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The thermodynamially equilibrium states and phase transitions in the pseudospin-eletron

model with the transverse �eld are studied in the weak oupling approximation. In the regime of

the onstant hemial potential the possibility of the �rst-order phase transitions between uniform

phases as well as the �rst- or the seond-order transitions into phase with the doubled lattie

period is established depending on the value of �. The onditions of appearane of the phase

separation in the system at the given average eletron onentration are analysed. The inuene of

the transverse �eld (whih is onneted with the tunneling-like splitting) on the phase transitions

and the onditions of their realization is also studied in the paper. The phase diagrams are built at

the various eletron densities of states in the ondution band.
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I. INTRODUCTION

The pseudospin-eletron model (PEM) is one of the

models whih were formulated in reent times and are

intensively investigated in the theory of the strongly or-

related eletron systems. This model appeared in on-

netion with the investigation of the role of the loally

anharmoni struture elements in the high temperature

superondutors (HTSC) in the formation of their ele-

tron spetrum and in the pairing orrelations whih lead

to the appearane of the superonduting state. Anhar-

moniity of the vibrations of ions from ertain sublatties

is desribed in the model with the help of pseudospin for-

malism; in the ase S =

1

2

two lowest vibrational states

in the anharmoni potential well are taken into aount

only.

At the standard formulation of the PEM the ele-

tron subsystem is desribed by the Hubbard Hamilto-

nian whereas the interation of eletrons with anhar-

moni subsystem is aused by the inuene of the in-

ternal �eld depending on the pseudospin orientations.

The model Hamiltonian inludes the eletron transfer (t-

term), eletron orrelation(U -term), pseudospin-eletron

interation (g-term); energy of the tunneling-like split-

ting of loal levels (
-term) and asymmetry of the loal

anharmoni potential (h-term) are also taken into a-

ount [1{4℄:
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The investigations of this model in reent years were

onerned with the analysis of the struture of the ele-

tron spetrum with an allowane for the strong short

range orrelations [5℄, to the investigation of the harge

and pseudospin orrelations and dieletri suseptibility

[6,7℄ as well as pair orrelations of the superundut-

ing type [3℄. Di�erent aspets of the PEM thermody-

namis (in partiular, equilibrium and metastable states

and bistability phenomena [8℄, phase transitions between

states with di�erent pseudospin orientation and eletron

onentration in the regime of the �xed eletron hemial

potential [9℄, transitions into the phase separated states

at the given value of the average eletron onentration

[10℄) were the subjet of attention too. Atuality of suh

investigations for HTSC objets is onneted in partiu-

lar with the problem of genesis of the rystal struture

inhomogeneities (see, for example [11℄) or the so alled

stripe strutures [12℄ in these systems.

The simpli�ed PEM (at 
 = 0 and t = 0, but with

the inlusion of the diret pseudospin-pseudospin inter-

ation) was the subjet of onsideration in [9℄. The possi-

bility of the �rst order phase transitions between uniform

states with the jumps of the pseudospin mean value as

well as of the phase separation were revealed. Similar re-

sults were obtained for the ase t 6= 0, 
 = 0 at the large

values of the interation onstant g both in the limit

U ! 1 [13℄ and for the simpli�ed variant of the model

at U = 0 [14℄; the last onsideration was arried out

in the framework of the thermodynamially onsistent

sheme of the generalized random phase approximation

(GRPA) [15℄. The possibility of the appearane of the

modulated (the so-alled hess-board) phase was shown

for the simpli�ed PEM (U = 0, 
 = 0) in the ase of

strong oupling (g � W , W is a half width of the ele-

tron energy band). Phase diagrams whih desribe tran-

sitions between homogeneous and modulated phases at

the hange of the �eld h, the eletron hemial potential

� and the temperature T were built.

It should be noted that the PEM has ertain similarity

to the known in literature and intensively investigated in

reent times Faliov{Kimball (FK) model [16℄, in whih

268



PHASE TRANSITIONS IN PSEUDOSPIN-ELECTRON MODEL AT WEAK COUPLING

the interation of loalized and moving eletrons is taken

into aount. The mentioned model is a simpli�ed variant

of the Hubbard model and is used at the investigations

of the mentioned above spatial inhomogeneities in the

systems with the strongly orrelated eletrons. The va-

riety of homogeneous and modulated phases, transitions

between them, the possibility of the phase separations is

harateristi of the Faliov{Kimball model [17{21℄. In

omparison with the PEM there exists, however, a dif-

ferene in the regime of thermodynamial averaging. Lo-

alized and moving partiles in the eletron FK model

possess the ommon hemial potential; this is absent

in the PEM. Besides, the term with transverse �eld S

x

i

whih is responsible for the own dynamis in loalized

partile subsystem is absent in the FK model. It is evi-

dent that thermodynamis of the PEM an have its own

speial features and an inlude the e�ets whih are not

presented in the FK model.

