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An Ising model of a disordered granular magnet is proposed. In this model, idential grains with

approximately N � 10

4

� 10

5

magneti atoms are plaed at random into a nonmagneti matrix,

Ising spins inside eah grain are oupled with eah other by a strong ferromagneti exhange, and

the spins of di�erent granules oupled by a weak random exhange interation whih is desribed

by a nonsymmetri Gaussian distribution.

The model exhibits two ritial temperatures of magneti ordering: �rst, loal ferromagneti

ordering appears inside grains in the absene of a long-range orrelation between spontaneous mag-

neti moments of di�erent grains; then, at a lower temperature either a long-range superferromag-

neti state or a marospin glass one is established over the whole sample. Above the upper ritial

temperature the usual paramagneti behaviour of Ising spins is observed, and a \soft" superpara-

magneti state (with temperature-dependent absolute values of spontaneous magneti moments of

grains) is established between the upper and lower ritial temperatures.

The partition funtion of the model is alulated in the moleular-�eld approximation, and the

temperature dependene of the linear and nonlinear magneti suseptibilities in the \soft" super-

paramagneti state is analyzed. As well the de Almeida{Thouless instability line at �nite magneti

�elds is alulated for the ase when the system shows a transition from the superparamagneti

state into a low-temperature marospin glass one.
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I. INTRODUCTION

Reently, the authors of this paper have onsidered

an Ising model of a granule ferromagnet [1,2℄ in whih

mesosopi preipitates of magneti atoms of idential

sizes (granules) form a regular lattie inside a nonmag-

neti matrix. The magneti moments of the atoms inside

eah granule are oupled by a strong ferromagneti in-

teration between the nearest neighbors, and the mag-

neti moments of the neighboring granules are oupled

by a weak long-range ferromagneti interation. In suh

a model there exist two ritial temperatures of mag-

neti ordering: an upper ritial temperature T

1

of mag-

neti ordering, orresponding to a loal ordering, when

the spins beome ordered inside a granule, but the dire-

tions of the total magneti moments of di�erent granules

do not orrelate with one another, and a lower ritial

temperature T

2

, orresponding to the global superfer-

romagneti order, when the total spontaneous magneti

moments of di�erent granules prove to be aligned. It was

assumed that the magneti granules in a nonmagneti

matrix have the same size and shape and a regular dis-

tribution as atoms in a regular rystal lattie.

In the real granular magnets the preipitates of mag-

neti atoms are distributed, as a rule, in a random way

and beause of that intergranular interations are also

random. There are two main reasons for investigating

the model of suh a magnet. On the one hand, the mag-

neti suseptibility of Cu{Co supersaturated solid solu-

tions with preipitation of obalt granules was found to

have maxima [3℄ in the temperature range of 100{500 K,

depending on the omposition of the alloy and the time

of its holding at a temperature. This phenomenon was

interpreted as the appearane of a marospin glass. In

onnetion with that it is interesting to reveal, what pe-

uliarities in magneti harateristis of granule system

an be aused by the disordered e�ets in intergranular

interations.

On the other hand, the Ising model of disordered

granule magnet with Gaussian random intergranular ex-

hange interations let us make omparison with well

known Sherrington{Kirkpatrik model of spin glass [4℄.

This help us to understand, what is the di�erene in the

behaviour between usual spin glass of individual mag-

neti moments and marospin glass of mesosopi super-

magneti granule moments.

II. AN ISING HAMILTONIAN AND THE

PARTITION FUNCTION FOR GRANULE

MAGNET IN THE MOLECULAR FIELD

APPROXIMATION

Let the granules of magneti atoms be plaed in a non-

magneti matrix so that the number of granules N

g

is

great (N

g

� 1), eah of them ontainsN magneti atoms

with Ising spins �

i

(n) = �1, where i is granular number

and n is the spin number inside the granule. We assume
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that all the granules ontain an equal number of atoms

N , but in general ase the granules are distributed in

a random way, and intragranular exhange J

ij

(n;m) is

random. The Ising Hamiltonian for this system an be

written as

H(f�g) = �

1

2

N

g

X

i=1

I

N

N

X

n=1

N

X

m=1;n6=m

�

i

(n)�

i

(m)

�

1

2

N

g

X

i=1

N

g

X

j=1;i 6=j

N

X

n=1

N

X

m=1

J

ij

(n;m)�

i

(n)�

j

(m)

� h

e

N

g

X

i=1

N

X

n=1

�

i

(n): (1)

In the �rst term of the Hamiltonian, whih takes into

aount only the intragranular interations, I > 0 is the

parameter of the intragranule ferromagneti exhange.

