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For the three-dimensional 
ubi
 model, the nonlinear sus
eptibilities of the fourth, sixth, and

eighth orders are analyzed and the parameters Æ

(i)


hara
terizing their redu
ed anisotropy are

evaluated at the 
ubi
 �xed point. The anisotropy parameters are found to be: Æ

(4)

= 0:054�0:012,

Æ

(6)

= 0:102�0:02, and Æ

(8)

= 0:144�0:04, indi
ating that the anisotropi
 (
ubi
) 
riti
al behaviour

predi
ted by the advan
ed higher-order renormalization-group analysis should be, in prin
iple,

visible in physi
al and 
omputer experiments.
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Thirty years ago Wilson and Fisher dis
overed that in

the vi
inity of the 
riti
al point the order parameter 
u
-

tuations may 
hange the e�e
tive anisotropy of the sys-

tem drasti
ally [1℄. Having studied the anisotropi
 XY

model within the � expansion they found that approa
h-

ing T




this model either be
omes e�e
tively isotropi
 or

developes its anisotropy further [1℄ until the 
u
tuation-

indu
ed �rst-order phase transition takes pla
e [2,3℄.

What s
enario the system 
hooses depends on the value

and sign of the anisotropi
 
oupling 
onstant in the

initial Landau{Wilson Hamiltonian. In the 
ourse of

studying the generalized 
ubi
 model, the 
ru
ial role

of the order parameter dimensionality n was revealed:

for n < n




the model undergoing the 
ontinuous phase

transition demonstrates isotropi
 
riti
al behaviour while

for n > n




it remains anisotropi
 at 
riti
ality [4℄. The

numeri
al value of the marginal spin dimensionality n




separating these two regimes is of prime physi
al impor-

tan
e sin
e it �xes the true mode of the 
riti
al behaviour

of real 
ubi
 ferromagnets and of some other systems of

interest.

First estimates of n




for the 
ubi
 model obtained

from the lower-order renormalization-group (RG) expan-

sions [3,5,6℄ turned out to be in favour of the inequality

n




> 3 indi
ating that 
ubi
 ferromagnets should be-

long to the 
lass of universality of the three-dimensional

(3D) Heisenberg model. However, the resummation of

the three-loop RG series [7,8℄ and subsequent higher-

order RG 
al
ulations performed both in three [9{11℄ and

(4��) [12℄ dimensions shifted the numeri
al estimate for

n




downwards �xing it below 3 [7{18℄. Remarkable 
on-

sensus between di�erent �eld-theoreti
al approa
hes and

resummation te
hniques was a
hieved in the 
ourse of

this study: 3D RG 
al
ulations [11℄, resummed � expan-

sion [15℄, biased � expansion te
hnique [11℄, and pseudo-

� expansion analysis [17℄ lead to n




= 2:89, n




= 2:855,

n




= 2:87, and n




= 2:862, respe
tively. Hen
e, a

ording

to the update, most a

urate theoreti
al data, 
ubi
 fer-

romagnets should demonstrate the spe
i�
-
ubi
-
riti
al

behaviour with spe
ial set of 
riti
al exponents.

Sin
e n




is very 
lose to the physi
al value n = 3,

the 
ubi
 �xed point lies very near the Heisenberg one

at the RG 
ow diagram and the 
riti
al exponents for

both �xed points almost 
oin
ide. For instan
e, the sus-


eptibility exponent 
 is equal to 1.3895(50) for the 3D

Heisenberg model [19℄ while at the 
ubi
 �xed point


 = 1:390(6) [11℄. It is 
lear that measuring the 
riti-


al exponents one 
an not distinguish between the 
ubi


and Heisenberg 
riti
al behaviours.

In su
h a situation, some alternative physi
al quanti-

ties should be addressed to 
lear up how the systems

with the 
ubi
 symmetry behave approa
hing T




. In

this paper, the nonlinear sus
eptibilities of the 3D 
u-

bi
 model are studied in the framework of the �eld-

theoreti
al RG approa
h, with a parti
ular attention

paid to their anisotropy at 
riti
ality. It will be shown

that the anisotropy of nonlinear sus
eptibilities is sen-

sitive to the type of 
riti
al asymptoti
s and its mea-

surement 
an be used, in prin
iple, for dete
tion of the


ubi
 (non-Heisenberg) 
riti
al behaviour, provided the

anisotropy is as strong as the higher-order RG 
al
ula-

tions predi
t.