There is also an analogy between the simpli�ed PEM

(
 = 0) and the eletron Hamiltonian of the annealed

binary alloy model (see, for example [18℄), but in this

ase the models di�er in thermodynamial regime (in

the PEM the �eld ating on pseudospins is �xed, while in

the alloy model the omponent onentrations are given

whih orresponds to the �xed value of hS

z

i).

The aim of this work is the onsideration of thermo-

dynamis of the simpli�ed (U = 0) PEM in the ase of

weak oupling, when the interation onstant g is small

in omparison with the width of the eletron band 2W .

This ase has not ome under attention by now. Work

[13℄ an be mentioned only; it was shown there at the

onsideration of the PEM with U = 0, 
 = 0 in the

framework of the dynami mean �eld method that the

eletron band does not split when g

<

�

W . Most of the

previous works on the PEM thermodynamis were ar-

ried out for the large g ase basing on the approahes

in whih the splitting in eletron spetrum is taken into

aount. The onsideration was restrited to the ase of


 = 0; the presene of the transverse �eld 
S

z

i

leads to

ertain diÆulties in the GRPA sheme. In ontrast to

this we do not restrit ourselves in the present investiga-

tion to the ase 
 = 0 only. The hanges in the band

spetrum at the weak oupling with pseudospins and

presene of the tunneling (or pseudo-tunneling) splitting

an have signi�ant inuene on the phase transition pi-

ture, modifying thermodynamial riteria of the appear-

ane of modulated phases. In this work the alulation of

the thermodynamial funtions of the PEM with U = 0

and the investigation of the thermodynamially stable

states and phase transitions within the uniform phases

and into the modulated phase (with the doubling of a

lattie period) are arried out.

II. THERMODYNAMICS

The investigation of the PEM in the weak oupling

approximation will be arried out here analogously to

the traditional onsideration of the weak one-site or-

relation U . In the ase U � W the Hartree{Fok ap-

proximation is applied, using the deoupling Un

�

n

��

!

U [n

�

hn

��

i + n

��

hn

�

i � hn

�

ihn

��

i℄. It gives the possi-

bility to desribe satisfatorily magneti properties of

the Hubbard model in the ase when the orrelational

splitting of the eletron band is absent (see, for example

[22,23℄) (suh splitting takes plae when W < U and an

be desribed in the simplest way by using the Hubbard-

I approximation). At the intermediate orrelation ener-

gies (U � W ) the metal-insulator transition, at whih

the gap in the spetrum dissapears at the derease of U ,

takes plae in the Hubbard model.

For the simpli�ed PEM with U = 0 the interation

onstant g plays the role whih is similar to that of the

energy U in the Hubbard model. At the derease of the

onstant g below the ritial value (g � W ) the system

should pass to the mean �eld regime of the Hartree{Fok

type.

Basing on the above mentioned arguments we use the

approximation

gn
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where the pseudospin-eletron interation is taken into

aount in the spirit of the mean �eld approximation

(MFA) through an internal self-onsistent �eld whih

ats on eletrons and pseudospins.

In the following we will onsider two di�erent ases.

The �rst one is the ase of the uniform �eld, whih is the

same in all lattie sites. This orresponds to the homo-

geneous pseudospin ordering and the spatially uniform

(independent on the site number) eletron onentra-

tion. The seond one is the ase of modulation with dou-

bling of the lattie period, with whih the orresponding

hanges of the mean values hS

z

i

i and hn

i

i are onneted.