We aept the model of interation among all spins and

following [5℄ we introdue the normalizing fator 1=N

for intergranular exhange energy per magneti atom of

the system to be independent of granular size. The se-

ond term desribes the random intergranular interation

among all spins of di�erent granules and for simpli�a-

tion we assume J

ij

(n;m) = J

i;j

that means that random

interation J

ij

depends only on the loations of enters

of granules i and j, but does not depend on the loation

of n and m sites inside granules. That model means, that

the exhange parameter J

ij

weakly depends on distanes

omparable with the granular size. And in the third term,

whih responsible for the Zeeman interation, we signify

h

e

= g�

B

H

a

.

Later we shall onsider only the ase when exhange

energy of atom with its neighborhood in granule is muh

greater then its exhange energy with atoms of another

granule. Hene, at temperature dereasing �rst a loal

ferromagneti ordering appears inside granules and then,

at a lower temperature, a long-range ferromagneti order

is established over the whole sample.

Let us take into aount, that the loal magneti or-

der an appear on every granule, but at the same time

the loal magnetization of the granule i an be direted

parallel or antiparallel to the OZ-axis of the laboratory

oordinate system. Therefore in eah granule we will use

a loal oordinate system, the OZ

i

-axis of whih rigidly

onneted with the diretion of the loal magnetization

of the granule. Then instead of Ising variables �

i

(n) in

the laboratory oordinate system we an use new vari-

ables �

i

(n) in the loal oordinate system with the help

of the following equation:

�

i

(n) = �

i

(n) os(

d

OZ; OZ

i

) � �

i

(n)�

i

; (2)

where �

i

(n) takes the value �1 in the projetion onto the

OZ

i

-axis and os(

d

OZ; OZ

i

) � �

i

is also an Ising variable:

�

i

= 1, when the granule magnetization is direted along

OZ-axis, �

i

= �1, when the granule magnetization is

antiparallel to the OZ laboratory axis.

Then, after the introdution of the loal oordinate

systems, the Hamiltonian (1) takes the form

H(f�; �g) = �

1

2

I

N

N

g

X

i=1

N

X

n=1

N

X

m=1;n6=m

�

i

(n)�

i

(m)

�

1

2

N

g

X

i=1

N

g

X

j=1;i 6=j

J

ij

N

X

n=1

N

X

m=1

�

i

(n)�

i

�

j

(m)�

j

� h

e

N

g

X

i=1

N

X

n=1

�

i

(n)�

i

: (3)

Following [1℄, we introdue in Hamiltonian (3) the

moleular-�eld approximation. Representing the spin

variables �

i

(n) and �

i

(n)�

i

as the mean values h�

i

(n)i

and h�

i

(n)�

i

i and utuations above them and neglet-

ing the utuation interation, we obtain

H

MF

(f�; �g) =

f

E

0

�

N

g

X

i=1

N

X

n=1

[h

ai

(n) + h

bi

(n)�

i

℄�

i

(n);

(4)

where we introdued two types of moleular �elds |

moleular �eld, whih ats on a given spin from the spins

of its own granule

h

ai

(n) =

I

N

N

X

m=1

h�

i

(m)i; (5)

and the moleular �eld, whih ats on this spin from the

spins of other granules

h

bi

(n) = h

e

+

N

g

X

j=1;j 6=i

J

ij

N

X

m=1

h�

j

(m)�

j

i: (6)

