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For the three-dimensional ubi model, the nonlinear suseptibilities of the fourth, sixth, and

eighth orders are analyzed and the parameters Æ

(i)

haraterizing their redued anisotropy are

evaluated at the ubi �xed point. The anisotropy parameters are found to be: Æ

(4)

= 0:054�0:012,

Æ

(6)

= 0:102�0:02, and Æ

(8)

= 0:144�0:04, indiating that the anisotropi (ubi) ritial behaviour

predited by the advaned higher-order renormalization-group analysis should be, in priniple,

visible in physial and omputer experiments.

Key words: renormalization group, ubi model, nonlinear suseptibilities, universal oupling

onstants, four-loop expansions.
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Thirty years ago Wilson and Fisher disovered that in

the viinity of the ritial point the order parameter u-

tuations may hange the e�etive anisotropy of the sys-

tem drastially [1℄. Having studied the anisotropi XY

model within the � expansion they found that approah-

ing T



this model either beomes e�etively isotropi or

developes its anisotropy further [1℄ until the utuation-

indued �rst-order phase transition takes plae [2,3℄.

What senario the system hooses depends on the value

and sign of the anisotropi oupling onstant in the

initial Landau{Wilson Hamiltonian. In the ourse of

studying the generalized ubi model, the ruial role

of the order parameter dimensionality n was revealed:

for n < n



the model undergoing the ontinuous phase

transition demonstrates isotropi ritial behaviour while

for n > n



it remains anisotropi at ritiality [4℄. The

numerial value of the marginal spin dimensionality n



separating these two regimes is of prime physial impor-

tane sine it �xes the true mode of the ritial behaviour

of real ubi ferromagnets and of some other systems of

interest.

First estimates of n



for the ubi model obtained

from the lower-order renormalization-group (RG) expan-

sions [3,5,6℄ turned out to be in favour of the inequality

n



> 3 indiating that ubi ferromagnets should be-

long to the lass of universality of the three-dimensional

(3D) Heisenberg model. However, the resummation of

the three-loop RG series [7,8℄ and subsequent higher-

order RG alulations performed both in three [9{11℄ and

(4��) [12℄ dimensions shifted the numerial estimate for

n



downwards �xing it below 3 [7{18℄. Remarkable on-

sensus between di�erent �eld-theoretial approahes and

resummation tehniques was ahieved in the ourse of

this study: 3D RG alulations [11℄, resummed � expan-

sion [15℄, biased � expansion tehnique [11℄, and pseudo-

� expansion analysis [17℄ lead to n



= 2:89, n



= 2:855,

n



= 2:87, and n



= 2:862, respetively. Hene, aording

to the update, most aurate theoretial data, ubi fer-

romagnets should demonstrate the spei�-ubi-ritial

behaviour with speial set of ritial exponents.

Sine n



is very lose to the physial value n = 3,

the ubi �xed point lies very near the Heisenberg one

at the RG ow diagram and the ritial exponents for

both �xed points almost oinide. For instane, the sus-

eptibility exponent  is equal to 1.3895(50) for the 3D

Heisenberg model [19℄ while at the ubi �xed point

 = 1:390(6) [11℄. It is lear that measuring the riti-

al exponents one an not distinguish between the ubi

and Heisenberg ritial behaviours.

In suh a situation, some alternative physial quanti-

ties should be addressed to lear up how the systems

with the ubi symmetry behave approahing T



. In

this paper, the nonlinear suseptibilities of the 3D u-

bi model are studied in the framework of the �eld-

theoretial RG approah, with a partiular attention

paid to their anisotropy at ritiality. It will be shown

that the anisotropy of nonlinear suseptibilities is sen-

sitive to the type of ritial asymptotis and its mea-

surement an be used, in priniple, for detetion of the

ubi (non-Heisenberg) ritial behaviour, provided the

anisotropy is as strong as the higher-order RG alula-

tions predit.