A. Uniform phase

Let us onsider the uniform ase: h

P

�

n

i�

i = n,

hS

z

i

i = �. The Hamiltonian of the PEM in the MFA

is as follows:

H = H

el

+H

s

+ U; (3)
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U = �g

X

i

n� = �Ngn�;

here N is the number of the lattie sites. Passing to k-

representation and performing the transformation
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sin � =




�

; os � =

h� gn

�

;

� =

p

(gn � h)

2

+ 


2

(5)

we will diagonalize H

el

, H

s

:

H
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=

X

k;�
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k
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)

. The eletron band E

k

=

g�+ t

k

in this ase hanges its position depending on the

average value of pseudospin �. Its displaement with re-

spet to the hemial potential level leads to the hange

of the eletron states oupany and results in the hange

of the eletron onentration. This in its turn inuenes

the value of the �eld ating on pseudospins and deter-

mining their mean value. This self-onsistent onnetion

is desribed by the following set of equations for the pa-

rameter � and eletron onentration n:

n =

1

N

X

k�
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1

N
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h� gn

2�

tanh

�

��

2

�
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T

:

The grand anonial potential (per one lattie site) in

the MFA is given by the expression

�

N
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T

N
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�
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�
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2

�
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From the point of view of thermodynamial equilibrium

we an distinguish two regimes: (i) the onstant eletron

hemial potential; (ii) the given eletron onentration

[6,9℄. Stable equilibrium states in the regime � = onst

an be found from the ondition of minimumof the grand

anonial potential � and in the regime n = onst they

an be found from the ondition of minimum of the free

energy F = �n+ �.

1. Regime � = onst

It should be noted that the set of equations (7) is in-

variant with respet to the transformation

�!��; h! 2g � h;

n! 2� n; � !��: (9)

In the symmetri ase � = 0; h = g system (7) an be

transformed to the form:

� =

1

N

X

k

th

�

2

(t

k

+ g�);

� =

g

2�

� tanh
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2

; (10)

where � = 1� n. The solution

� = 0; n = 1 (� = 0) (11)

exists at any temperatures and desribes disordered

phase. Besides this solution there appears at low tem-

peratures the non-zero solution � 6= 0, � 6= 0. A ritial

temperature T



, whih in this ase orresponds to the

seond order phase transition point, is determined from

the equation:

1 +

g

2

2


tanh

�


2

�

0

= 0: (12)

Equation (12), whih is obtained by linearization of the

set of equations (7), in the ase 
 ! 0 redues to the

form:

1 +

�

4

g

2

�

0

= 0; (13)

Here

�

0
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2

N

X

k

f

0
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k

) = 2

Z

W

�W

dt �(t)f

0

(t); (14)

where �(t) =

1

N

P

k

Æ(t � t

k

) is the density of eletron

states (DOS), onneted with the eletron transfer; the

funtion t

k

hanges in the interval [�W;W ℄. In the low

temperatures limit

�

0

= �2�(�)

�

�

�

�=0

; T



=

g

2

2

�(0); (15)

when the DOS at the Fermi level �(�) is �nite (that takes

plae for the three-dimensional lattie or for the two-

dimensional lattie when the retangular DOS �(t) =

1

2W

is used approximately). The real DOS for the two-

dimensional lattie possesses the Van-Hove singularity

(see, for example [24℄)

�(t)

�

�

�

jtj�W

�

2

W�

2

ln
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whih leads instead of (15) to the expression
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and respetively to the equation for T



:

1 =

2g

2

�

2


W

tanh

�


2

ln

4We

2T

: (18)

The solutions of equation (12) as funtions of the intera-

tion onstant at di�erent values of the transversal �eld

parameter 
 are presented in Fig. 1 (we onsider two

ases: (i) the ase when the diret momentum summa-

tion is used to alulate �

0

(it orresponds to the DOS

with the logarithmi singularity (16)) (ii) the ase when

we use the retangular state density). In our alulations

(here and in the following) we put W = 1.

Fig. 1. The dependene of the ritial temperature on the

interation onstant g. Thik (thin) lines refer to the ase

when the diret momentum summation (retangular DOS) is

used when alulating �

0

, respetively.

It is worth mentioning that at the absene of singular-

ity of the DOS there exists suh a ritial value




r

= g

2

�(0) (19)

(


r

=

g

2

2W

for the retangular DOS), above whih (at


 > 


r

) the phase transition to ordered phase disap-

pears. This is equivalent to the existene of a ritial

value of g: at given 
 the phase transition is possible

when g > g

r

=

q




�(0)

. In the ase of the DOS with the

logarithmi singularity the ritial temperature exists at

any 
 values and at




g

�

g

W

we have an asymptoti

expresssion:

T



�

4eW

2

exp

�

�
W�

2

2g

2

�

: (20)

The physial nature of the onsidered here phase transi-

tion at h = g; � = 0 (the �xed � regime) is the following:

the appearane of the ordered phase is onneted with its

stabilization due to the shift of the eletron band down

to the low energy values under the inuene of the in-

ternal �eld; this ensures the orresponding gain in the

eletron energy.