Here we denote:

f

E

0

=

1

2

N

g

X

i=1

N

X

n=1

fh

ai

(n)h�

i

(n)i

+ [h

bi

(n) � h

e

℄h�

i

(n)�

i

ig: (7)

For brevity, the dimensionless moleular �elds are de-

noted as

a

i

(n) = �h

ai

(n); b

i

(n) = �h

bi

(n): (8)

Using the partition funtion Z
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Z = Sp

f�g

exp[��H(f�g)℄ =

1

2

N

g

Sp

f�;�g

exp[��H(f��g)℄; (9)

it an be shown [1℄ that

Sp

f�;�g

�

N

g

Y

i=1

N

Y

n=1

exp[(a

i

(n) + b

i

(n)�

i

)�

i

(n)℄

�

= Sp

f�g

�

N

g

Y

i=1

N

Y

n=1

h

exp[a

i

(n) + b

i

(n)�

i

℄ + exp[�(a

i

(n) + b

i

(n)�

i

)℄

i

�

= 2

NN

g

N

g

Y

i=1

�

N

Y

n=1

osh[(a

i

(n) + b

i

(n)℄ +

N

Y

n=1

osh[(a

i

(n)� b

i

(n)℄

�

: (10)

Hene, the partition funtion Z is

Z = e

��

e

E

0

2

N

g

(N�1)

N

g

Y

i=1

fK

(+)

i

+K

(�)

i

g; (11)

K

(�)

i

=

N

Y

p=1

osh[a

i

(p)� b

i

(p)℄: (12)

Knowing Z, we derive the self-onsistent equations for the order parameters in the loal oordinate system

h�

i

(n)i =

tanh[a

i

(n) + b

i

(n)℄K

(+)

i

+ tanh[a

i

(n)� b

i

(n)℄K

(�)

i

K

(+)

i

+K

(�)

i

(13)

and in the laboratory oordinate system

h�

i

(n)�

i

i = h�

i

(n)i =

tanh[a

i

(n) + b

i

(n)℄K

(+)

i

� tanh[a

i

(n)� b

i

(n)℄K

(�)

i

K

(+)

i

+K

(�)

i

: (14)

Further simpli�ation of (11){(14) an be made with tak-

ing into aount, that moleular �eld h

bi

(n) will be equal

for all sites n of single granule i (but various for the di�er-

ent granules) as we onsider for intergranular exhange

J

ij

the dependene only from the distane between en-

ters of granules. Moreover, all spins inside the granule

are onneted with eah other by equal exhange inter-

ations, and in the absene of random intergranular ex-

hange h�

i

(n)i would be equal for all sites and all gran-

ules. As a result it leads to the dependene of h�

i

(n)i

and h�

i

(n)�

i

i only on the number i of granule, but no

dependene on the site number n. We obtain

a

i

(n) = a

i

= �Ih�

i

i;

b

i

(n) = b

i

= �

0

�

h

e

+ N

N

g

X

j=1

J

ij

h�

j

�

j

i

1

A

; (15)

K

(�)

i

= osh

N

(a

i

� b

i

); (16)

h�

i

i =

tanh(a

i

+ b

i

)K

(+)

i

+ tanh(a

i

� b

i

)K

(�)

i

K

(+)

i

+K

(�)

i

; (17)
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h�

i

�

i

i = h�

i

i

=

tanh(a

i

+ b

i

)K

(+)

i

� tanh(a

i

� b

i

)K

(�)

i

K

(+)

i

+K

(�)

i

: (18)

III. BOUNDARIES OF THE STABILITY FOR

THE SUPERPARAMAGNETIC STATE

At �rst we onsider partiular ase J

ij

= 0. In the

absene of random intergranular exhange the moleular

�elds b

i

(8) are equal for all granules for the reason of de-

pending only on the uniformmagneti �eld h

e

= g�

B

H

a

.