In the ritial region, the expansion of the free energy

of the ubi model in powers of the magnetization om-

ponents M

�

may be written in the form:

F (M

�

;m) = F (0;m) +

1
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+ : : :

where � is a Fisher exponent, m being an inverse orrela-

tion length, and u

4

, v

4

, u

6

, q

6

, v

6

are dimensionless e�e-

tive oupling onstants aquiring, under T ! T



, ertain

universal values. These oupling onstants are related to

the nonlinear suseptibilities de�ned in a onventional
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way:
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: (2)

Of prime importane are the nonlinear suseptibilities

in two partiular ases, when (i) an external magneti

�eld is parallel to a ubi axis (�

(i)



) and (ii) it is ori-

ented along a ell spae diagonal (�

(i)

d

). For these two

highly symmetri diretions the di�erenes between or-

responding values of nonlinear suseptibilities are known

to be maximal, i. e., the anisotropy is most pronouned.

It is easy to show that

�

(4)



= �24
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where � is a linear suseptibility. To haraterize the

anisotropy strength, we de�ne the redued parameters

Æ

(4)

=

j�

(4)



� �

(4)

d

j

�

(4)



; Æ

(6)

=

j�

(6)



� �

(6)

d

j

�

(6)



: (5)

Below, they will be estimated at ritiality.

Let us start from the lower-order nonlinear susepti-

bility �

(4)

. The oordinates of the ubi �xed point u

�

4

and v

�

4

in three dimensions are known from the higher-

order RG alulations, with resummed four-, �ve-, and

six-loop RG expansions yielding very lose numerial re-

sults [9,11℄. Considering reent six-loop RG estimates as

the most reliable ones, we aept u

�

4

= 0:755 � 0:010,

v

�

4

= 0:067� 0:014 [11℄. The substitution of these num-

bers into Eqs. (3), (5) gives

Æ

(4)

= 0:054� 0:012: (6)

To determine �

(6)



, �

(6)

d

, and Æ

(6)

, we have to alulate

the e�etive oupling onstants u

6

, q

6

, and v

6

. They will

be found perturbatively, using the �eld-theoretial RG

approah in three dimensions. Our analysis is based on

the well-known Landau{Wilson Hamiltonian of the 3D

n-vetor ubi model:

H =

1

2
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(7)

All the RG alulations are arried out within a mas-

sive theory under zero-momenta normalizing onditions

for the renormalized Green funtion G

R

(p;m) and the

four-point verties U

R

(p

i

;m; u; v; ), V

R

(p

i

;m; u; v; ):

G

�1

R

(0;m) = m

2

;

�G

�1

R

(p;m)

�p

2

?

?

?

p

2

=0

= 1;

U

R

(0;m; u; v) = mu; V

R

(0;m; u; v) = mv: (8)

Here, the value of the one-loop vertex graph inluding

the fator (n + 8) is absorbed in u and v. Quarti e�e-

tive ouplings u and v thus de�ned are related to u

4

and

v

4

entering Eqs. (1), (3), (4) in an obvious way:

u =

n+ 8

2�

u

4

; v =

n+ 8

2�

v

4

: (9)

We limit ourselves by the four-loop RG approximation

that proved to lead to quite a good numerial estimate

for the universal value of the sexti e�etive oupling for

the 3D O(n)-symmetri model [20,21℄. Sine the sym-

metry fators and integrals for all the relevant Feynman

diagrams have been found earlier [21℄, what we have to

do is the alulation of the tensor (�eld) fators for 6-

point vertex graphs and mass insertions generated by the

O(n)-symmetri and ubi interations. Performing this

alulation and then renormalizing the \bare" perturba-

tive expansions for the 6-point verties preisely in the

same way as it has been done for the isotropi n-vetor

model [20,21℄, we arrive at following four-loop RG ex-

pansions:

u

6

=

8�

2

3

u

2

(n+ 8)

3

"

(n+ 26)u+ 9v �

1

(n+ 8)

�

34n+ 452

3

u

2

+ 124uv + 18v

2

�

+

1

(n+ 8)

2

�

(1:065025n

2

+ 157:42454n+ 1323:0960)u

3

+ (19:382741n
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+ 1873:9825)u

2

v + (2:3101121n+ 679:33934)uv

2

+ 100:90652v

3

�

�

1
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3

�
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3
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2
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4
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2
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2
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3
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These RG expansions should obey some exat rela-

tions appropriate to the systems with ubi anisotropy.

