atures are shown: a) 1 | T = 0:008, 2 | T = 0:08, 3

| T = 0:0972; b) 1 | T = 0:008, 2 | T = 0:075, 3 |

T = 0:0903:
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Phase separation regions are shown in Fig. 8 for di�er-

ent temperatures. The 
al
ulations were 
arried out for

square latti
e using dire
t momentum summation when

solving the set of equations (7). At the in
rease of tem-

perature the separation region narrows and at T > T




dissapears. This means that the system be
omes homoge-

neous. The presen
e of the tunneling-like splitting leads

to the de
rease of the area of phase separation region

and to the lowering of T




.

The analyti
 expression for the border lines of the

phase separation region 
an be obtained in the 
ase

T = 0, 
 = 0 and the re
tangular density of states:

0 < h <

g

2

2W

: n

0

= 0; n

00

=

r

2

W

h; (23)

g

2

2W

< h < 2g �

g

2

2W

: n

0

=

h

g

�

g

2W

; n

00

=

h

g

+

g

2W

;

2g �

g

2

2W

< h < 2g : n

0

= 2�

r

2

W

(2g � h); n

00

= 2:

Fig. 9. (n; h)-phase diagram in the 
ase 
 = 0, T = 0; the

re
tangular DOS is used.

The 
orresponding (n; h) phase separation diagram is

shown in Fig. 9.

It 
an be mentioned that at weak 
oupling we have

one phase separation region in the (n; h) plane while in

the strong 
oupling 
ase (g � W ) there exist two su
h

regions at the distan
e of order g along h axis; the mod-

ulated phase is intermediate between them [14℄.

B. The 
ase of the phase with double modulation

In the framework of the 
arried out above investiga-

tion the phase transitions between phases with the uni-

form ordering (whi
h are 
hara
terized by the di�erent

values of n, �) in the 
ase of weak 
oupling were 
on-

sidered. As in the 
ase g � W the e�e
tive intera
tion

between pseudospins (or ele
trons) whi
h is formed by

the dire
t pseudospin-ele
tron 
oupling lies at the ba-

sis of su
h transitions. This intera
tion, as it is shown

in [14℄, 
an result in the appearan
e of the modulated

phase with doubling of the initial latti
e period at the

large values of the 
onstant g (when the 
hemi
al poten-

tial is lo
ated between the split due to the intera
tion

subbands). Let us 
onsider su
h possibility for the 
ase

of weak 
oupling (g < W ), whi
h is the subje
t of our

investigation.

At the double modulation of the latti
e period the


rystal is divided into two sublatti
es. We introdu
e the

notations: �

�

= hS

z

i�

i; n

�

=

P

�

hn

i��

i (� = 1; 2 is the

sublatti
e index), i is an elementary 
ell index. Similarly

to the 
ase of the homogeneous phase we use the mean

�eld approximation and write the Hamiltonian in the

form

H = H

el

+H

s

+ U; (24)

H

el

=

X

i��

(g�

�

� �)n

i��

+

X

i�;j�

t

��

ij




y

i��




j��

;

H

s

=

X

i;�

h

(gn

�

� h)S

z

i�

+ 
S

x

i�

i

;

U = �g

X

i�

n

�

�

�

:

Passing to k-representation and doing an unitary trans-

formation




k

1

�

= 
os �~


k

1

�

+ sin �~


k

2

�

; (25)




k

2

�

= � sin �~


k

1

�

+ 
os �~


k

2

�

;

sin 2� =

t

k

q

(g

�

1

��

2

2

)

2

+ t

2

k

; 
os 2� =

�g

�

1

��

2

2

q

(g

�

1

��

2

2

)

2

+ t

2

k

;

t

11

k

= t

22

k

= 0; t

k

= t

12

k

= t

21

k

=

X

i�j

t

12

ij

e

ik(R

i1

�Rj2

)

we will diagonalize H

el

:

H

el

=

X

��k

(�

k�

� �)~n

k��

; (26)

�

k�

= g

�

1

+ �

2

2

+ (�1)

�

s

�

g

�

1

� �

2

2

�

2

+ t

2

k

:

Similarly to (5) we will diagonalize H

s

:

H

s

= �

X

i�

~

�

�

�

z

i�

;

~

�

�

=

p

(gn

�

� h

2

) + 


2

: (27)

Double modulation leads to the splitting in the ele
-

tron spe
trum due to the di�eren
e between the internal
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�elds, a
ting in sublatti
es (the similar e�e
t takes pla
e

in the FK model [19℄). The initial band is divided into

two subbands separated by the gap � = gj�

1

� �

2

j (see

Fig. 10).

band edges

T<T*
cT>T*

c

1/2g|η1-η2|

-1/2g|η1-η2|

-[(1/2g(η1-η2))
2+W2]1/2

[(1/2g(η1-η2))
2+W2]1/2

µ=0

-W

W

Fig. 10. The band edges for the 
ases T > T

�




(homo-

geneous phase) and T < T

�




(the double modulation 
ase);

� = 0; h = g.

