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A field-theoretic description of the critical behaviour of the weakly disordered systems is given.

Directly, for three- and two-dimensional systems a renormalization analysis of the effective Hamil-

tonian of the model with replica symmetry breaking (RSB) potentials is carried out in the two-loop
approximation. For the case with first-step RSB the fixed points (FPs) corresponding to the stability
of the various types of critical behaviour are identified with the use of the Padé—Borel summation
technique. The analysis of FPs has shown a stability of the critical behaviour of the weakly disor-
dered three- and two-dimensional systems with respect to RSB effects and realization of the former

scenario of disorder influence on critical behaviour. For the case of systems with arbitrary dimension
from 3 to 4 the ranges of critical behaviour determined by the RSB effects are found for each value

of the p-component order parameter without the use of e-expansion. A comparison with the results

of the e-expansion calculations is carried out.

Key words: renormalization group, disordered systems, replica symmetry breaking potentials,
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The effects produced by weak quenched disorder on
the critical phenomena have been studied for many years
[1-5]. According to the Harris criterion [1], the disorder
affects the critical behaviour only if «, the specific heat
exponent of the pure system, is positive. In this case a
new universal critical behaviour, with new critical expo-
nents, was established. In contrast, when a < 0, the dis-
order appears to be irrelevant for the critical behaviour.

In dealing with the weak quenched disorder the tra-
ditional approach is the replica method [4,5], and in
terms of replicas all the results obtained for the disorder
systems correspond to the so-called replica-symmetric
(RS) solutions. Physically this means that only a unique
ground state is assumed to be relevant for the observ-
able thermodynamics. However, in a number of papers
[6-8] ideas about replica symmetry breaking (RSB) in
the systems with quenched disorder were presented. For
the first time in [6] physical arguments showing that in
the presence of the quenched disorder there exist numer-
ous local minimal-energy configurations separated by fi-
nite barriers and a demonstration of how the summation
over these local minimum configurations can provide ad-
ditional RSB interaction potentials for fluctuating fields
were offered.

The renormalization group (RG) description of the
classical ¢* model with RSB potentials was presented
in the one-loop approximation using e-expansion [6-8].
It was shown that the RSB degrees of freedom produce
a dramatic effect on the asymptotic behaviour of the RG
flows, such that for a general type of RSB there exist
no stable fixed points (FPs), and RG equations arrive in
the strong-coupling regime. In contrast, in [9] using the
fermion representation it was demonstrated that the crit-

ical behaviour of the 2D weakly disordered Ising system
is stable with respect to the RSB modes.

However, our numerous investigations of pure and dis-
ordered systems performed in the two-loop and higher
orders of the approximation for the 3D system directly
together with methods of series summation show that the
predictions made in the lowest order of the approxima-
tion, especially on the basis of the e-expansion, can differ
strongly from the real critical behaviour [10]. Therefore,
the results of RSB effects investigation in [6-8] must
be reconsidered with the use of a more accurate field-
theoretic approach in the higher orders of the approxi-
mation.

In this paper, we realize the field-theoretical RG de-
scription in the two-loop approximation of the 3D and 2D
models and model with arbitrary dimension from three
to four of the weakly disordered systems with RSB inter-
action potentials of forth order on fluctuating fields. We
carry out the solution of the RG equations with the use
of the series summation method and the analysis of sta-
bility of various types of critical behaviour with respect
to the RSB effects.