Indeed, for n = 2 model (7) is known to possess the spe-

i� symmetry property. If the �eld '

�

undergoes the

transformation

'

1

! ('

1

+ '

2

)=

p

2;

(13)

'

2

! ('

1

� '

2

)=

p

2;
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quarti oupling onstants are also transformed:

u! u+

3

2

v; v !�v; (14)

but the struture of the Hamiltonian itself remains un-

hanged [1℄. Sine the RG funtions of the problem are

ompletely determined by the struture of the Hamilto-

nian, the RG equations should be invariant with respet

to any transformation onserving this struture [22℄. This

should be also true for all the expressions relating vari-

ous universal quantities to eah other. If, under n = 2, we

apply the transformation (13) to the magnetization om-

ponents in Eq. (1), the free-energy expansion remains the

same, provided u

4

, v

4

are replaed aording to Eq. (14)

while the sexti oupling onstants are transformed as

presribed below:

u

6

+

q

6

2

+

v

6

4

! u

6

+ q

6

+ v

6

;

2

3

q

6

+ v

6

!�

2

3

q

6

� v

6

:

(15)

It means that the following relations between the e�e-

tive oupling onstants should hold:

u

6

(u; v) +

q

6

(u; v)

2

+

v

6

(u; v)

4

= u

6

(u+

3

2

v;�v)

+ q

6

(u+

3

2

v;�v) + v

6

(u+

3

2

v;�v);

2

3

q

6

(u; v) + v

6

(u; v)

= �

2

3

q

6

(u+

3

2

v;�v) � v

6

(u+

3

2

v;�v): (16)

The expansions (10), (11), and (12) do really satisfy these

relations. Moreover, onsideration of all the remaining

limiting ases [9,11℄ shows that these RG series are in

aord with their ounterparts obtained earlier for the

Ising [23,24℄ and O(n)-symmetri [21℄ models.

Let us use the expansions just found for the estima-

tion of the universal ritial values of the sexti e�etive

oupling onstants in the physial ase n = 3. To ob-

tain the numbers of interest from the asymptoti RG

series, a proper resummation proedure should be ap-

plied. Here we use the Pad�e{Borel{Leroy resummation

tehnique whih demonstrates high numerial e�etive-

ness both for simple (Ising and O(n)-symmetri) models

[20,21,25,26,?℄ and for ompliated anisotropi systems

preserving their internal symmetries [27℄. Sine the ex-

pansions of quantities depending on two variables u and

v are dealt with, the Borel{Leroy transformation is taken

in a generalized form:

f(u; v) =

X

ij



ij

u

i

v

j

=

1

Z

0

e

�t

t

b

F (ut; vt)dt;

F (x; y) =

X

ij



ij

x

i

y

j

(i + j + b)!

: (17)

To perform an analytial ontinuation, the resolvent se-

ries

~

F (x; y; �) =

1

X

n=0

�

n

n

X

l=0

n�l

X

m=0



l;n�l

x

l

y

n�l

n!

(18)

is onstruted whih is a series in the powers of � with

the oeÆients being uniform polynomials in u, v and

then Pad�e approximants [L=M ℄ in � at � = 1 are used.

With the four-loop RG expansions in hand, we an

onstrut, in priniple, three di�erent Pad�e approxi-

mants: [2/1℄, [1/2℄, and [0/3℄. To obtain proper approxi-

mation shemes, however, only diagonal [L/L℄ and near-

diagonal Pad�e approximants should be employed. That

is why further we limit ourselves with approximants [2/1℄

and [1/2℄. Moreover, the diagonal Pad�e approximant

[1/1℄ will be also dealt with although this orresponds

to the usage of the lower-order, three-loop RG approxi-

mation.

The algorithm for estimating the universal ritial val-

ues of sexti e�etive ouplings is as follows. Sine, in

fat, we have the power series for the ratios R

u

= u

6

=u

2

,

R

q

= q

6

=(uv), R

v

= v

6

=v

2

rather than for u

6

, q

6

, v

6

themselves, we work with the RG series for these ratios.

They are resummed in three di�erent ways based on the

Borel{Leroy transformation and the Pad�e approximants

just mentioned. The Borel{Leroy integral is evaluated as

a funtion of the shift parameter b under u = u

�

, v = v

�

.