In the 
riti
al region, the expansion of the free energy

of the 
ubi
 model in powers of the magnetization 
om-

ponents M

�

may be written in the form:

F (M

�

;m) = F (0;m) +

1

2

m

2��

M

2

�

+m

1�2�

(u

4

+ v

4

Æ

��

)M

2

�

M

2

�

(1)

+m

�3�

(u

6

+ q

6

Æ

��

+ v

6

Æ

��

Æ

�


)M

2

�

M

2

�

M

2




+ : : :

where � is a Fisher exponent, m being an inverse 
orrela-

tion length, and u

4

, v

4

, u

6

, q

6

, v

6

are dimensionless e�e
-

tive 
oupling 
onstants a
quiring, under T ! T




, 
ertain

universal values. These 
oupling 
onstants are related to

the nonlinear sus
eptibilities de�ned in a 
onventional
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way:

�

(4)

��
Æ

=

�

3

M

�

�H

�

�H




�H

Æ

?

?

?

?

?

H=0

;

�

(6)

��
Æ��

=

�

5

M

�

�H

�

�H




�H

Æ

�H

�

�H

�

?

?

?

?

?

H=0

: (2)

Of prime importan
e are the nonlinear sus
eptibilities

in two parti
ular 
ases, when (i) an external magneti


�eld is parallel to a 
ubi
 axis (�

(i)




) and (ii) it is ori-

ented along a 
ell spa
e diagonal (�

(i)

d

). For these two

highly symmetri
 dire
tions the di�eren
es between 
or-

responding values of nonlinear sus
eptibilities are known

to be maximal, i. e., the anisotropy is most pronoun
ed.

It is easy to show that

�

(4)




= �24

�

2

m

3

(u

4

+ v

4

);

�

(4)

d

= �24

�

2

m

3

 

u

4

+

v

4

3

!

: (3)

�

(6)




= 720

�

3

m

6

"

8(u

4

+ v

4

)

2

� u

6

� q

6

� v

6

#

;

�

(6)

d

= 720

�

3

m

6

"

8

 

u

4

+

v

4

3

!

2

� u

6

�

q

6

3

�

v

6

9

#

: (4)

where � is a linear sus
eptibility. To 
hara
terize the

anisotropy strength, we de�ne the redu
ed parameters

Æ

(4)

=

j�

(4)




� �

(4)

d

j

�

(4)




; Æ

(6)

=

j�

(6)




� �

(6)

d

j

�

(6)




: (5)

Below, they will be estimated at 
riti
ality.

Let us start from the lower-order nonlinear sus
epti-

bility �

(4)

. The 
oordinates of the 
ubi
 �xed point u

�

4

and v

�

4

in three dimensions are known from the higher-

order RG 
al
ulations, with resummed four-, �ve-, and

six-loop RG expansions yielding very 
lose numeri
al re-

sults [9,11℄. Considering re
ent six-loop RG estimates as

the most reliable ones, we a

ept u

�

4

= 0:755 � 0:010,

v

�

4

= 0:067� 0:014 [11℄. The substitution of these num-

bers into Eqs. (3), (5) gives

Æ

(4)

= 0:054� 0:012: (6)

To determine �

(6)




, �

(6)

d

, and Æ

(6)

, we have to 
al
ulate

the e�e
tive 
oupling 
onstants u

6

, q

6

, and v

6

. They will

be found perturbatively, using the �eld-theoreti
al RG

approa
h in three dimensions. Our analysis is based on

the well-known Landau{Wilson Hamiltonian of the 3D

n-ve
tor 
ubi
 model:

H =

1

2

Z

d

3

x

"

m

2

0

'

2

�

+ (r'

�

)

2

+

u

0

12

'

2

�

'

2

�

+

v

0

12

'

4

�

#

;

(7)

All the RG 
al
ulations are 
arried out within a mas-

sive theory under zero-momenta normalizing 
onditions

for the renormalized Green fun
tion G

R

(p;m) and the

four-point verti
es U

R

(p

i

;m; u; v; ), V

R

(p

i

;m; u; v; ):

G

�1

R

(0;m) = m

2

;

�G

�1

R

(p;m)

�p

2

?

?