We consider an O(p)-symmetric Ginzburg-Landau—
Wilson model of a spin system with weak quenched dis-
order near critical point given by the Hamiltonian
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where ¢;(x) is the p-component order parameter and
dr(x) is the Gaussian-distributed random transition
temperature with the second moment of distribution
{{(67(2))?) ~ u defined by the positive constant u which
is proportional to the concentration of defects. The use
of the standard replica trick gives us the possibility to
easily average over the disorder and reduce the task of
statistical description of the weakly disordered system
with the Hamiltonian (1) to the homogeneous system
with the effective Hamiltonian

Hy = / ddx{%zz [Voi(2))® + rlof («)]]
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which is a functional of n replications of the original or-
der parameter with an additional vertex u in the RS
matrix g.p = 946 — u. The properties of the original dis-
ordered system are obtained in the replica number limit
n — 0. The following standard RG procedure based on
the statistical calculation of the contribution to the par-
tition function of long-wavelength order parameter fluc-
tuations around the global minimum state with ¢(z) =0
gives us the possibility to find the various types of criti-
cal behaviour and conditions of their stability and carry
out the calculation of critical exponents.

However, as shown in [6-8], the fluctuations of ran-
dom transition temperature 67(z) for [r—d7(z)] < 0 can
lead to realization in a system of numerous regions with
é(x) # 0 displayed through the numerous local minimal-
energy configurations separated from the ground state by
finite barriers. In this case the direct application of the
traditional RS RG scheme may be questioned. For sta-
tistical description of such systems near the phase tran-
sition point the Parisi RSB scheme was used in [6-8]
by analogy with spin glasses [11]. It was argued that
spontaneous RSB can occur due to the interaction of
the fluctuating fields with the local non-perturbative de-
grees of freedom from the multiple-local-minimum so-
lutions of the mean-field equations. It was shown that
the summation over these solutions in the replica parti-
tion function can provide the additional non-trivial RSB
potential anb Jabd2¢? in which the matrix g, has the
Parisi RSB structure [11]. According to the technique of
the Parisi RSB algebra, in the limit n — 0 the matrix
gab 18 parametrized in terms of its diagonal elements g
and the off-diagonal function g(x) defined in the inter-
val 0 < @ < 1: gqp = (3, 9(x)). The operations with the
matrices gqp are given by the following rules:

ggb - (ﬁngk(x))’ (ﬁz)ab = Zgacgcb - (6; C(l‘)), (3)

c=1

(ﬁB)ab = Z JacYedddb — (Ci, d(l‘)),
c,d=1
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The RS situation corresponds to the case g(x) = const
independent of x.

We carried out the field-theoretical RG description
of the d-dimensional model with the effective replicated
Hamiltonian (2) in which the matrix g, has the RSB
structure in the two-loop approximation. We considered
the most important cases with d = 3 and d = 2. The case
of systems with the arbitrary dimension 3 < d < 4 was
considered also for the clearing up of the range where
the e-expansion results could be applicable. In the field-
theoretic approach the asymptotic critical behavior of
systems in the fluctuation region are determined by the
Callan—Symanzik RG equation for the vertex parts of the
irreducible Green’s functions. To calculate the g func-
tions as functions of the renormalized elements of the
matrix g.4 appearing in the RG equation, we used the
method based on the Feynman diagram technique and
the renormalization procedure [12]. However, the renor-
malization procedure for vertex functions is made diffi-
cult because of complicated expressions (3)—(4) for the
operations with the matrices g45. The steplike structure
of the function g(#) revealed in [6-8] gives us the pos-
sibility to realize the renormalization procedure. In this
paper we considered only the matrices ¢4, which have the
structure known as the one-step RSB with the function
g(x) which looks as:

_ go, 0§l‘<l‘0,
9(x) = { g1, xo <z <1, (5)

where 0 < zy < 1 18 the coordinate of the step and it
remains an arbitrary parameter. The value of x( is not
changed during the renormalization procedure and re-
mains the same as in the starting function go(z). In con-
sequence the RG transformations of the effective repli-
cated Hamiltonian with RSB potentials are determined
by the three parameters g, go and ¢;.