Contributions from both sublatti
es are present in the

equation for the ele
tron 
on
entration in sublatti
es

n

�

=

1

N=2

X

k�

 

1 + 
os 2�

2

�

e

��

k�

��

+ 1

�

�1

+

1� 
os 2�

2

�

e

��

k�

��

+ 1

�

�1

!

; (28)

whi
h is obtained using (24){(27). Another equation

whi
h appears as a result of the averaging of the operator

S

z

i�

has the form

�

�

=

h � gn

�

2

~

�

�

tanh

 

�

~

�

�

2

!

; � 6= �: (29)

The equations (28) and (29) form the system whi
h plays

role similar to the set of equations (7) for the uniform


ase. The grand 
anoni
al potential for the double mod-

ulation 
ase 
an be written as follows:

2�

N

= �

T

N

X

k

ln

�

1 + e

�

�

k1

��

T

��

1 + e

�

�

k2

��

T

�

(30)

� T ln

 

4 
h

�

~

�

1

2


h

�

~

�

2

2

!

� g(n

1

�

1

+ n

2

�

2

):

Solution of the obtained equation system (28) and (29)

and investigation of the thermodynami
ally stable states

was 
arried out numeri
ally. It is established that phase

transitions from the uniform to the low-temperature

modulated phase 
an be of the se
ond or the �rst order.

It is illustrated in Fig. 11, where the phase transition

lines at � = 0 in the 
ases 
 = 0 and 
 6= 0 are shown

(dire
t momentum summation is used for 
al
ulating the

right hand sides of equations (28) and (30)).

The 
hange of the phase transition order at the motion

along the phase equilibrium 
urve is shown in Fig. 12,

where the jump of the ele
tron 
on
entration Æn

0

=

n

0

1

� n

0

2

in the transition point as a fun
tion of tempera-

ture is shown. The region where Æn

0

= 0 
orresponds to

the se
ond order phase transition (solid lines in Figs. 11

and 12), the region Æn

0

6= 0 
orresponds to the �rst order

phase trasition (dashed lines in Figs. 11 and 12.)

Fig. 11. The phase transition lines (solid and dashed lines

are the lines of the se
ond and the �rst order phase transi-

tions, respe
tively) from the uniform phase to the phase with

double modulation (1 | 
 = 0, 2 | 
 = 0:2).

Fig. 12. The temperature dependen
e of the di�eren
e

Æn

0

= n

0

1

� n

0

2

along the phase transition line (
 = 0).

The di�eren
e Æn = n

1

� n

2

(as well as the di�eren
e

Æ� = �

1

� �

2

) 
an play a role of the order parameter for

modulated phase. Coming from equations (28) and (29),

we 
an write the equations for Æn and Æ� and separate

after that the 
ontributions of the �rst order:

Æn = �

2

N

P

0

�k

g

2t

k

Æ�

h

(e

�(g��t

k

��)

+ 1)

�1
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� (e

�(g�+t

k

��)

+ 1)

�1

i

; (31)

Æ� =

(h� gn)

2

2�

2

g Æn

�

1

4

� h�

z

i

2

�

��gÆnh�

z

i




2

�

3

; (32)

h�

z

i =

1

2

tanh

��

2

; n =

n

1

+ n

2

2

; � =

�

1

+ �

2

2

:

Here

P

0

�k

denotes the summation over the wave ve
tor

within the redu
ed Brillouin zone (when the 
ondition

jk

x

j+ jk

y

j �

�

a

, a is a latti
e 
onstant, is ful�lled). From

the equations (31) and (32) we obtain the following 
on-

dition of the appearan
e of nonzero solutions for Æn and

Æ�:

1 =

g

N

X

k�

1

t

k

(e

�(g��t

k

��)+1

)

�1

�

�

�g

(h � gn)

2

�

2

�

1

4

� h�

z

i

2

�

+ gh�

z

i




2

�

3

�

(33)

(here the summation is 
arried out within the full Bril-

louin zone, whi
h 
orresponds to the initial latti
e).

Pro
eeding from equation (33), we 
an �nd a 
riti
al

temperature T

�




as the maximum temperature (among

the set of temperatures whi
h are obtained for the dif-

ferent h values) whi
h ful�ls this equation at the �xed

value of the 
hemi
al potential. This temperature is the

point of the se
ond order phase transition to modulated

phase at the 
orresponding value of the �eld h. Fig. 13

shows the dependen
es of the 
riti
al temperature T

�




on

the 
hemi
al potential in the 
ases 
 = 0 and 
 6= 0.