This mehanism remains the main reason of the phase

transition when the initial eletron band is not half-�lled.

In suh a ase (when � 6= 0) we performed the investi-

gation using the numerial alulations when the set of

equations (7) is solved and using the expression (8) for

the grand anonial potential �. The seletion of the

solutions was arried out using the ondition of the ab-

solute minimum of �.

Fig. 2. The �eld dependene of the eletron onentra-

tion, pseudospin mean value and grand anonial potential;

T = 0:008.
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The typial dependenies �(h); n(h);�(h) at ertain

temperature are shown in Fig. 2 (the ase � = W;
 = 0

is presented, retangular density of states was used).

Fig. 3. The ground state diagram (T = 0;
 = 0). Regions

with the di�erent n; � values are separated by the dashed

lines and the solid line (the phase transition line): (1) n = 0;

� = 1=2; (2) n = 0, � = 1=2; (3) � = 1=2, n = 1 +

�

W

�

g

2W

;

(4) � = �1=2, n = 1 +

�

W

+

g

2W

; (5) n = 2, � = �1=2; (6)

n = 2, � = 1=2.

Fig. 4. The (h; �) phase diagram (T = 0:004, 
 = 0:12).

Regions with di�erent n; � values are separated by dashed

lines and a solid line (the phase transition line):

(1) n � 0; � �

1

2

h

p

h

2

+


2

; (2) n � 2; � �

1

2

h�2g

p

(h�2g)

2

+


2

.

The system undergoes the �rst order phase transition

with jumps of the mean values of the eletron onen-

tration and pseudospin at the hange of the �eld h, the

phase transition point is determined using the Maxwell

rule. The similar transition takes plae at the hange

of the hemial potential at �xed h. The dependenes

n(h); �(h) in the ase 
 6= 0 are similar to that in the

ase 
 = 0, the presene of the tunneling-like splitting

dereases the temperature of the phase transition at the

�xed values of � and h.

The regions of oexistene of phases with di�erent

values of the eletron onentration and pseudospin are

shown in the plane (�; h) at 
 = 0 and 
 6= 0 in Figs. 3

and 4.

In the ase 
 = 0, T = 0 the phase transition line an

be found in the analyti form:

�W �

g

2

< � < �W +

g

2

: h =

g

2

2W

�

0:5 +

W

g

+

�

g

�

2

�W +

g

2

< � < W �

g

2

: h = g +

g

W

� (21)

W �

g

2

< � < W +

g

2

: h = 2g �

g

2

2W

�

0:5 +

W

g

�

�

g

�

2

:

In the ase 
 6= 0 numerial alulation is applied to

determine the phase transition line; in the regions (1),

(2) the eletron onentration n is near (but not ex-

atly equal) to 0 or 2 respetively at low temperatures; at

T = 0 the phase transition takes plae for the following

values of the hemial potential:

�W �

g

2

s

1�

�

2
W

g

2

�

2

3

< � < W +

g

2

s

1�

�

2
W

g

2

�

2

3

:

(22)

Phase transition lines in the plane (T; h) at di�erent

values of � are shown in Fig. 5. Suh line is vertial for the

ase � = 0 only; for the ase � 6= 0 the line is bent. This

gives a possibility of the �rst order phase transition at

the hange of temperature (with the jumps of the param-

eters �; n). The slopes of the phase equilibrium urves are

opposite for � > 0 and � < 0. The lines of the ritial

points, in whih the orresponding equilibrium urves at

di�erent � end, are shown for the ases 
 = 0;
 6= 0; the

alulations are arried out using retangular density of

states.

Fig. 5. The ritial temperature lines (dashed lines) and

the phase transition lines (solid lines) for 
 = 0 and 
 = 0:1

(the ase of the retangular DOS).
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Similar phase diagrams were obtained using diret mo-

mentum summation for square lattie (Fig. 6). As in

the previous ase the maximum ritial temperature is

ahieved at � = 0.

Fig. 6. The ritial temperature lines on the a) (T; h),

b) (T; �) planes for 
 = 0 (diret momentum summation

is used).

2. Regime n = onst

The values n

1

; n

2

, �

1

; �

2

, betweeen whih the jumps of

the eletron onentration and pseudospin mean value

take plae at the phase transitions in the � = onst

regime, orrespond to the phases whih oexist in the

phase transition points. In the regime n = onst the

phase separation on the phases with the above mentioned

values of n; � takes plae. The instability with respet

to phase separation is on�rmed by the desending be-

haviour of the hemial potential as a funtion of n in the

orresponding region of parameter values. It is shown in

Fig. 7, where the dependene of the band edges on the

eletron onentration is depited as well.