The critical properties of the model can be ex-
tracted from the coefficients 5;(7,90,91) (i = 1,2,3),
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Y6(J,90,91), and v42(7, go,91) of the Callan-Symanzik
RG equation. We obtained the § and ~ functions in the

two-loop approximation in the form of the expansion se-
ries in renormalized parameters g, go and ¢y

Br=—G+@+p)§° —proge® —p(1—w0) 91> + [(8 f —40h +20)p

+ 16 f — 176 h 4 88]§° + (24 h — 8 f — 12) xp pigo” + (24h — 8 f

—12) (1 — x9) pgg1® — (16 h — 8) xg pgo® — (16 h — 8) (1 — p) pg1®,

Bo = —go+ (44+2p)Ggo+ (2pro — 4) go° +2 (1 — x0) pgogn

+ [(8f — 48k +28)p + 16 f — 48 h + 24]5°g0 — [((32 h — 16)xp (6)

+8—32h)p+48 — 96 hlggo® — (32h — 16) (1 — x4) pigog:

+[(48h —8 F —20)zgp— 32h + 16]g0° + (32h — 8) (1 — x) pgo’ g1

+ (16h—12—=8f) (1 — z0) pgog1’,

Bs=—g1+progo’ —[p(vo —2)+ 491>+ (4 +2p)ggr +[(8F —48h

+ 28)p+ 16 f — 48 h + 24]g1G* — (16 h — 8) xp pigo” — [((8 — 16 h) x

— 8)p+48—96 Rluog:? + (16 h — 8) xp pgo® + (8h—8f—4)xy pg1g0>

+[(8f—24h4+12)zpp+ (48h —8 f —20)p+ 16 — 32 h] g1°,
Yo = 4(1 = d) f(d) [(p +2)3” — progo” — p(1 — 0)91°] |

Yo = (4= d) [(p+2)g + progo+ p(1 —z0)g1 —2(6h—2f —3) ((p+2) §°

— pzogo” — p (1 —20)g91”)]

where

1 0
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and in (6) was made the redefinition g5 — gav/J. By
analogy with papers [6-8] we changed gazp — —gazs in
expressions (6) for the # and v functions, so that the
off-diagonal elements g,x, would be positively defined.
Also, we numerically calculated the integrals in the ex-
pressions for f(d) and h(d) for 3 < d < 4. The numerical
values of 2-loop integrals for the case of non-integer space
dimensionalities d are given also in [14].

J = /ddk/(k2 +1)2,

2) = 0.11464, h(d =2) = 0.78130 [13]

It is well known that perturbation series are asymp-
totic series, and that the vertices describing the inter-
action of the order parameter fluctuations in the fluc-
tuating region 7 — 0 are large enough that expressions
(6) cannot be used directly. For this reason, to extract
the required physical information from the obtained ex-
pressions, we employed the Padé—Borel approximation
of the summation of asymptotic series extended to the
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multiparameter case. The direct and inverse Borel trans-
formations for the multiparameter case have the form

[ee]
J(G,90,01) = cmkg gt / F(gt, got, g1t)dt,
1,5,k 0
F(Ggo,m) =Y =g glgh. (8)
o ijk(i+j+k)!

A series in the auxiliary variable @ is introduced for an-
alytical continuation of the Borel transform of the func-
tion:

k k-1t

2.

i=0 j=0

C; k ~i 7 k—
,] i—J z ] i—j
Joo

F(§,90,91,0) =Y _ 0" . (9)
k=0

to which the [L/M] Padé approximation is applied at
the point § = 1. To perform the analytical continua-
tion, the Padé approximant of [L/1] type may be used
which is known to provide rather good results for various
Landau-Wilson models (see, e.g., [15,16]). The property
of preserving the symmetry of a system during applica-
tion of the Padé approximation by the # method, as in
[15], has become important for multivertex models. We
used the [2/1] approximant to calculate the § functions
in the two-loop approximation.

