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For the three-dimensional cubic model, the nonlinear susceptibilities of the fourth, sixth, and
eighth orders are analyzed and the parameters 5@ characterizing their reduced anisotropy are
evaluated at the cubic fixed point. The anisotropy parameters are found to be: §(Y = 0.054 +0.012,
56 = 0.10240.02, and 56 = 0.144+0.04, indicating that the anisotropic (cubic) critical behaviour
predicted by the advanced higher-order renormalization-group analysis should be, in principle,

visible in physical and computer experiments.
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Thirty years ago Wilson and Fisher discovered that in
the vicinity of the critical point the order parameter fluc-
tuations may change the effective anisotropy of the sys-
tem drastically [1]. Having studied the anisotropic XY
model within the ¢ expansion they found that approach-
ing 7T, this model either becomes effectively isotropic or
developes its anisotropy further [1] until the fluctuation-
induced first-order phase transition takes place [2,3].
What scenario the system chooses depends on the value
and sign of the anisotropic coupling constant in the
initial Landau—Wilson Hamiltonian. In the course of
studying the generalized cubic model, the crucial role
of the order parameter dimensionality n was revealed:
for n < n. the model undergoing the continuous phase
transition demonstrates isotropic critical behaviour while
for n > n. it remains anisotropic at criticality [4]. The
numerical value of the marginal spin dimensionality n.
separating these two regimes is of prime physical impor-
tance since it fixes the true mode of the critical behaviour
of real cubic ferromagnets and of some other systems of
interest.

First estimates of n, for the cubic model obtained
from the lower-order renormalization-group (RG) expan-
sions [3,5,6] turned out to be in favour of the inequality
ne > 3 indicating that cubic ferromagnets should be-
long to the class of universality of the three-dimensional
(3D) Heisenberg model. However, the resummation of
the three-loop RG series [7,8] and subsequent higher-
order RG calculations performed both in three [9-11] and
(4—¢€) [12] dimensions shifted the numerical estimate for
n. downwards fixing it below 3 [7-18]. Remarkable con-
sensus between different field-theoretical approaches and
resummation techniques was achieved in the course of
this study: 3D RG calculations [11], resummed ¢ expan-
sion [15], biased ¢ expansion technique [11], and pseudo-
¢ expansion analysis [17] lead to n. = 2.89, n, = 2.855,
ne. = 2.87, and n, = 2.862, respectively. Hence, according
to the update, most accurate theoretical data, cubic fer-
romagnets should demonstrate the specific-cubic-critical

behaviour with special set of critical exponents.

Since n. 1s very close to the physical value n = 3,
the cubic fixed point lies very near the Heisenberg one
at the RG flow diagram and the critical exponents for
both fixed points almost coincide. For instance, the sus-
ceptibility exponent v is equal to 1.3895(50) for the 3D
Heisenberg model [19] while at the cubic fixed point
v = 1.390(6) [11]. Tt is clear that measuring the criti-
cal exponents one can not distinguish between the cubic
and Heisenberg critical behaviours.

In such a situation, some alternative physical quanti-
ties should be addressed to clear up how the systems
with the cubic symmetry behave approaching 7.. In
this paper, the nonlinear susceptibilities of the 3D cu-
bic model are studied in the framework of the field-
theoretical RG approach, with a particular attention
paid to their anisotropy at criticality. It will be shown
that the anisotropy of nonlinear susceptibilities is sen-
sitive to the type of critical asymptotics and its mea-
surement can be used, in principle, for detection of the
cubic (non-Heisenberg) critical behaviour, provided the
anisotropy is as strong as the higher-order RG calcula-
tions predict.