?

p

2

=0

= 1;

U

R

(0;m; u; v) = mu; V

R

(0;m; u; v) = mv: (8)

Here, the value of the one-loop vertex graph in
luding

the fa
tor (n + 8) is absorbed in u and v. Quarti
 e�e
-

tive 
ouplings u and v thus de�ned are related to u

4

and

v

4

entering Eqs. (1), (3), (4) in an obvious way:

u =

n+ 8

2�

u

4

; v =

n+ 8

2�

v

4

: (9)

We limit ourselves by the four-loop RG approximation

that proved to lead to quite a good numeri
al estimate

for the universal value of the sexti
 e�e
tive 
oupling for

the 3D O(n)-symmetri
 model [20,21℄. Sin
e the sym-

metry fa
tors and integrals for all the relevant Feynman

diagrams have been found earlier [21℄, what we have to

do is the 
al
ulation of the tensor (�eld) fa
tors for 6-

point vertex graphs and mass insertions generated by the

O(n)-symmetri
 and 
ubi
 intera
tions. Performing this


al
ulation and then renormalizing the \bare" perturba-

tive expansions for the 6-point verti
es pre
isely in the

same way as it has been done for the isotropi
 n-ve
tor

model [20,21℄, we arrive at following four-loop RG ex-

pansions:

u

6

=

8�

2

3

u

2

(n+ 8)

3

"

(n+ 26)u+ 9v �

1

(n+ 8)

�

34n+ 452

3

u

2

+ 124uv + 18v

2

�

+

1

(n+ 8)

2

�

(1:065025n

2

+ 157:42454n+ 1323:0960)u

3

+ (19:382741n
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+ 1873:9825)u

2

v + (2:3101121n+ 679:33934)uv

2

+ 100:90652v

3

�

�

1

(n+ 8)

3

�

(�0:0638n

3

+ 52:451n

2

+ 2314:99n+ 14387:6)u

4

+ (�2:3434n

2

+ 1006:56n+ 29601:0)u

3

v + (100:156n+ 18985:4)u

2

v

2

+ (11:286n+ 5872:61)uv

3

+ 782:865v

4

�

#

: (10)

q

6

=

8�

2

3

uv

(n+ 8)

3

"

72u+ 27v �

1

(n + 8)

�

(4n+ 520)u

2

+ 468uv+ 108v

2

�

+

1

(n+ 8)

2

�

(�1:1357879n

2

+ 149:54004n+ 5366:1581)u

3

+ (�32:454138n+ 8267:9231)u

2

v + 4107:2194uv

2

+ 775:79040v

3

�

�

1

(n+ 8)

3

�

(0:3986n

3

� 19:2521n

2

+ 3351:86n+ 66591:7)u

4

+ (11:6195n

2

+ 115:223n+ 148119)u

3

v + (�419:561n+ 119322)u

2

v

2

+ 46560:3uv

3

+ 7520:89v

4

�

#

: (11)

v

6

=

8�

2

3

v

2

(n+ 8)

3

"

54u+ 27v �

1

(n+ 8)

�

(�6n + 492)u

2

+ 540uv + 162v

2

�

+

1

(n+ 8)

2

�

(1:3828190n

2

� 50:171743n+ 5947:5257)u

3

+ (�88:612482n+ 10696:342)u

2

v + 6632:1372uv

2

+ 1481:5855v

3

�

�

1

(n+ 8)

3

�

(�0:4873n

3

+ 6:2132n

2

+ 114:760n+ 83872:7)u

4

+ (25:5088n

2

� 2440:17n+ 212729)u

3

v + (�1281:62n+ 205263)u

2

v

2

+ 93009:1uv

3

+ 16755:0v

4

�

#

: (12)

These RG expansions should obey some exa
t rela-

tions appropriate to the systems with 
ubi
 anisotropy.