Then h�

i

i and h�

i

i are also equal for all granules, and,

omitting i, in the ase of weak external �eld b = �h

e

� 1

from (11) and (18) we an get:

h�i � tanha+ O(b

2

); (19)

h�i = h�� i � [1 + (N � 1)tanh

2

a℄b+O(b

3

): (20)

From (19) follows, that at b = 0 spontaneous ther-

modynami mean value h�i

H

a

=0

� �

0

is given by well

known Ising equation

�

0

= tanha

0

= tanh (�I�

0

) (21)

with the ritial temperature of the appearane of the

loal magneti order T

1

k

B

T

1

= I (22)

and temperature dependenies of loal magneti order

parameter

�

0

�

=

�

3

�

1�

T

T

1

��

1=2

at 1�

T

T

1

� 1; (23)

�

0

�

=

1� 2 exp

�

�

2I

k

B

T

�

= 1� 2 exp

�

�

2T

1

T

�

at

T

T

1

� 1: (24)

An initial paramagneti suseptibility per granule an

be derived from (20)

�

0

= Ng�

B

d

dH

a

h�i

�

�

�

�

�

H

a

=0

=

Ng

2

�

2

B

[1 + (N � 1)�

2

0

℄

k

B

T

;

(25)

whih in the limit I ! 1 or �

0

= 1 leads to the

ase of rigid superparamagneti moment with �

0

=

N

2

g

2

�

2

B

=k

B

T .

Before investigating the general ase of taking into a-

ount intergranular and intragranular interations simul-

taneously, we onsider an instrutive partiular ase, in

whih intragranular interation is ompletely negleted

I = 0. Then from (15) follows a

i

= 0 and h�

i

i = 0, it

means that no loal ferromagneti order exists at I = 0

on the granule with the utuating axis diretion for this

ordering. Now the granules onsist of N noninterating

spins that are onneted with eah other only by inter-

granular exhange J

ij

, and equations for h�

i

i (18) take

the form

h�i = tanh b

i

= tanh[�(h

e

+ N

X

j

J

ij

h�

j

i)℄: (26)

We hoose a Gaussian random distribution model for

intergranular interation

P (J

ij

) =

1

[2�D(J

ij

)℄

1=2

exp[�

(J

ij

�

�

J

ij

)

2

2D(J

ij

)

℄; (27)

where a mean value of random exhange integrate

�

J

ij

(the overline means an averaging over disorder) and its

dispersion D(J

ij

) are normalized in the following way:

�

J

ij

=

1

NN

g

J

0

; D(J

ij

) =

1

N

2

N

g

J

2

: (28)

Then we an get

b

i

= �(h

e

+ J

0

�); (29)

b

2

i

= �

2

[(h

e

+ J

0

�)

2

+ J

2

q℄; (30)

where

� = h�

j

i; q = h�

j

i

2

(31)

(� is ferromagneti order parameter over the whole sam-

ple and q is Edwards{Anderson parameter of spin-glass

order [4℄). It is seen that with suh normalization of dis-

tribution parameters (27) the mean values of dimension-

less moleular �eld b

i

and its squared value b

2

i

do not

depend on the system size and are oinident with orre-

sponding expressions for these values in the Sherrington{

Kirkpatrik model [4℄ (at N = 1 | one spin per granule

| (27) and (28) turn to the formulas of [4℄).

Therefore in the ase I = 0, as in [4℄, at J

0

> J the sys-

tem from ordinary paramagneti state would turn to the

global ferromagneti order over the whole sample � 6= 0,

q 6= 0 at temperature
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k

B

T

0

= J

0

; (32)

and at J

0

< J | to the spin glass order with � = 0; q 6= 0

at temperature

k

B

T

sg0

= J (33)

(with one peuliarity: aording to our model of inter-

granular interations, all spins inside an individual gran-

ule would be e�eted by the same random intergranular

�eld, that gives the same random diretion for all spins

inside granule in the spin-glass state).

Let us now onsider the ase, when the global mag-

neti order over the whole sample appears on the base

of established loal ferromagneti order �

0

6= 0 on gran-

ules, and we shall assume, that I � J

0

; J . It means that

the temperature of appearane of a loal ferromagneti

order T

1

(22) is muh higher than \bare" temperatures

of the global magneti order T

0

(32) or T

sg0

(33).