In the critical region, the expansion of the free energy
of the cubic model in powers of the magnetization com-
ponents M, may be written in the form:

1
F(M,,m) = F(0,m)+ 5m2—”M§
+m1_2”(U4+v45a@)M§M5 (1)

+m = (ug + q6dap + v66aﬁ6a'y)M§MﬁzM$ + ...

where 7 1s a Fisher exponent, m being an inverse correla-
tion length, and wuy, va, ug, ¢, ve are dimensionless effec-
tive coupling constants acquiring, under 7" — T, certain
universal values. These coupling constants are related to
the nonlinear susceptibilities defined in a conventional
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way:
(4 __ PMa
Xocﬁvé_ﬁHgﬁHW@Ha H_’
N M, (2)
aBvow = GHgOH, 0Hs0H 0 H, H=0

Of prime importance are the nonlinear susceptibilities
in two particular cases, when (i) an external magnetic

(#)

field is parallel to a cubic axis (x¢’) and (ii) it is ori-
ented along a cell space diagonal (y,;’). For these two
highly symmetric directions the differences between cor-
responding values of nonlinear susceptibilities are known
to be maximal, 1. e., the anisotropy is most pronounced.
It is easy to show that

¥?
X£4) = —24$(U4 +v4),

2

(4) _ X V4

r 2
3 v v
Xf):m% 8(u4+§4) —u6—q3—6—§6]. (4)

where y is a linear susceptibility. To characterize the
anisotropy strength, we define the reduced parameters

(4 _ @4 (6) _ ,(6)
6(4) — |XC Xd | 6(6) _ |Xc Xd | (5)

X£4) ) - X£6)

Below, they will be estimated at criticality.

Let us start from the lower-order nonlinear suscepti-
bility 4. The coordinates of the cubic fixed point uy
and v} in three dimensions are known from the higher-
order RG calculations, with resummed four-, five-; and
six-loop RG expansions yielding very close numerical re-
sults [9,11]. Considering recent six-loop RG estimates as
the most reliable ones, we accept u} = 0.755 £ 0.010,
v = 0.067 £ 0.014 [11]. The substitution of these num-

872 u?
U = —(——

bers into Egs. (3), (5) gives
6™ =0.054+ 0.012. (6)

(6 | ©

To determine x¢ ', x,; , and 5(8) we have to calculate
the effective coupling constants ug, ¢s, and ve. They will
be found perturbatively, using the field-theoretical RG
approach in three dimensions. Qur analysis is based on
the well-known Landau-Wilson Hamiltonian of the 3D
n-vector cubic model:

1 3 2 2 2, Y 2 2 V0 4
H= Q/dl‘[mosowr(vsoa) + 5PaPs T p%al

(7)

All the RG calculations are carried out within a mas-
sive theory under zero-momenta normalizing conditions
for the renormalized Green function Ggr(p, m) and the
four-point vertices Ug(pi, m, u,v, ), Vr(p;, m,u, v, ):

IGE (p,m)

Gr (0, m) = m?, op* p2=0

=1

bl

Ur(0, m,u,v) = mu, Vr(0, m, u,v) = mv. (8)

Here, the value of the one-loop vertex graph including
the factor (n + 8) is absorbed in « and v. Quartic effec-
tive couplings u and v thus defined are related to u4 and
vq entering Eqgs. (1), (3), (4) in an obvious way:

n+8
2

n+8
2

u =

V4. (9)

Uy, v =

We limit ourselves by the four-loop RG approximation
that proved to lead to quite a good numerical estimate
for the universal value of the sextic effective coupling for
the 3D O(n)-symmetric model [20,21]. Since the sym-
metry factors and integrals for all the relevant Feynman
diagrams have been found earlier [21], what we have to
do is the calculation of the tensor (field) factors for 6-
point vertex graphs and mass insertions generated by the
O(n)-symmetric and cubic interactions. Performing this
calculation and then renormalizing the “bare” perturba-
tive expansions for the 6-point vertices precisely in the
same way as 1t has been done for the i1sotropic n-vector
model [20,21], we arrive at following four-loop RG ex-
pansions:

(n+8)

1 (3471 + 452

3 u? 4+ 124uv + 18v2)

1
+ —— [(1.065025712 + 157.42454n + 1323.0960)u + (19.382741n

(n+38)
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+ 1873.9825)u’v + (2.3101121n + 679.33934)uv? 4+ 100.90652v°

1

Tt ep (—0.0638n" + 52.451n* + 2314.99n + 14387.6)u’
n

+ (—2.3434n* + 1006.56n + 29601.0)u’v + (100.156n + 18985.4)uv?