With the aim of 
omparison there are also shown in

these �gures the 
orresponding 
urves for the 
riti
al

temperature T




, whi
h des
ribes the transitions between

the homogeneous phases (Fig. 6b). It is easy to see that

T

�




> T




for the � values, whi
h are less than the 
ertain

value (j�j < �

0

; �

0

� 0:4 in Fig. 13). Su
h 
ondition is

ful�lled for the ele
tron band o

upation, whi
h is 
lose

to half-�lling 
ase. In this region the transition to modu-

lated phase at the de
rease of temperature o

urs sooner

than the des
ribed in paragraph II.A transition between

the uniform phases; the last transition is realized when

j�j > �

0

.

Let us 
onsider in more detail the situation in the sym-

metri
 
ase � = 0; h = g, when in the high-temperature

phase n = 1; � = 0. Equation (33) redu
es now to the

form

1 = �

g

2




tanh

�


2

1

N

X

k�

1

t

k

f(t

k

): (34)

At the density of states �(t) whi
h is �nite at t = 0, in

parti
ular at the re
tangular DOS �(t) =

1

2W

, equation

(34) in the low temperature region be
omes

1 =

g

2




tanh

�


2

1

2W

ln

eW

2T

; (35)

Fig. 13. The dependen
e of the 
riti
al temperature on the


hemi
al potential; a) 
 = 0, b) 
 = 0:1. Solid line refers to

the 
ase of the phase with double modulation, dashed line

refers to the transition into the homogeneous phase.

while at the presen
e of logarithmi
 singularity (16) we

have the following equation:

1 =

g

2




tanh

�


2

2

�

2

W

�

ln

2W

T

�

2

: (36)

The 
riti
al temperatures T

�




, obtained in these both


ases are higher than the 
orresponding temperatures

T




((15) and (20)) for the transitions between uniform

phases. At high 
 values T

�




remains �nite:

T

�




�

We

2

exp

�

�

2
W

g

2

�

(37)

for the re
tangular DOS

�

or T

�




�

W

2

exp(�


W�

2

2g

2

) in the


ase of the semi-ellipti
 DOS �(t)=

2

W

2

�

2

p

W

2

� t

2

�

and
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T

�




� 2W exp

 

�

�

p


W

g

p

2

!

(38)

in the 
ase of the DOS with logarithmi
 singularity.

III. CONCLUSIONS

The pseudospin-ele
tron model is investigated in the

work in the weak 
oupling 
ase (g �W ), when the ele
-

tron band remains unsplit in the uniform state. The ther-

modynami
ally equilibrium states of the system are 
on-

sidered in the two regimes: the given 
hemi
al potential

of ele
trons or the 
onstant value of the ele
tron 
on
en-

tration. In the � = 
onst regime the �rst order phase

transitions between uniform phases (with the jumps of

the ele
tron 
on
entration and pseudospin value) take

pla
e in the system when the 
hemi
al potential is pla
ed

within the ele
tron band near its edges. In the 
ase when

� is near the 
entre of the band, the phase with the dou-

bling of the latti
e period (the 
hess-board phase) 
an ap-

pear in the system at the lowering of temperature. The

transition between the modulated and uniform phases


an be of the �rst as well as of the se
ond order depend-

ing on the magnitude of the �eld h a
ting on pseudospins.

For the n = 
onst regime the 
onditions of the appear-

an
e of the phase separation in the region of the phase

transitions between uniform phases are established.

The obtained results, in general, are in a

ordan
e

with the data of similar investigations for the Fali
ov{

Kimball model at the small values of the 
oupling 
on-

stant des
ribing the intera
tion between the moving and

lo
alized parti
les (ele
trons). In [18,19,21℄ the possibil-

ity of transitions into modulated or phase segregated

phases was studied depending on the value of the mean

ele
tron 
on
entration. It was shown that at small val-

ues of n the phase separation 
an be realized, while near

half-�llingof the band the 
hess-board phase is preferable

and, at last, at intermediate values of n the appearan
e

of phase with a non
ommensurate modulation is possi-

ble. The transitions into this or that phase was �xed by

the divergen
es of the 
orresponding sus
eptibilities (it

should be mentioned in this 
onne
tion that the usage of

a su
h pro
edure did not give to the authors a possibil-

ity to reveal the thermodynami
ally stable states in the

regions where the instabilities of either type (at q = 0

and q = (�=a; �=a; : : :)) are superimposed; this problem


an be solved basing on the analysis of the behaviour of

the grand 
anoni
al potential).