Making expansions of (17) and (18) in powers of

b

i

� 1, we get

h�

i

i

�

=

tanh a

i

+ �

1

(i)b

2

i

� �

2

(i)b

4

i

+ : : : ; (34)

h�

i

i � h�

i

�

i

i

�

=

A

1

(i)b

i

� A

2

(i)b

3

i

+A

3

(i)b

5

i

� : : : ; (35)

where

�

1

(i) = (N � 1)tanh a

i

(1� tanha

2

i

);

�

2

(i) =

1

3

(N � 1)tanh a

i

(1� tanh

2

a

i

)

� [2 + (N

2

+N � 3)tanh

2

a

i

℄ (36)

and

A

1

(i) = 1 + (N � 1)tanh

2

a

i

;

A

2

(i) =

1

3

[1 + 4(N � 1)tanh

2

a

i

+(N � 1)(N

2

+N � 3)tanh

4

a

i

℄;

A

3

(i) =

1

15

[2 + 17(N � 1)tanh

2

a

i

+10(N � 1)(N

2

+ N � 3)tanh

4

a

i

(37)

+(N � 1)(2N

4

+ 2N

3

� 8N

2

� 8N + 15)tanh

6

a

i

℄:

At I = 0; tanha

i

= 0 oeÆients (37) turn to the oef-

�ients of tanhb

i

expansion in powers of b

i

:A

1

= 1; A

2

=

1

3

and A

3

=

2

15

, and in the limit I ! 1; tanha

i

! 1

turn to A

1

= N; A

2

=

1

3

N

3

and A

3

=

2

15

N

5

.

For further solution of expansions (34) and (35) should

be averaged over disorder. For a more omplex analysis

of this problem the replia method should be used [4℄

for alulating the free energy of a system on the ba-

sis of Hamiltonian (3). But we restrit ourselves by a

more simple approah, based on the usage of averaging

proess with Gaussian distribution of random moleular

�elds. This approah (as shown in [6℄) in the tempera-

ture region over the de Almeida{Thouless instability line

[7℄ in spin glass leads to the same results as the replia-

symmetri method [4℄.

Taking into aount, that b

i

(15) onsists of N � 1

random parts, we an get a distribution funtion with

the help of saddle-point method (see also [6℄)

P (b

i

) =

1

(2��

2

J

2

q)

1=2

exp

n

�

[b

i

� �(h

e

+ J

0

�)℄

2

2�

2

J

2

q

o

:

(38)

As for the random intragranular moleular �eld a

i

=

�Ih�

i

i (15), at h

e

= 0 and in the temperature interval

above the appearane of the spontaneous globalmagneti

order the values h�

i

i and a

i

are equal for all granules that

means they are not random. The \swithing on" of the

magneti �eld h

e

6= 0 or lowering of temperature leads

to the ourrene of random part in h�

i

i. But these ad-

ditional terms to h�

i

i in (17) annot be expressed by

a simple sum of the N

g

� 1 terms from the granules

j 6= i, whih ould give us an opportunity to get the

distribution funtion P (a

i

). But we may take into a-

ount, that beause of onditions I � J

0

; J a relative

ontribution from the intergranular interations in the

formation of h�

i

i an be muh less then the ontribution

from the regular intragranular interations. That is why

we an suppose, that deviation of �

i

from the mean value

� � �

i

will not be large. That is the reason for taking the

simplest approximation, that at averaging over disorder

we an replae everywhere random �

i

and a

i

with their

mean values a � a

i

and � � �

i

.