The nature of the critical behaviour 1s determined by
the existence of a stable FP satisfying the system of equa-
tions

We have found three types of non-trivial FP in the phys-
ical region of parameter space g*, g, g7 > 0 for differ-
ent values of p = 1,2, 3, which are presented in Tables
1-4 (the exception was made in the case with p = 3
for d = 3.0, when presented in Table 3 the coordi-
nates of type Il and type III FPs are characterized by
unphysical negative values of gf and g¢7). Type T with
3* £ 0,95 = g7 = 0 corresponds to the RS FP of a pure
system, type 1I with §* # 0,95 = g7 # 0 is a disorder-
induced RS FP and type III with §* £ 0,95 = 0,97 #0
corresponds to the one-step RSB FP. The values of pa-
rameters g%, g7 for the one-step RSB FP depend on the
coordinate of the step xg, and we present in Tables 1-
4 the received values of these parameters in the range
0 < g < 1 with changes through the step Azg =0, 1.

The type of critical behaviour of this disordered sys-
tem for each value of p is determined by the stability of
the corresponding FP. The requirement that the FP be
stable reduces to the condition that the real part of the
eigenvalues \; of the matrix

B; ;=
J 3gj

)

(11)

must be positive.

Analysis of the values A; for FPs presented in Tables
1-4 shows that for 3D and 2D Ising models (p = 1) the
disorder-induced RS FPs are stable [17]. However, this
type FP will lose stability for Ising model with the di-
mension greater than the marginal dimension d. = 3.986.
As for other types of FPs are not stable in the range with
dimension d from 3 to 4, therefore the critical behaviour
of weakly disordered Ising systems will be unstable with
respect to the RSB effects when dimension d takes on

Bi(d",95,97)=0 (i=1,2,3). (10)  the value greater than 3.986.
[ Type| zo | % [ 91 [ M A | ]
I 0.1774| 0 0 10.6536 —0.1692|—-0.1692

II 0.1844(0.0812]0.0812| 0.5253 4+ 0.0893¢ | 0.2112
IIT 10.0{0.1844| 0 ]0.0812| 0.5253 +0.0893¢ |—0.0392
0.1/0.1840] 0 |0.0829| 0.5352+ 0.0983¢ |—0.0492
0.210.1835| 0 [0.0846| 0.547140.1067: |—0.0599
0.3/0.1830] 0 [0.0863| 0.5607+0.1133: |—0.0712
0.4/0.1824] 0 |0.0880| 0.5765+ 0.1180¢ |—0.0832
0.5/0.1817] 0 [0.0895| 0.595140.1203: |—0.0959
0.6/0.1810 0 (0.0910f 0.6172+0.1189¢ |—0.1093
0.7/0.1802| 0 |0.0924| 0.6439+0.11142 |—0.1234
0.8/0.1793] 0 [0.0936| 0.6760 £ 0.0921: |—0.1381
0.910.1784| 0 [0.0947| 0.7135%0.0353: |—0.1534
1.010.1774] 0 ]0.0957| 0.8573 0.6536 |—0.1692

a) dimension d = 3.0

[Type[zo| [ o [ o1 [ M A [ s ]
1 0.0917] 0 | 0 [0.6315 —0.4163]-0.4163

II 0.1231{0.1090]0.1090| 0.6986 + 0.1311z | 0.0022
I11 10.0{0.1231] 0 (0.1090| 0.7047 4+ 0.1069: |—0.0363

b) dimension d = 3.985
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[Typelzo] 9% [ 95 | o1 | N A [ s ]
I 0.0916] 0 0 ]0.6318 —0.4165]—0.4165
1T 0.1230[0.1092[0.1092[ 0.6895 £ 0.1453; |—0.0076
TIT [0.0[0.1230] 0 |0.1092] 0.7018 & 0.0935i |—0.0359

¢) dimension d = 3.986

Table 1. Coordinates of the FPs and eigenvalues of the stability matrix for p = 1.