At the used parameter values (
 = 0; h = 0:7; T =

0:008) the system is unstable with respet to the phase

separation in the region n

1

= 1:149 < n < n

2

= 1:645.

The values n

1

and n

2

orrespond to the Maxwell rule.

Fig. 7. The dependene of the band edges and the hemial

potential on the eletron onentration. T = 0:008, h = 0:7;


 = 0. (A and B denote the eletron band edges for phases

whih oexist in the phase separation region).

Fig. 8. (n; h)-phase diagram in the ases a) 
 = 0;

b) 
 = 0:1. Phase separation regions for di�erent temper-

atures are shown: a) 1 | T = 0:008, 2 | T = 0:08, 3

| T = 0:0972; b) 1 | T = 0:008, 2 | T = 0:075, 3 |

T = 0:0903:
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Phase separation regions are shown in Fig. 8 for di�er-

ent temperatures. The alulations were arried out for

square lattie using diret momentum summation when

solving the set of equations (7). At the inrease of tem-

perature the separation region narrows and at T > T



dissapears. This means that the system beomes homoge-

neous. The presene of the tunneling-like splitting leads

to the derease of the area of phase separation region

and to the lowering of T



.

The analyti expression for the border lines of the

phase separation region an be obtained in the ase

T = 0, 
 = 0 and the retangular density of states:

0 < h <

g

2

2W

: n

0

= 0; n

00

=

r

2

W

h; (23)

g

2

2W

< h < 2g �

g

2

2W

: n

0

=

h

g

�

g

2W

; n

00

=

h

g

+

g

2W

;

2g �

g

2

2W

< h < 2g : n

0

= 2�

r

2

W

(2g � h); n

00

= 2:

Fig. 9. (n; h)-phase diagram in the ase 
 = 0, T = 0; the

retangular DOS is used.

The orresponding (n; h) phase separation diagram is

shown in Fig. 9.

It an be mentioned that at weak oupling we have

one phase separation region in the (n; h) plane while in

the strong oupling ase (g � W ) there exist two suh

regions at the distane of order g along h axis; the mod-

ulated phase is intermediate between them [14℄.

B. The ase of the phase with double modulation

In the framework of the arried out above investiga-

tion the phase transitions between phases with the uni-

form ordering (whih are haraterized by the di�erent

values of n, �) in the ase of weak oupling were on-

sidered. As in the ase g � W the e�etive interation

between pseudospins (or eletrons) whih is formed by

the diret pseudospin-eletron oupling lies at the ba-

sis of suh transitions. This interation, as it is shown

in [14℄, an result in the appearane of the modulated

phase with doubling of the initial lattie period at the

large values of the onstant g (when the hemial poten-

tial is loated between the split due to the interation

subbands). Let us onsider suh possibility for the ase

of weak oupling (g < W ), whih is the subjet of our

investigation.

At the double modulation of the lattie period the

rystal is divided into two sublatties. We introdue the

notations: �

�

= hS

z

i�

i; n

�

=

P

�

hn

i��

i (� = 1; 2 is the

sublattie index), i is an elementary ell index. Similarly

to the ase of the homogeneous phase we use the mean

�eld approximation and write the Hamiltonian in the

form

H = H

el

+H

s

+ U; (24)

H

el

=

X

i��

(g�

�

� �)n

i��

+

X

i�;j�

t

��

ij



y

i��



j��

;

H

s

=

X

i;�

h

(gn

�

� h)S

z

i�

+ 
S

x

i�

i

;

U = �g

X

i�

n

�

�

�

:

Passing to k-representation and doing an unitary trans-

formation



k

1

�

= os �~

k

1

�

+ sin �~

k

2

�

; (25)



k

2

�

= � sin �~

k

1

�

+ os �~

k

2

�

;

sin 2� =

t

k

q

(g

�

1

��

2

2

)

2

+ t

2

k

; os 2� =

�g

�

1

��

2

2

q

(g

�

1

��

2

2

)

2

+ t

2

k

;

t

11

k

= t

22

k

= 0; t

k

= t

12

k

= t

21

k

=

X

i�j

t

12

ij

e

ik(R

i1

�Rj2

)

we will diagonalize H

el

:

H

el

=

X

��k

(�

k�

� �)~n

k��

; (26)

�

k�

= g

�

1

+ �

2

2

+ (�1)

�

s

�

g

�

1

� �

2

2

�

2

+ t

2

k

:

Similarly to (5) we will diagonalize H

s

:

H

s

= �

X

i�

~

�

�

�

z

i�

;

~

�

�

=

p

(gn

�

� h

2

) + 


2

: (27)

Double modulation leads to the splitting in the ele-

tron spetrum due to the di�erene between the internal
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�elds, ating in sublatties (the similar e�et takes plae

in the FK model [19℄). The initial band is divided into

two subbands separated by the gap � = gj�

1

� �

2

j (see

Fig. 10).

band edges

T<T*
cT>T*

c

1/2g|η1-η2|

-1/2g|η1-η2|

-[(1/2g(η1-η2))
2+W2]1/2

[(1/2g(η1-η2))
2+W2]1/2

µ=0

-W

W

Fig. 10. The band edges for the ases T > T

�



(homo-

geneous phase) and T < T

�



(the double modulation ase);

� = 0; h = g.

Contributions from both sublatties are present in the

equation for the eletron onentration in sublatties

n

�

=

1

N=2

X

k�

 

1 + os 2�

2

�

e

��

k�

��

+ 1

�

�1

+

1� os 2�

2

�

e

��

k�

��

+ 1

�

�1

!

; (28)

whih is obtained using (24){(27). Another equation

whih appears as a result of the averaging of the operator

S

z

i�

has the form

�

�

=

h � gn

�

2

~

�

�

tanh

 

�

~

�

�

2

!

; � 6= �: (29)

The equations (28) and (29) form the system whih plays

role similar to the set of equations (7) for the uniform

ase. The grand anonial potential for the double mod-

ulation ase an be written as follows:

2�

N

= �

T

N

X

k

ln

�

1 + e

�

�

k1

��

T

��

1 + e

�

�

k2

��

T

�

(30)

� T ln

 

4 h

�

~

�

1

2

h

�

~

�

2

2

!

� g(n

1

�

1

+ n

2

�

2

):

Solution of the obtained equation system (28) and (29)

and investigation of the thermodynamially stable states

was arried out numerially. It is established that phase

transitions from the uniform to the low-temperature

modulated phase an be of the seond or the �rst order.

It is illustrated in Fig. 11, where the phase transition

lines at � = 0 in the ases 
 = 0 and 
 6= 0 are shown

(diret momentum summation is used for alulating the

right hand sides of equations (28) and (30)).

The hange of the phase transition order at the motion

along the phase equilibrium urve is shown in Fig. 12,

where the jump of the eletron onentration Æn

0

=

n

0

1

� n

0

2

in the transition point as a funtion of tempera-

ture is shown. The region where Æn

0

= 0 orresponds to

the seond order phase transition (solid lines in Figs. 11

and 12), the region Æn

0

6= 0 orresponds to the �rst order

phase trasition (dashed lines in Figs. 11 and 12.)

Fig. 11. The phase transition lines (solid and dashed lines

are the lines of the seond and the �rst order phase transi-

tions, respetively) from the uniform phase to the phase with

double modulation (1 | 
 = 0, 2 | 
 = 0:2).

Fig. 12. The temperature dependene of the di�erene

Æn

0

= n

0

1

� n

0

2

along the phase transition line (
 = 0).

The di�erene Æn = n

1

� n

2

(as well as the di�erene

Æ� = �

1

� �

2

) an play a role of the order parameter for

modulated phase. Coming from equations (28) and (29),

we an write the equations for Æn and Æ� and separate

after that the ontributions of the �rst order:

Æn = �

2

N

P

0

�k

g

2t

k

Æ�

h

(e

�(g��t

k

��)

+ 1)

�1
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� (e

�(g�+t

k

��)

+ 1)

�1

i

; (31)

Æ� =

(h� gn)

2

2�

2

g Æn

�

1

4

� h�

z

i

2

�

��gÆnh�

z

i




2

�

3

; (32)

h�

z

i =

1

2

tanh

��

2

; n =

n

1

+ n

2

2

; � =

�

1

+ �

2

2

:

Here

P

0

�k

denotes the summation over the wave vetor

within the redued Brillouin zone (when the ondition

jk

x

j+ jk

y

j �

�

a

, a is a lattie onstant, is ful�lled). From

the equations (31) and (32) we obtain the following on-

dition of the appearane of nonzero solutions for Æn and

Æ�:

1 =

g

N

X

k�

1

t

k

(e

�(g��t

k

��)+1

)

�1

�

�

�g

(h � gn)

2

�

2

�

1

4

� h�

z

i

2

�

+ gh�

z

i




2

�

3

�

(33)

(here the summation is arried out within the full Bril-

louin zone, whih orresponds to the initial lattie).