+ (11.2867n + 5872.61)uv® + 782.8651;4” :

872w
96 = —5—

1
TR ((471 + 520)u? + 468uv + 108v2)

1
+ ———[(—1.1357879n7 + 149.54004n 4 5366.1581)u”
(n+8)

+ (—32.454138n + 8267.9231)u’v + 4107.2194uv? + 775.7904()@3]

1
EFE [(0.3986713 —19.2521n7 + 3351.86n + 66591.7)u’

+ (11.6195n% 4 115.223n + 148119)u’v + (—419.561n + 119322)u’v?
+ 46560.3uv® + 7520.891}4” :
872 2

Vg = ———

3 (n+8)

54u + 27v —

1 2 2
e+ 3) (—6n 4+ 492)u” 4+ 540uv + 162v

1
+ ————|(1.3828190n — 50.171743n + 5947.5257)u’
(n+8)

+ (—88.612482n + 10696.342)u’v + 6632.1372uv” 4 1481.58551)3]

1
BT [(—04873713 +6.2132n" + 114.760n + 83872.7)u*

+ (25.5088n% — 2440.17n + 212729)u’v + (—1281.62n + 205263)u’v?

+ 93009.1uv® + 16755.01}4H .

These RG expansions should obey some exact rela- o1 = (91 +92)/V2,
tions appropriate to the systems with cubic anisotropy.
Indeed, for n = 2 model (7) is known to possess the spe-
cific symmetry property. If the field ¢, undergoes the
transformation w2 = (p1 — @2)/\/5,
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quartic coupling constants are also transformed:

u—>u+§v,

v = —v, (14)
but the structure of the Hamiltonian itself remains un-
changed [1]. Since the RG functions of the problem are
completely determined by the structure of the Hamilto-
nian, the RG equations should be invariant with respect
to any transformation conserving this structure [22]. This
should be also true for all the expressions relating vari-
ous universal quantities to each other. If, under n = 2, we
apply the transformation (13) to the magnetlzatlon com-
ponents in Eq. (1), the free-energy expansion remains the
same, provided ug, vy are replaced according to Eq. (14)
while the sextic coupling constants are transformed as
prescribed below:

u+q—6—|—v—6—>u—|— +v ¢t v —>—g —v
6 5 2 6 T g6 65 3(]6 6 3(]6 6-

(15)

It means that the following relations between the effec-
tive coupling constants should hold:

96 (u, v)

ve(u, v) — us(

3
ug(u,v) + 5 1 o(u + §v,—v)
3 3
+gs(u+ 2 —v) + vg(u + 2 —v),

2
§q6(u, v) + ve(u, v)

2
—§q6(u + %v, —v) — ve(u+ %v, —v). (16)

The expansions (10), (11), and (12) do really satisfy these
relations. Moreover, consideration of all the remaining
limiting cases [9,11] shows that these RG series are in
accord with their counterparts obtained earlier for the
Ising [23,24] and O(n)-symmetric [21] models.

Let us use the expansions just found for the estima-
tion of the universal critical values of the sextic effective
coupling constants in the physical case n = 3. To ob-
tain the numbers of interest from the asymptotic RG
series, a proper resummation procedure should be ap-
plied. Here we use the Padé—Borel-Leroy resummation
technique which demonstrates high numerical effective-
ness both for simple (Ising and O(n)-symmetric) models
[20,21,25,26,7] and for complicated anisotropic systems
preserving their internal symmetries [27]. Since the ex-
pansions of quantities depending on two variables u and
v are dealt with, the Borel-Leroy transformation is taken
in a generalized form:

flu,v) =

iJ

(o)
c”u ) / —tyb F(ut,vt)dt,
0
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F(%@/)—Zm~ (17)
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To perform an analytical continuation, the resolvent se-
ries

l’ya

Z/\nzzclnll’y (18)

n=0 (=0 m=0

1s constructed which is a series in the powers of A with
the coefficients being uniform polynomials in u, v and
then Padé approximants [L/M]in A at A = 1 are used.

With the four-loop RG expansions in hand, we can
construct, in principle, three different Padé approxi-
mants: [2/1], [1/2], and [0/3]. To obtain proper approxi-
mation schemes, however, only diagonal [L/L] and near-
diagonal Padé approximants should be employed. That
is why further we limit ourselves with approximants [2/1]
and [1/2]. Moreover, the diagonal Padé approximant
[1/1] will be also dealt with although this corresponds
to the usage of the lower-order, three-loop RG approxi-
mation.