For the ubi �xed point oordinates the values given

by the six-loop RG analysis at n = 3 are adopted [11℄:

u

�

= 1:321, v

�

= 0:117. The optimal value of b providing

the fastest onvergene of the iteration sheme is then

determined. It is dedued from the ondition that the

Pad�e approximants employed should give, for b = b

opt

,

the values of R

u

(R

q

, R

v

) whih are as lose as possible

to eah other. Finally, the average over three estimates

for R

u

(R

q

, R

v

) is found and laimed to be a numerial

value of this universal ratio.

To demonstrate how suh a proedure works, we refer

to Table 1 where the results of the orresponding al-

ulations are presented. The empty ells in this Table

reet the fat that for some values of the shift parame-

ter b Pad�e approximant [1/2℄ turns out to be spoiled by

the \dangerous" poles, i. e. by the poles at positive or

small negative t. As one an see, for u

�

6

(an integer) b

opt

,

providing a maximal loseness of the estimates given by

three working Pad�e approximants, is equal to 2, while

for q

�

6

and v

�

6

b

opt

= 3. So, the results of our four-loop

RG analysis are as follows:

u

�

6

= 0:842; q

�

6

= 0:175; v

�

6

= 0:0108: (19)

The numerial auray of these estimates is �xed both

by the auray ahieved in the ourse of evaluating the
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ubi �xed point oordinates u

�

, v

�

and by the speed

of onvergene of the iteration proedure employed. The

inuene of the latter fator may be haraterized by the

sensitivity of the numerial results with respet to vari-

ation of b. As is seen from Table 1, the values of u

�

6

, q

�

6

,

and v

�

6

, averaged over the working Pad�e approximants,

vary by no more than �0:005, �0:002, and �0:0001, re-

spetively, when b runs from 0 to 10. On the other hand,

these error bars are too small to be realisti. Their on-

servative ounterparts may be dedued aepting that

the true universal values of renormalized sexti ouplings

should lie within the intervals of the variation of the es-

timates given by the leading Pad�e approximant, namely,

by the higher-order pole-free approximant [2/1℄. These

intervals are easily extrated from Table 1, they are as

follows: �0:03 (u

�

6

), �0:01 (q

�

6

), �0:001 (v

�

6

). Suh error

bars look quite realisti. Moreover, they are large enough

to over the inauray produed by the unertainty of

the ubi �xed point loation. Hene, we adopt these er-

ror bars as the �nal ones.

With the quarti and sexti ouplings in hand, we are

able to estimate the redued anisotropy of the sixth-

order nonlinear suseptibility. Combining Eqs. (4), (5),

and (19), we obtain

Æ

(6)

= 0:102� 0:02: (20)

b 0 1 2 3 5 10

u

�

6

[2/1℄ 0.8654 0.8514 0.8427 0.8368 0.8294 0.8206

[1/2℄ 0.8345 | 0.8430 0.8384 0.8356 0.8328

[1/1℄ 0.8097 0.8295 0.8400 0.8466 0.8543 0.8625

q

�

6

[2/1℄ 0.1834 0.1791 0.1765 0.1747 0.1725 0.1699

[1/2℄ 0.1729 0.1714 | 0.1738 0.1737 0.1729

[1/1℄ 0.1653 0.1707 0.1736 0.1754 0.1775 0.1797

v

�

6

[2/1℄ 0.01168 0.01128 0.01103 0.01086 0.01065 0.01041

[1/2℄ 0.01062 0.01059 | 0.01090 0.01072 0.01064

[1/1℄ 0.00989 0.01035 0.01060 0.01075 0.01093 0.01111

Table 1. Numerial estimates for the universal values of sexti e�etive oupling onstants u

6

, q

6

, and v

6

ob-

tained from the four-loop RG expansions (10), (11), and (12) resummed by the Pad�e{Borel{Leroy tehnique using

approximants [2=1℄, [1=2℄, and [1=1℄. The empty ells are due to the \dangerous" poles spoiling orresponding Pad�e

approximants.