Proeeding from equation (33), we an �nd a ritial

temperature T

�



as the maximum temperature (among

the set of temperatures whih are obtained for the dif-

ferent h values) whih ful�ls this equation at the �xed

value of the hemial potential. This temperature is the

point of the seond order phase transition to modulated

phase at the orresponding value of the �eld h. Fig. 13

shows the dependenes of the ritial temperature T

�



on

the hemial potential in the ases 
 = 0 and 
 6= 0.

With the aim of omparison there are also shown in

these �gures the orresponding urves for the ritial

temperature T



, whih desribes the transitions between

the homogeneous phases (Fig. 6b). It is easy to see that

T

�



> T



for the � values, whih are less than the ertain

value (j�j < �

0

; �

0

� 0:4 in Fig. 13). Suh ondition is

ful�lled for the eletron band oupation, whih is lose

to half-�lling ase. In this region the transition to modu-

lated phase at the derease of temperature ours sooner

than the desribed in paragraph II.A transition between

the uniform phases; the last transition is realized when

j�j > �

0

.

Let us onsider in more detail the situation in the sym-

metri ase � = 0; h = g, when in the high-temperature

phase n = 1; � = 0. Equation (33) redues now to the

form

1 = �

g

2




tanh

�


2

1

N

X

k�

1

t

k

f(t

k

): (34)

At the density of states �(t) whih is �nite at t = 0, in

partiular at the retangular DOS �(t) =

1

2W

, equation

(34) in the low temperature region beomes

1 =

g

2




tanh

�


2

1

2W

ln

eW

2T

; (35)

Fig. 13. The dependene of the ritial temperature on the

hemial potential; a) 
 = 0, b) 
 = 0:1. Solid line refers to

the ase of the phase with double modulation, dashed line

refers to the transition into the homogeneous phase.

while at the presene of logarithmi singularity (16) we

have the following equation:

1 =

g

2




tanh

�


2

2

�

2

W

�

ln

2W

T

�

2

: (36)

The ritial temperatures T

�



, obtained in these both

ases are higher than the orresponding temperatures

T



((15) and (20)) for the transitions between uniform

phases. At high 
 values T

�



remains �nite:

T

�



�

We

2

exp

�

�

2
W

g

2

�

(37)

for the retangular DOS

�

or T

�



�

W

2

exp(�


W�

2

2g

2

) in the

ase of the semi-ellipti DOS �(t)=

2

W

2

�

2

p

W

2

� t

2

�

and

276



PHASE TRANSITIONS IN PSEUDOSPIN-ELECTRON MODEL AT WEAK COUPLING

T

�



� 2W exp

 

�

�

p


W

g

p

2

!

(38)

in the ase of the DOS with logarithmi singularity.

III. CONCLUSIONS

The pseudospin-eletron model is investigated in the

work in the weak oupling ase (g �W ), when the ele-

tron band remains unsplit in the uniform state. The ther-

modynamially equilibrium states of the system are on-

sidered in the two regimes: the given hemial potential

of eletrons or the onstant value of the eletron onen-

tration. In the � = onst regime the �rst order phase

transitions between uniform phases (with the jumps of

the eletron onentration and pseudospin value) take

plae in the system when the hemial potential is plaed

within the eletron band near its edges. In the ase when

� is near the entre of the band, the phase with the dou-

bling of the lattie period (the hess-board phase) an ap-

pear in the system at the lowering of temperature. The

transition between the modulated and uniform phases

an be of the �rst as well as of the seond order depend-

ing on the magnitude of the �eld h ating on pseudospins.

For the n = onst regime the onditions of the appear-

ane of the phase separation in the region of the phase

transitions between uniform phases are established.

The obtained results, in general, are in aordane

with the data of similar investigations for the Faliov{

Kimball model at the small values of the oupling on-

stant desribing the interation between the moving and

loalized partiles (eletrons). In [18,19,21℄ the possibil-

ity of transitions into modulated or phase segregated

phases was studied depending on the value of the mean

eletron onentration. It was shown that at small val-

ues of n the phase separation an be realized, while near

half-�llingof the band the hess-board phase is preferable

and, at last, at intermediate values of n the appearane

of phase with a nonommensurate modulation is possi-

ble. The transitions into this or that phase was �xed by

the divergenes of the orresponding suseptibilities (it

should be mentioned in this onnetion that the usage of

a suh proedure did not give to the authors a possibil-

ity to reveal the thermodynamially stable states in the

regions where the instabilities of either type (at q = 0

and q = (�=a; �=a; : : :)) are superimposed; this problem

an be solved basing on the analysis of the behaviour of

the grand anonial potential).