Finally, after averaging expansions of h�

i

i (34) and

h�

i

i (35), and also of h�

i

i

2

over disorder, we obtain

� = tanh a+ �

1

�

2

[(h

e

+ J

0

�)

2

+ J

2

q℄ (39)

��

2

�

4

[(h

e

+ J

0

�)

4

+ 6(h

e

+ J

0

�)

2

J

2

q + 3J

4

q

2

℄ + : : : ;

� = A

1

�(h

e

+ J

0

�) �A

2

�

3

[(h

e

+ J

0

�)

3

+ 3(h

e

+ J

0

�)J

2

q℄ + A

3

�

5

[(h

e

+ J

0

�)

5

+ 10(h

e

+ J

0

�)

3

J

2

q + 15(h

e

+ J

0

�)J

4

q

2

℄� : : : ; (40)

q = A

2

1

�

2

h

(h

e

+ J

0

�)

2

+ J

2

q

i

�2A

1

A

2

�

4

h

(h

e

+ J

0

�)

4

+ 6(h

e

+ J

0

�)

2

J

2

q + 3J

4

q

2

i
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+(A

2

2

+ 2A

1

A

3

)�

6

h

(h

e

+ J

0

�)

6

+ 15(h

e

+ J

0

�)

4

J

2

q

+45(h

e

+ J

0

�)

2

J

4

q

2

+ 15J

6

q

3

i

� : : : : (41)

A. The temperature of spontaneous transition to

the state with the global magneti order

In the absene of applied �eld (h

e

= 0) from (40) and

(41) we get linearized equations for the order parameters

�

0

and q

0

:

�

�

0

= A

1

�J

0

�

0

;

q

0

= A

2

1

�

2

[J

2

0

�

2

0

+ J

2

q

0

℄

(42)

(index 0 marks order parameters �

0

and q

0

, obtained at

h

e

= 0).

Hene, the temperature of thr transition to the state

with spontaneous magnetization throughout the sample

�

0

6= 0; q

0

6= 0 (let us all it superferromagneti, follow-

ing [8℄) an be derived from the equation

1 =

h

1 + (N � 1)tanh

2

a

0

(�

2

)

i

�

2

J

0

; (43)

but the transition temperature to the state without spon-

taneous magnetization �

0

= 0; q

0

6= 0 (let us all it

marospin glass) an be derived from the equation

1 =

h

1 + (N � 1)tanh

2

a

0

(�

msg

)

i

�

msg

J: (44)

At the moment when the global ordering appears, in-

tergranular moleular �elds are in�nitely small, and then

a

0

(�

r

), where �

r

= �

2

or �

msg

, is de�ned only by reg-

ular intragranular interations:

�

0

(�

r

) = tanh a

0

(�

r

) = tanh [�

r

I�

0

(�

r

)℄ (45)

Then (43) and (44) an be rewritten as

1 =

h

1 + (N � 1)e�

2

i

�

2

J

0

; (46)

1 =

h

1 + (N � 1)e�

2

i

�

msg

J (47)

(here we signify e� � �

0

(�

r

)).

Equations (46) and (47) an be easily solved, with the

usage for e� of a well-known relation (23) in the ase

1 � (T

r

=T

1

) � 1 or (24) at T

r

=T

1

� 1. Assuming

that T

2

lies in the temperature range, where �

0

(T ) is

desribed by the relation (23), we obtain

T

2

=

1

1 + (k

B

T

1

� J

0

)=(3N � 2)J

0

T

1

�

1

1 + k

B

T

1

=3NJ

0

T

1

: (48)

If the following ondition 3NJ

0

� I = k

B

T



� J

0

is

true, then

T

2

� (1� I=3NJ

0

)T

1

: (49)

The validity of equation 3NJ

0

� I � J

0

means also

the validity N e�

2

� 1, and in this ase equations (46)

and (47) turns to

1

�

=

N e�

2

�

2

J

0

; 1

�

=

N e�

2

�

msg

J: (50)

In the same way we obtain

T

msg

�

1

1 + k

B

T

1

=3NJ

T

1

� (1�

I

3NJ

)T

1

(51)

at 3NJ � I � J .

If T

2

or T

msg

falls in the temperature range, where e�

have the exponential form (24), then

k

B

T

2

� NJ

0

(1� 4e

�2I=NJ

0

); (52)

k

B

T

msg

� NJ(1� 4e

�2I=NJ

); (53)

that will take plae at I � NJ

0

� J

0

and I � NJ � J .