The algorithm for estimating the universal critical val-
ues of sextic effective couplings is as follows. Since, in
fact, we have the power series for the ratios R, = ug/u?,
Ry = g¢s/(uv), Ry = vs/v? rather than for ug, g6, ve
themselves, we work with the RG series for these ratios.
They are resummed in three different ways based on the
Borel-Leroy transformation and the Padé approximants
just mentioned. The Borel-Leroy integral is evaluated as
a function of the shift parameter b under v = u*, v = v*.
For the cubic fixed point coordinates the values given
by the six-loop RG analysis at n = 3 are adopted [11]:

* = 1.321, v* = 0.117. The optimal value of b providing
the fastest convergence of the iteration scheme is then
determined. It is deduced from the condition that the
Padé approximants employed should give, for & = bgpe,
the values of R, (Rg, R,) which are as close as possible
to each other. Finally, the average over three estimates
for R, (R4, Ry) is found and claimed to be a numerical
value of this universal ratio.

To demonstrate how such a procedure works, we refer
to Table 1 where the results of the corresponding cal-
culations are presented. The empty cells in this Table
reflect the fact that for some values of the shift parame-
ter b Padé approximant [1/2] turns out to be spoiled by
the “dangerous” poles, 1. e. by the poles at positive or
small negative t. As one can see, for u} (an integer) bope,
providing a maximal closeness of the estimates given by
three working Padé approximants, is equal to 2, while
for ¢§ and v§ b,pr = 3. So, the results of our four-loop
RG analysis are as follows:

wi=0842, ¢ =0175, v =0.0108. (19)

The numerical accuracy of these estimates is fixed both
by the accuracy achieved in the course of evaluating the
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cubic fixed point coordinates u*, v* and by the speed by the higher-order pole-free approximant [2/1]. These
of convergence of the iteration procedure employed. The  intervals are easily extracted from Table 1, they are as
influence of the latter factor may be characterized by the  follows: £0.03 (ug), £0.01 (¢5), £0.001 (v§). Such error

sensitivity of the numerical results with respect to vari-  bars look quite realistic. Moreover, they are large enough
ation of b. As is seen from Table 1, the values of u§, ¢f, to cover the inaccuracy produced by the uncertainty of
and vg, averaged over the working Padé approximants,  the cubic fixed point location. Hence, we adopt these er-
vary by no more than £0.005, £0.002, and +0.0001, re- ror bars as the final ones.

spectively, when b runs from 0 to 10. On the other hand, With the quartic and sextic couplings in hand, we are
these error bars are too small to be realistic. Their con- able to estimate the reduced anisotropy of the sixth-

servative counterparts may be deduced accepting that order nonlinear susceptibility. Combining Eqgs. (4), (5),
the true universal values of renormalized sextic couplings  and (19), we obtain
should lie within the intervals of the variation of the es-

timates given by the leading Padé approximant, namely, §6) — 0.102 + 0.02. (20)
[ b | 0 1 2 3 5 10 ]
ug [2/1]10.8654 0.8514 0.8427 0.8368 0.8294 0.8206
[1/2]| 0.8345 —  0.8430 0.8384 0.8356 0.8328

1/1]/ 0.8097 0.8295 0.8400 0.8466 0.8543 0.8625
75 [2/1][0.1832 0.1791 0.1765 0.1747 0.1725 0.1699
[1/2]|0.1729 0.1714 —  0.1738 0.1737 0.1729
1/1]/ 0.1653 0.1707 0.1736 0.1754 0.1775 0.1797
vE [2/1][0.01168 0.01128 0.01103 0.01086 0.01065 0.01041

[1/2]/0.01062 0.01059 —  0.01090 0.01072 0.01064

[1/1]/0.00989 0.01035 0.01060 0.01075 0.01093 0.01111

Table 1. Numerical estimates for the universal values of sextic effective coupling constants ug, ¢¢, and vg ob-
tained from the four-loop RG expansions (10), (11), and (12) resummed by the Padé-Borel-Leroy technique using
approximants [2/1], [1/2], and [1/1]. The empty cells are due to the “dangerous” poles spoiling corresponding Padé
approximants.