There exist, however, essential distintions as om-

pared with the results obtained for the FK model. Firstly,

in papers [17,18,20,21℄ the regime of the �xed onentra-

tion of loalized partiles was used (it orresponds in

the ase of the PEM to the �xation of the average value

hS

z

i). Suh a ondition an lead to the phase separation

by itself. Seondly, in ontradition to the FK model we

take into aount in the PEM the tunneling-like split-

ting. Besides the general derease of the phase transition

temperatures and narrowing of the segregation regions,

its role manifests itself in the very onditions of the real-

ization of phase transitions depending on the form of the

density of eletron states. In the ases when the eletron

DOS is �nite at half-�lling (does not possess a logarith-

mi singularity, that is harateristi of the d = 2 spae

dimensionality) there exist suh threshold values 


r

and

g

r

that at 
 > 


r

or g < g

r

the phase transitions into

segregated phases disappear.

Though the phase transitions in the PEM at weak ou-

pling are similar to that revealed in this model in the ase

of the strong interation, g �W [14℄, the physial meh-

anisms of transitions are to a greater extent distint. In

the ase of strong oupling the eletron spetrum is al-

ways split due the to one-site interation and the meh-

anism whih ensures the advantage of the transition into

the modulated phase or between the uniform ones is on-

neted with the opposite in its harater reonstrution

of the eletron spetrum in subbands and with the orre-

sponding redistribution of the eletron density of states

between them. On the other hand, at the weak oupling

a new phase whih appears at the transition between

uniform phases stabilizes due to the shift of the eletron

band as a whole, while the phase with a double modu-

lation appears due to the energy gain at the splitting of

the initial band at the Fermi level (the e�et is similar to

the Peierls instability at the interation with phonons).

Besides that, the dependenes of the ritial tempera-

tures on the oupling onstant g are di�erent in both

ases: at g � W T



(or T

�



) is proportional to g

2

, while

at g �W the ritial temperatures derease (�

1

g

) when

g inreases (suh a type of behaviour of T

�



for the FK

model was obtained in [17℄).

Let us mention that in the framework of the applied

thermodynamoal approah we have performed the in-

vestigation of the phase transitions into uniform and

hess-board phases only. Suh transitions are onneted

with the instabilities desribed by divergenies of susep-

tibilities �(0) =

dn

d�

and �(Q) where Q = (�=a; �=a; : : :).

The onsideration of orderings of another type (inlud-

ing the inommensurate ones) an be based on the in-

vestigation of singularities of the �(q) funtion at any q

value (the suseptibility �(q) an be expressed in terms

of the orrelators hTS

z

i

S

z

j

i or hTn

i

n

j

i). The orrespond-

ing investigation will be the subjet of our subsequent

onsideration.
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FAZOV� PEREHODI U PSEVDOSP�N-ELEKTRONN�� MODEL�

PRI SLABK�� VZA�MOD�Õ

�. V. Stas�k, T. S. Misakoviq

�nstitut f�ziki kondensovanih sistem Na�onal~noÝ akadem�Ý nauk UkraÝni,

vul. Svn�~kogo, 1, L~v�v, 79011, UkraÝna

E-mail: ista�imp.lviv.ua

Dosl�d�eno termodinam�qno r�vnova�n� stani ta fazov� perehodi u psevdosp�n-elektronn�� model� z

popereqnim polem u nabli�enn� slabkogo zv'�zku. U re�im� post��nogo hem�qnogo poten��lu vstanovleno

mo�liv�st~, zale�no v�d znaqenn� �, perehod�v perxogo rodu m�� odnor�dnimi fazami ta perxogo abo dru-

gogo rodu do fazi z podvonn�m per�odu kristal�qnoÝ �ratki. Proanal�zovano umovi viniknenn� v sistem�

fazovogo rozxaruvann� pri zadan�� seredn�� elektronn�� konentra�Ý. Vivqeno tako� vpliv popereqnogo

pol� (�ke pov'�zane z rozweplenn�m tunel~nogo tipu) na fazov� perehodi ta umovi Ýh real�za�Ý. Pobudo-

vano fazov� d��grami pri r�znih gustinah elektronnih stan�v u zon� prov�dnosti.
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