There exist, however, essential distin
tions as 
om-

pared with the results obtained for the FK model. Firstly,

in papers [17,18,20,21℄ the regime of the �xed 
on
entra-

tion of lo
alized parti
les was used (it 
orresponds in

the 
ase of the PEM to the �xation of the average value

hS

z

i). Su
h a 
ondition 
an lead to the phase separation

by itself. Se
ondly, in 
ontradi
tion to the FK model we

take into a

ount in the PEM the tunneling-like split-

ting. Besides the general de
rease of the phase transition

temperatures and narrowing of the segregation regions,

its role manifests itself in the very 
onditions of the real-

ization of phase transitions depending on the form of the

density of ele
tron states. In the 
ases when the ele
tron

DOS is �nite at half-�lling (does not possess a logarith-

mi
 singularity, that is 
hara
teristi
 of the d = 2 spa
e

dimensionality) there exist su
h threshold values 



r

and

g


r

that at 
 > 



r

or g < g


r

the phase transitions into

segregated phases disappear.

Though the phase transitions in the PEM at weak 
ou-

pling are similar to that revealed in this model in the 
ase

of the strong intera
tion, g �W [14℄, the physi
al me
h-

anisms of transitions are to a greater extent distin
t. In

the 
ase of strong 
oupling the ele
tron spe
trum is al-

ways split due the to one-site intera
tion and the me
h-

anism whi
h ensures the advantage of the transition into

the modulated phase or between the uniform ones is 
on-

ne
ted with the opposite in its 
hara
ter re
onstru
tion

of the ele
tron spe
trum in subbands and with the 
orre-

sponding redistribution of the ele
tron density of states

between them. On the other hand, at the weak 
oupling

a new phase whi
h appears at the transition between

uniform phases stabilizes due to the shift of the ele
tron

band as a whole, while the phase with a double modu-

lation appears due to the energy gain at the splitting of

the initial band at the Fermi level (the e�e
t is similar to

the Peierls instability at the intera
tion with phonons).

Besides that, the dependen
es of the 
riti
al tempera-

tures on the 
oupling 
onstant g are di�erent in both


ases: at g � W T




(or T

�




) is proportional to g

2

, while

at g �W the 
riti
al temperatures de
rease (�

1

g

) when

g in
reases (su
h a type of behaviour of T

�




for the FK

model was obtained in [17℄).

Let us mention that in the framework of the applied

thermodynamo
al approa
h we have performed the in-

vestigation of the phase transitions into uniform and


hess-board phases only. Su
h transitions are 
onne
ted

with the instabilities des
ribed by divergen
ies of sus
ep-

tibilities �(0) =

dn

d�

and �(Q) where Q = (�=a; �=a; : : :).

The 
onsideration of orderings of another type (in
lud-

ing the in
ommensurate ones) 
an be based on the in-

vestigation of singularities of the �(q) fun
tion at any q

value (the sus
eptibility �(q) 
an be expressed in terms

of the 
orrelators hTS

z

i

S

z

j

i or hTn

i

n

j

i). The 
orrespond-

ing investigation will be the subje
t of our subsequent


onsideration.
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FAZOV� PEREHODI U PSEVDOSP�N-ELEKTRONN�� MODEL�

PRI SLABK�� VZA�MOD�Õ

�. V. Stas�k, T. S. Misakoviq

�nstitut f�ziki kondensovanih sistem Na
�onal~noÝ akadem�Ý nauk UkraÝni,

vul. Sv
n
�
~kogo, 1, L~v�v, 79011, UkraÝna

E-mail: ista�i
mp.lviv.ua

Dosl�d�eno termodinam�qno r�vnova�n� stani ta fazov� perehodi u psevdosp�n-elektronn�� model� z

popereqnim polem u nabli�enn� slabkogo zv'�zku. U re�im� post��nogo hem�qnogo poten
��lu vstanovleno

mo�liv�st~, zale�no v�d znaqenn� �, perehod�v perxogo rodu m�� odnor�dnimi fazami ta perxogo abo dru-

gogo rodu do fazi z podvo
nn�m per�odu kristal�qnoÝ �ratki. Proanal�zovano umovi viniknenn� v sistem�

fazovogo rozxaruvann� pri zadan�� seredn�� elektronn�� kon
entra
�Ý. Vivqeno tako� vpliv popereqnogo

pol� (�ke pov'�zane z rozweplenn�m tunel~nogo tipu) na fazov� perehodi ta umovi Ýh real�za
�Ý. Pobudo-

vano fazov� d��grami pri r�znih gustinah elektronnih stan�v u zon� prov�dnosti.
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