Indeed, for n = 2 model (7) is known to possess the spe-


i�
 symmetry property. If the �eld '

�

undergoes the

transformation

'

1

! ('

1

+ '

2

)=

p

2;

(13)

'

2

! ('

1

� '

2

)=

p

2;
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quarti
 
oupling 
onstants are also transformed:

u! u+

3

2

v; v !�v; (14)

but the stru
ture of the Hamiltonian itself remains un-


hanged [1℄. Sin
e the RG fun
tions of the problem are


ompletely determined by the stru
ture of the Hamilto-

nian, the RG equations should be invariant with respe
t

to any transformation 
onserving this stru
ture [22℄. This

should be also true for all the expressions relating vari-

ous universal quantities to ea
h other. If, under n = 2, we

apply the transformation (13) to the magnetization 
om-

ponents in Eq. (1), the free-energy expansion remains the

same, provided u

4

, v

4

are repla
ed a

ording to Eq. (14)

while the sexti
 
oupling 
onstants are transformed as

pres
ribed below:

u

6

+

q

6

2

+

v

6

4

! u

6

+ q

6

+ v

6

;

2

3

q

6

+ v

6

!�

2

3

q

6

� v

6

:

(15)

It means that the following relations between the e�e
-

tive 
oupling 
onstants should hold:

u

6

(u; v) +

q

6

(u; v)

2

+

v

6

(u; v)

4

= u

6

(u+

3

2

v;�v)

+ q

6

(u+

3

2

v;�v) + v

6

(u+

3

2

v;�v);

2

3

q

6

(u; v) + v

6

(u; v)

= �

2

3

q

6

(u+

3

2

v;�v) � v

6

(u+

3

2

v;�v): (16)

The expansions (10), (11), and (12) do really satisfy these

relations. Moreover, 
onsideration of all the remaining

limiting 
ases [9,11℄ shows that these RG series are in

a

ord with their 
ounterparts obtained earlier for the

Ising [23,24℄ and O(n)-symmetri
 [21℄ models.

Let us use the expansions just found for the estima-

tion of the universal 
riti
al values of the sexti
 e�e
tive


oupling 
onstants in the physi
al 
ase n = 3. To ob-

tain the numbers of interest from the asymptoti
 RG

series, a proper resummation pro
edure should be ap-

plied. Here we use the Pad�e{Borel{Leroy resummation

te
hnique whi
h demonstrates high numeri
al e�e
tive-

ness both for simple (Ising and O(n)-symmetri
) models

[20,21,25,26,?℄ and for 
ompli
ated anisotropi
 systems

preserving their internal symmetries [27℄. Sin
e the ex-

pansions of quantities depending on two variables u and

v are dealt with, the Borel{Leroy transformation is taken

in a generalized form:

f(u; v) =

X

ij




ij

u

i

v

j

=

1

Z

0

e

�t

t

b

F (ut; vt)dt;

F (x; y) =

X

ij




ij

x

i

y

j

(i + j + b)!

: (17)

To perform an analyti
al 
ontinuation, the resolvent se-

ries

~

F (x; y; �) =

1

X

n=0

�

n

n

X

l=0

n�l

X

m=0




l;n�l

x

l

y

n�l

n!

(18)

is 
onstru
ted whi
h is a series in the powers of � with

the 
oeÆ
ients being uniform polynomials in u, v and

then Pad�e approximants [L=M ℄ in � at � = 1 are used.

With the four-loop RG expansions in hand, we 
an


onstru
t, in prin
iple, three di�erent Pad�e approxi-

mants: [2/1℄, [1/2℄, and [0/3℄. To obtain proper approxi-

mation s
hemes, however, only diagonal [L/L℄ and near-

diagonal Pad�e approximants should be employed. That

is why further we limit ourselves with approximants [2/1℄

and [1/2℄. Moreover, the diagonal Pad�e approximant

[1/1℄ will be also dealt with although this 
orresponds

to the usage of the lower-order, three-loop RG approxi-

mation.

The algorithm for estimating the universal 
riti
al val-

ues of sexti
 e�e
tive 
ouplings is as follows. Sin
e, in

fa
t, we have the power series for the ratios R

u

= u

6

=u

2

,

R

q

= q

6

=(uv), R

v

= v

6

=v

2

rather than for u

6

, q

6

, v

6

themselves, we work with the RG series for these ratios.

They are resummed in three di�erent ways based on the

Borel{Leroy transformation and the Pad�e approximants

just mentioned. The Borel{Leroy integral is evaluated as

a fun
tion of the shift parameter b under u = u

�

, v = v

�

.

For the 
ubi
 �xed point 
oordinates the values given

by the six-loop RG analysis at n = 3 are adopted [11℄:

u

�

= 1:321, v

�

= 0:117. The optimal value of b providing

the fastest 
onvergen
e of the iteration s
heme is then

determined. It is dedu
ed from the 
ondition that the

Pad�e approximants employed should give, for b = b

opt

,

the values of R

u

(R

q

, R

v

) whi
h are as 
lose as possible

to ea
h other. Finally, the average over three estimates

for R

u

(R

q

, R

v

) is found and 
laimed to be a numeri
al

value of this universal ratio.