[Typeleo| g | o | o | M | A | X ]
1 0.155830 0 0 0.667315|—0.001672|—0.001672
11 0.155831]0.000584(0.000584(0.667312| 0.001682 | 0.000004
IIT 10.0/0.155831 0 0.000584(0.667313| 0.001683 |—0.000001

0.10.155831 0 0.000614|0.667313| 0.001684 |—0.000088
0.2]0.155831 0 0.000648(0.667313| 0.001685 |—0.000186
0.3/0.155831 0 0.000686(0.667313| 0.001686 |—0.000296
0.4]0.155831 0 0.000729|0.667313| 0.001687 |—0.000419
0.5/0.155831 0 0.000778|0.667313| 0.001687 |—0.000559
0.6]/0.155831 0 0.000833|0.667313| 0.001688 |—0.000717
0.710.155831 0 0.000896|0.667314| 0.001690 |—0.000901
0.8]0.155831 0 0.000971(0.667314| 0.001692 |—0.001116
0.9]0.155831 0 0.001058(0.667315| 0.001694 |—0.001369
1.010.155830 0 0.001163(0.667316| 0.001696 |—0.001672
a) dimension d = 3.0

[Typelao| ¢ | 90 | 91 | M | X | A |
1 0.1499955 0 0 0.689608|—0.009539(—0.009539
11 0.1500170(0.00325]0.00325]0.689535| 0.009887 |—0.000003
11T 10.0{0.1500170 0 0.00325(0.689535| 0.009887 | 0.000109

0.110.1500169 0 0.00341]0.689535| 0.009899 |—0.000401
0.2]10.1500167 0 0.00360]0.689536| 0.009926 |—0.000961
b) dimension d = 3.10

(Typelzo| §° [ 9o | o1 [ M [ X [ A |
1 0.089762] 0 0 |1.119442]0.133591] —0.133501
il 0.092307]0.036991[0.036991|1.103421] 0.227335 |—0.025378
IIT 0.0(0.092307 0 0.036991|1.103421| 0.227335 | 0.030783

0.1]0.092270 0 0.038723|1.102142| 0.235506 | 0.021563
0.2]0.092205 0 0.040559|1.100913| 0.244667 | 0.011135
0.310.092108 0 0.042500{1.099845| 0.254810 |—0.000648
0.4]0.091970 0 0.044547(1.099106| 0.265820 |—0.013939

¢) dimension d = 3.999

Table 2. Coordinates of the FPs and eigenvalues of the stability matrix for p = 2.

For the 3D XY model (p = 2) the obtained small pos-
itive eigenvalues A; show that the disorder-induced RS
FP is characterized by weak stability. However, when the
dimension d of the system is greater than the marginal
dimension d. = 3.1 the RSB FP is stable. In this case,
the critical behaviour of weakly disordered systems will
be non-universal and dependent on the coordinate of the
step xg and, as consequence, on impurity concentration.

Analysis of FP stability shows that RSB FP (type III)
is stable only in the range of changes xy from 0 to z.,
where z. 1s a marginal value depending on dimension
system. So, for the weakly disordered system dimension
of d = 3.1, =, 1s equal 0.1, and for d = 3.999 z. = 0.3.
In the range of zy from z. to 1 all types of FPs lose
their stability. However, we must notice that the results,
which we received for the disordered XY model, will be
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corrected in the higher field-theory orders of approxima-
tion. We believe that the critical behaviour of the 3D
XY model will be determined by the RS FP of a pure
system (I), but not by the disorder-induced RS FP (II),
obtained in the two-loop order. Two facts indicate this:
the weak stability of the disorder-induced RS FP and
that in the two-loop approximation the marginal value
of p. = 2.0114 for the borderline between regions of sta-
bility for the disorder-induced RS FP and the RS FP of
a pure system. In the higher orders of approximation the
marginal value of p. < 2, such as the specific heat expo-
nent a > 0 for the pure 3D XY model. Also, our results

about influence of the RSB effects for XY model with
d > 3 will be corrected in the higher orders of approxi-
mation, but we think these changes will be quantitative
only.

For the 3D Heisenberg model (p = 3) the RS FP
of a pure system is stable and both other types of FP
are characterized by unphysical negative values of coor-
dinates gf and g7. Only for the dimension d. = 3.999
the values of coordinates g and g} become positive and
simultaneously RSB FP type III become stable in the
range of changes zg from 0 to 0.4. In the range of zg
from 0.4 to 1 there exist no stable FPs.