S

Of interest is the role played by the sextic coupling  the contribution of ug to x(® is negligible at critical-
constants in forming the magnitudes of X£6)’ X£56)a and  1ty. Since the cubic fixed point is located very near the
Heisenberg one, the same conclusion is valid for the 3D
cubic model. This enables us to estimate the critical
anisotropy of x(®) without the calculation of the uni-

5()_ 1t may be shown that, in fact, their contrubutions
to the sixth-order susceptibility and the anisotropy pa-
rameter are very small. Indeed, neglecting ug, ¢, and vg ! : o ¢
changes the critical value of 68 by about 4%. In other versal Val.ues.of the octic couplings. Making in Eq. (21)
words, the anisotropy of x(®) near 7}, is fixed practically the substitutions wy — ug + va, ue — Us + g5 + Vs and
by the guartic coupling constants only. A similar situa- %4 — ugtva/3, us — u6'(|g§6/3+v6(é? with ug omitted, we

tion takes place for the higher-order susceptibilities. To ~ obtain expressions for x. ’ and x,;’, respectively. Using

demonstrate this, we consider the eighth-order suscep-  then the known critical values of the quartic and sextic
tibility y(® for the isotropic (Heisenberg) model. Tt is  coupling constants, we obtain the reduced anisotropy of
expressed via the effective coupling constants: the eighth-order susceptibility:
8 y? 3 |X(8) _ X(8)|
) = —40320- (96u4 — 24uqug + U8)~ (21) 6% = XML 01444 0.04, (22)
Xec

Up till now, the universal critical value of the octic cou- The estimates (6), (20), (22) for §*), 65 and §®)
pling constant was determined using the field-theoretical at criticality do not look too small to prevent the de-
RG approach in three dimensions [21], the biased € ex- tection of the universal cubic anisotropy in physical and

pansion technique [28], and the exact RG machinery. The  computer experiments or by means of a thorough analy-
methods employed lead to the estimates uf = 0.168,  sis of the high-temperature expansions [29,30]. It is well
ug = 0.36, and uj = 0.145, respectively. All of them are  known, however, that the approach of the universal crit-
several times smaller than «} = 0.794 [19] and u} = 0.951  ical regime is controlled by the tiny exponent w = 0.01
[21]. Tt means that, because of the big numerical coef-  [11] making both the experimental study and simulation
ficients of the first two terms in brackets of Eq. (21),  of the true mode of critical behaviour rather difficult [31].
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We believe that the results obtained in this paper will
help those searching for the cubic asymptotic regimes in
real systems and lattice models to choose a proper strat-
egy and the quantities to be measured.
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AK PO3PISHUTHU KYBIYHY TA ISOTPOIIHY KPUTHUYHY IIOBEOIHKY

H. B. ITaxuin, A. . CokosioB
Canxm-Iemepbypzvxuii eaexmpomexninnutli ynisepcumem,
ey.n. npodecopa Ionosa 5, Canxm-Ilemepbypr, 197376, Pocia

Hnst rpuBrMipHOl KyOiYHOI MOIe Il IpoaHa i30BaHO HeIHIHHI COpUAHATIMBOCTI YeTBEPTOro, HIOCTOTO i BO-

CHMOT0 MOPAIKIB Ta po3paxoBaHO B KyOl4HIl HepyxoMiil Todmi mapaMeTpn 0 (’), AKl XapaKTepU3yIOTh 1X 3BeIeHy

aHI30TPOMII0. BeTMYnHN aHI3OTPOITHNX TapaMeTpIB CTAHOBJIATH: 5@ = 0.054 + 0.012, §©) = 0.102 £ 0.02 Ta

§®) = 0.144 + 0.04. Bomu BKasyloTh, IO aHi30TponHy (Ky6iuHy) KpUTHYHY IOBeNiHKY, fIKy lepenbadae IeTallb-

HUilI peHopMaJTi3alliiiHo-rpyHoBIil aHa I3 ¥ BUCOKHUX IMOPAIKaX Teopil 30ypeHb, Yy HPUHIAN MOXKHA CIIOCTEPITaTh

y PISMYHUX Ta KOMII'IOTEPHUX €KCIIepUMeHTax.
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