To demonstrate how su
h a pro
edure works, we refer

to Table 1 where the results of the 
orresponding 
al-


ulations are presented. The empty 
ells in this Table

re
e
t the fa
t that for some values of the shift parame-

ter b Pad�e approximant [1/2℄ turns out to be spoiled by

the \dangerous" poles, i. e. by the poles at positive or

small negative t. As one 
an see, for u

�

6

(an integer) b

opt

,

providing a maximal 
loseness of the estimates given by

three working Pad�e approximants, is equal to 2, while

for q

�

6

and v

�

6

b

opt

= 3. So, the results of our four-loop

RG analysis are as follows:

u

�

6

= 0:842; q

�

6

= 0:175; v

�

6

= 0:0108: (19)

The numeri
al a

ura
y of these estimates is �xed both

by the a

ura
y a
hieved in the 
ourse of evaluating the
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ubi
 �xed point 
oordinates u

�

, v

�

and by the speed

of 
onvergen
e of the iteration pro
edure employed. The

in
uen
e of the latter fa
tor may be 
hara
terized by the

sensitivity of the numeri
al results with respe
t to vari-

ation of b. As is seen from Table 1, the values of u

�

6

, q

�

6

,

and v

�

6

, averaged over the working Pad�e approximants,

vary by no more than �0:005, �0:002, and �0:0001, re-

spe
tively, when b runs from 0 to 10. On the other hand,

these error bars are too small to be realisti
. Their 
on-

servative 
ounterparts may be dedu
ed a

epting that

the true universal values of renormalized sexti
 
ouplings

should lie within the intervals of the variation of the es-

timates given by the leading Pad�e approximant, namely,

by the higher-order pole-free approximant [2/1℄. These

intervals are easily extra
ted from Table 1, they are as

follows: �0:03 (u

�

6

), �0:01 (q

�

6

), �0:001 (v

�

6

). Su
h error

bars look quite realisti
. Moreover, they are large enough

to 
over the ina

ura
y produ
ed by the un
ertainty of

the 
ubi
 �xed point lo
ation. Hen
e, we adopt these er-

ror bars as the �nal ones.

With the quarti
 and sexti
 
ouplings in hand, we are

able to estimate the redu
ed anisotropy of the sixth-

order nonlinear sus
eptibility. Combining Eqs. (4), (5),

and (19), we obtain

Æ

(6)

= 0:102� 0:02: (20)

b 0 1 2 3 5 10

u

�

6

[2/1℄ 0.8654 0.8514 0.8427 0.8368 0.8294 0.8206

[1/2℄ 0.8345 | 0.8430 0.8384 0.8356 0.8328

[1/1℄ 0.8097 0.8295 0.8400 0.8466 0.8543 0.8625

q

�

6

[2/1℄ 0.1834 0.1791 0.1765 0.1747 0.1725 0.1699

[1/2℄ 0.1729 0.1714 | 0.1738 0.1737 0.1729

[1/1℄ 0.1653 0.1707 0.1736 0.1754 0.1775 0.1797

v

�

6

[2/1℄ 0.01168 0.01128 0.01103 0.01086 0.01065 0.01041

[1/2℄ 0.01062 0.01059 | 0.01090 0.01072 0.01064

[1/1℄ 0.00989 0.01035 0.01060 0.01075 0.01093 0.01111

Table 1. Numeri
al estimates for the universal values of sexti
 e�e
tive 
oupling 
onstants u

6

, q

6

, and v

6

ob-

tained from the four-loop RG expansions (10), (11), and (12) resummed by the Pad�e{Borel{Leroy te
hnique using

approximants [2=1℄, [1=2℄, and [1=1℄. The empty 
ells are due to the \dangerous" poles spoiling 
orresponding Pad�e

approximants.