[Typelzo] o~ | o6 | 9i | M [ A | A ]
1 0.1383 0 0 0.6814| 0.1315 | 0.1315
11 0.1419(—-0.0359|—-0.035910.6727|—0.0891|—0.1450
IIT 10.0(0.1419 0 —0.0359|0.6727|—0.0891|—0.0058
0.110.1420 0 —0.038210.6727|—0.0865| 0.0011
0.2]10.1420 0 —0.04080.6728|—0.0836| 0.0088
0.310.1421 0 —0.043910.6730{—0.0802| 0.0175
0.4]10.1420 0 —0.047410.6734|—0.0764| 0.0273
0.510.1420 0 —0.05160.6738|—0.0719| 0.0385
0.6/0.1418 0 —0.0565|0.6745|—0.0668| 0.0515
0.710.1415 0 —0.0625|0.6755|—0.0606| 0.0667
0.810.1409 0 —0.069910.6768|—0.0533| 0.0845
0.910.1400 0 —0.079310.6787|—0.0443| 0.1058
1.010.1383 0 —0.0915|0.6814|—0.0331| 0.1315
a) dimension d = 3.0
Typeleo] ¢° | 95 | oi | M | X | A |
1 0.081939] 0 0 [1.113633]—0.000820] —0.000820
T 0.081989]0.000171]0.000171|1.113633] 0.000822 |—0.000228
IIT {0.0/0.081989 0 0.000171(1.113633| 0.000822 | 0.000228
0.1]0.081989 0 0.000183(1.113633| 0.000822 | 0.000188
0.2]10.081989 0 0.000196{1.113633| 0.000823 | 0.000142
0.310.081989 0 0.000212{1.113633| 0.000823 | 0.000088
0.4]0.081989 0 0.000230{1.113633| 0.000823 | 0.000025
0.5]0.081989 0 0.000251{1.113633| 0.000823 [—0.000050
0.610.081989 0 0.000277(1.113633| 0.000824 [—0.000140
0.710.081989 0 0.000309{1.113633| 0.000824 |—0.000251
0.8]10.081989 0 0.000350{1.113633| 0.000825 |—0.000391
0.9]10.081989 0 0.000402{1.113633| 0.000826 |—0.000574
1.0(0.081989 0 0.000473(1.113633| 0.000828 [—0.000820

b) dimension d = 3.999

Table 3. Coordinates of the FPs and eigenvalues of the stability matrix for p = 3.

Thus, the investigations carried out in the two-loop ap-
proximation show the stability of the critical behaviour
of two- and three-dimensional weakly disordered systems
with respect to the RSB effects. In dilute Ising-like sys-
tems the disorder-induced critical behaviour is realized
with RS FP. The weak disorder is irrelevant for the criti-
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cal behaviour of systems with multicomponent order pa-
rameter although the proof for 3D XY -like systems de-
mands calculations in the higher orders of approxima-
tion. Our conclusions coincide with results of paper [9]
for the 2D random Ising model, but contradict with re-
sults of papers [6-8] for 3D disordered systems.
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Type[zo] " | g6 [ g1 [ M [ X | A |
1 0.2694 0 0 0.4612|—0.0952|—0.0952
11 0.2736|—0.0646|—0.0646(0.4463| 0.1621 | 0.0570
IIT |0.0(0.2736 0 —0.0646|0.4463| 0.1621 |—0.0251

0.110.2734 0 —0.0665]0.4466| 0.1653 [—0.0300
0.210.2732 0 —0.0685(0.4470| 0.1688 |—0.0352
0.310.2729 0 —0.070610.4476| 0.1726 |—0.0409
0.410.2726 0 —0.072810.4484| 0.1768 |—0.0470
0.510.2723 0 —0.075110.4494| 0.1815 |—0.0535
0.610.2719 0 —0.0775]10.4507| 0.1866 [—0.0606
0.710.2714 0 —0.080110.4524| 0.1922 |—0.0682
0.810.2708 0 —0.082710.4546| 0.1984 |—0.0765
0.910.2701 0 —0.085410.4575| 0.2053 [—0.0855
1.010.2694 0 —0.088210.4612| 0.2129 |—0.0952

Table 4. Coordinates of the FPs and eigenvalues of the stability matrix for the 2D Ising model.