Of interest is the role played by the sexti oupling

onstants in forming the magnitudes of �

(6)



, �

(6)

d

, and

Æ

(6)

. It may be shown that, in fat, their ontrubutions

to the sixth-order suseptibility and the anisotropy pa-

rameter are very small. Indeed, negleting u

6

, q

6

, and v

6

hanges the ritial value of Æ

(6)

by about 4%. In other

words, the anisotropy of �

(6)

near T



is �xed pratially

by the quarti oupling onstants only. A similar situa-

tion takes plae for the higher-order suseptibilities. To

demonstrate this, we onsider the eighth-order susep-

tibility �

(8)

for the isotropi (Heisenberg) model. It is

expressed via the e�etive oupling onstants:

�

(8)

= �40320

�

4

m

9

�

96u

3

4

� 24u

4

u

6

+ u

8

�

: (21)

Up till now, the universal ritial value of the oti ou-

pling onstant was determined using the �eld-theoretial

RG approah in three dimensions [21℄, the biased � ex-

pansion tehnique [28℄, and the exat RGmahinery. The

methods employed lead to the estimates u

�

8

= 0:168,

u

�

8

= 0:36, and u

�

8

= 0:145, respetively. All of them are

several times smaller than u

�

4

= 0:794 [19℄ and u

�

6

= 0:951

[21℄. It means that, beause of the big numerial oef-

�ients of the �rst two terms in brakets of Eq. (21),

the ontribution of u

8

to �

(8)

is negligible at ritial-

ity. Sine the ubi �xed point is loated very near the

Heisenberg one, the same onlusion is valid for the 3D

ubi model. This enables us to estimate the ritial

anisotropy of �

(8)

without the alulation of the uni-

versal values of the oti ouplings. Making in Eq. (21)

the substitutions u

4

! u

4

+ v

4

, u

6

! u

6

+ q

6

+ v

6

and

u

4

! u

4

+v

4

=3, u

6

! u

6

+q

6

=3+v

6

=9 with u

8

omitted, we

obtain expressions for �

(8)



and �

(8)

d

, respetively. Using

then the known ritial values of the quarti and sexti

oupling onstants, we obtain the redued anisotropy of

the eighth-order suseptibility:

Æ

(8)

=

j�

(8)



� �

(8)

d

j

�

(8)



= 0:144� 0:04: (22)

The estimates (6), (20), (22) for Æ

(4)

, Æ

(6)

, and Æ

(8)

at ritiality do not look too small to prevent the de-

tetion of the universal ubi anisotropy in physial and

omputer experiments or by means of a thorough analy-

sis of the high-temperature expansions [29,30℄. It is well

known, however, that the approah of the universal rit-

ial regime is ontrolled by the tiny exponent ! � 0:01

[11℄ making both the experimental study and simulation

of the true mode of ritial behaviour rather diÆult [31℄.
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We believe that the results obtained in this paper will

help those searhing for the ubi asymptoti regimes in

real systems and lattie models to hoose a proper strat-

egy and the quantities to be measured.
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�K ROZR�ZNITI KUB�QNU TA �ZOTROPNU KRITIQNU POVED�NKU

D. V. Pahn�n, A. �. Sokolov

Sankt-Peterburz~ki� elektrotehn�qni� un�versitet,

vul. profesora Popova 5, Sankt-Peterbur�, 197376, Ros��

Dl� trivim�rnoÝ kub�qnoÝ model� proanal�zovano nel�n��n� spri�n�tlivost� qetvertogo, xostogo � vo-

s~mogo por�dk�v ta rozrahovano v kub�qn�� neruhom�� toq� parametri Æ

(i)

, �k� harakterizu�t~ Ýh zvedenu

an�zotrop��. Veliqini an�zotropnih parametr�v stanovl�t~: Æ

(4)

= 0:054 � 0:012, Æ

(6)

= 0:102 � 0:02 ta

Æ

(8)

= 0:144 � 0:04. Voni vkazu�t~, wo an�zotropnu (kub�qnu) kritiqnu poved�nku, �ku peredbaqa detal~-

ni� renormal�za��no-grupovi� anal�z u visokih por�dkah teor�Ý zburen~, u prinip� mo�na sposter�gati

u f�ziqnih ta komp'�ternih eksperimentah.
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