Of interest is the role played by the sexti
 
oupling


onstants in forming the magnitudes of �

(6)




, �

(6)

d

, and

Æ

(6)

. It may be shown that, in fa
t, their 
ontrubutions

to the sixth-order sus
eptibility and the anisotropy pa-

rameter are very small. Indeed, negle
ting u

6

, q

6

, and v

6


hanges the 
riti
al value of Æ

(6)

by about 4%. In other

words, the anisotropy of �

(6)

near T




is �xed pra
ti
ally

by the quarti
 
oupling 
onstants only. A similar situa-

tion takes pla
e for the higher-order sus
eptibilities. To

demonstrate this, we 
onsider the eighth-order sus
ep-

tibility �

(8)

for the isotropi
 (Heisenberg) model. It is

expressed via the e�e
tive 
oupling 
onstants:

�

(8)

= �40320

�

4

m

9

�

96u

3

4

� 24u

4

u

6

+ u

8

�

: (21)

Up till now, the universal 
riti
al value of the o
ti
 
ou-

pling 
onstant was determined using the �eld-theoreti
al

RG approa
h in three dimensions [21℄, the biased � ex-

pansion te
hnique [28℄, and the exa
t RGma
hinery. The

methods employed lead to the estimates u

�

8

= 0:168,

u

�

8

= 0:36, and u

�

8

= 0:145, respe
tively. All of them are

several times smaller than u

�

4

= 0:794 [19℄ and u

�

6

= 0:951

[21℄. It means that, be
ause of the big numeri
al 
oef-

�
ients of the �rst two terms in bra
kets of Eq. (21),

the 
ontribution of u

8

to �

(8)

is negligible at 
riti
al-

ity. Sin
e the 
ubi
 �xed point is lo
ated very near the

Heisenberg one, the same 
on
lusion is valid for the 3D


ubi
 model. This enables us to estimate the 
riti
al

anisotropy of �

(8)

without the 
al
ulation of the uni-

versal values of the o
ti
 
ouplings. Making in Eq. (21)

the substitutions u

4

! u

4

+ v

4

, u

6

! u

6

+ q

6

+ v

6

and

u

4

! u

4

+v

4

=3, u

6

! u

6

+q

6

=3+v

6

=9 with u

8

omitted, we

obtain expressions for �

(8)




and �

(8)

d

, respe
tively. Using

then the known 
riti
al values of the quarti
 and sexti



oupling 
onstants, we obtain the redu
ed anisotropy of

the eighth-order sus
eptibility:

Æ

(8)

=

j�

(8)




� �

(8)

d

j

�

(8)




= 0:144� 0:04: (22)

The estimates (6), (20), (22) for Æ

(4)

, Æ

(6)

, and Æ

(8)

at 
riti
ality do not look too small to prevent the de-

te
tion of the universal 
ubi
 anisotropy in physi
al and


omputer experiments or by means of a thorough analy-

sis of the high-temperature expansions [29,30℄. It is well

known, however, that the approa
h of the universal 
rit-

i
al regime is 
ontrolled by the tiny exponent ! � 0:01

[11℄ making both the experimental study and simulation

of the true mode of 
riti
al behaviour rather diÆ
ult [31℄.
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We believe that the results obtained in this paper will

help those sear
hing for the 
ubi
 asymptoti
 regimes in

real systems and latti
e models to 
hoose a proper strat-

egy and the quantities to be measured.
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�K ROZR�ZNITI KUB�QNU TA �ZOTROPNU KRITIQNU POVED�NKU

D. V. Pahn�n, A. �. Sokolov

Sankt-Peterburz~ki� elektrotehn�qni� un�versitet,

vul. profesora Popova 5, Sankt-Peterbur�, 197376, Ros��

Dl� trivim�rnoÝ kub�qnoÝ model� proanal�zovano nel�n��n� spri�n�tlivost� qetvertogo, xostogo � vo-

s~mogo por�dk�v ta rozrahovano v kub�qn�� neruhom�� toq
� parametri Æ

(i)

, �k� harakterizu�t~ Ýh zvedenu

an�zotrop��. Veliqini an�zotropnih parametr�v stanovl�t~: Æ

(4)

= 0:054 � 0:012, Æ

(6)

= 0:102 � 0:02 ta

Æ

(8)

= 0:144 � 0:04. Voni vkazu�t~, wo an�zotropnu (kub�qnu) kritiqnu poved�nku, �ku peredbaqa
 detal~-

ni� renormal�za
��no-grupovi� anal�z u visokih por�dkah teor�Ý zburen~, u prin
ip� mo�na sposter�gati

u f�ziqnih ta komp'�ternih eksperimentah.
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