The influence of the RSB effects are realized only for
disordered systems with the dimension d larger than 3. In
this case the values of the marginal dimension d. depend
on the coordinate of the step zg and the number of order
parameter components p. For d greater than marginal di-
mension d. our results qualitatively correspond to results
of papers [6-8] received on the basis of the e-expansion.
So, for Ising systems the effects of RSB destroy a stable
critical behaviour. For XY and Heisenberg models the
range of non-universal critical behaviour exists for the
coordinate of the step zg from 0 to threshold value z.
depending on dimension d. The stable critical behaviour
is not realized for the coordinate of the step zg out of
this range just as for Ising systems.

We assume that with the increasing of defect concen-
tration the marginal dimension d. could be reduced until
the value d. = 3 for some threshold concentration of de-
fects. In this case the effects of RSB will be essential.
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KPUTUYHA ITOBEIOIHKA CJIABOHEBIIOPANKOBAHUX CUCTEM
I3 IIOTEHIIAJIAMMAM 3 ITIOPYITIEHOIO PEIIJITYHOIO CUMETPICIO

II. B. Ilpynnikos, B. B. [Ipyamikos
Kagedpa meopemunnor dizuxu, Omcoruti deporcasrutt ynisepcumem
Hp. Mupy, 55a, Omcox, 644077, Pocia

ITomato TeopeTHKO-MOMBLOBUI ONMUC KPUTUIHOI MOBEMIHKK CJIaDOHEBIIOPAIKOBAHUX CHCTeM. A came, IJid TpHU-
Ta JTBOBHUMIPHUX CHUCTEM Y IBOIETJIEBOMY HabOJIMKEHHI MPOBEOeHO peHopMaJisammitumii aHasis edeKTUBHOTO Ta-
MIJIBTOHIAHA MOl 3 MOTEHINATIAMI 3 HOPYIIEHO0 PEeILIIYHOI cuMeTpieto. I oIHOCXOIMHKOBOTO IIOPY NIEHHSA
perutigrol cuMeTpil 3a JOMOMOro0 IepecyMoByBaHHsA [lame—Bopeida BusABIeHo HEpyXoMl TOYKH, 1O BIAHOBIIAIOTH
CTIKOCT] PI3HUX THUINB KPUTHUYHOI MOBETIHKK. AHaJ I3 HEPYXOMHUX TOYOK MOKa3aB CTIHKICTh KPUTUYHOI IMOBETIHKI
c/1ab60HEBITOPATKOBAHUX TPHU- Ta ABOBUMIPDHHX CHUCTEM HIOIO epeKTIB HOpyIIeHHs PEeILIivHol CuMeTpil Ta peaJisa-
IO CTaporo CIieHapito BIUIMBY Ge3sany Ha KpUTHYHY IMOBEOiHKY. [lj1d crcTeM 13 IOBIJIBHOIO BUMIPHICTIO BiI 3 10
4 Ta 114 KOXKHOTO 3HAYEHHHA p-KOMIIOHEHTHOTO IapaMeTpa BIOPAIyBaHHA 0e3 3aCTOCYBaHHS &-PO3KJIAy 3Hali-
JEeHO IHTePBaJIM KPUTUYHOI HMOBEIIHKM, AKI BUSHAYAIOTHCA epbeKTaMU HOpYIIeHHs peliynol cumerpii. [IpoBemeno
MOPIBHAHHA 3 pe3yJibTaTaMi OTPUMAHUMU Ha OCHOBI &-PO3KJIAy.