Comparing (46) and (47) we see that at J

0

> J with

dereasing temperature the system exhibits the transi-

tion from the superparamagneti state to the superfer-

romagneti one, and at J

0

< J the system passes into

the marospin glass state.

B. Linear and nonlinear magneti suseptibility of

superparamagneti state

A magnetization of the granuleM

g

in the applied �eld

H

a

at temperatures above the ritial ones T

2

and T

msg

an be expressed in the form

M

g

(H

a

) = Ng�

B

�(H

a

) = �

0

H

a

+ �

nl

H

3

a

+ : : : : (54)

In order to �nd linear �

0

and nonlinear �

nl

magneti

suseptibilities, let us solve equations (39){(41), putting

the expansions of �; � and q in the form:

� = �

0

+ �

1

h

2

e

+ : : : ; � = �

1

h

e

+ �

3

h

3

e

+ : : : ;

q = q

1

h

2

e

+ : : : : (55)

For the averaged linear suseptibility �

0

(per one gran-

ule) we �nd
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�

0

= Ng

2

�

2

B

�

1

= Ng

2

�

2

B

�

1 + (N � 1)�

2

0

1� [1 + (N � 1)�

2

0

℄�J

0

:

(56)

Thus, at T > T

1

and �

0

= 0 an expression (56) turns to

be a Curie{Weiss suseptibility for N spins:

�

0

= Ng

2

�

2

B

(k

B

T � J

0

)

�1

at T > T

1

(57)

with pole, having been projeting on the \bare" Curie

temperature k

B

T

0

= J

0

. In the ase of transition over

T

1

and the ourrene of the loal ferromagneti order

in the granule the pole of �

0

is shifted to the point T

2

,

whih is de�ned by equation (46).

Assuming that the ritial temperature of transition

to superferromagneti state T

2

is rather low in om-

parison with T

1

, so that on the large part of tempera-

ture range of superparamagnetism existene the ondi-

tion N�

2

0

(T ) � 1 is valid, then �

0

in this region an be

expressed in the form

�

0

'

[Ng�

B

�

0

(T )℄

2

k

B

T �N�

2

0

(T )J

0

at N�

2

0

(T )� 1 (58)

and approahing T

2

from above

�

0

'

[Ng�

B

e�℄

2

(1 � 2(e�

0

=e�)T

2

)k

B

(T � T

2

)

: (59)

Here e�

0

=

d

dT

�

0

(T )j

T=T

2

.

For the ases 1� T

2

=T

1

� 1 and T

2

=T

1

we get

�

0

=

8

>

>

>

>

<

>

>

>

>

:

3

�

1�

T

2

T

1

�

2

(Ng�

B

)

2

k

B

(T � T

2

)

at 1�

T

2

T

1

� 1;

�

1� 4

�

2

T

1

T

2

+ 1

�

e

�2T

1

=T

2

�

(Ng�

B

)

2

k

B

(T � T

2

)

at

T

2

T

1

� 1:

(60)

If J > J

0

and T

msg

> T

2

, then as the temperature dereases �

0

an not get the pole, and at T = T

msg

a usp

ours in the temperature behaviour of �

0

(T ), so that at the point T = T

msg

we obtain

�

0

(T

msg

) = Ng

2

�

2

B

1

J � J

0

: (61)

As for the nonlinear suseptibility �

nl

, we �nd in the superparamagneti region that

�

nl

= Ng

4

�

4

B

�

3

�

N

3

g

4

�

4

B

(1�N�

2

0

�J

0

)

4

(1�N

2

�

4

0

�

2

J

2

)

�

�

1

3

N�

4

0

�

3

(1 + 2N

2

�

4

0

�

2

J

2

) +

2�

2

0

(1� �

2

0

)

2

�

4

I

1� (1� �

2

0

)�I

�

(62)

(as a general expression is too unwieldy we represent a result whih is valid only in the temperature range where

N�

2

0

(T )� 1).

It an be easily seen that �

nl

will be singular at the transition as to superferromagneti state as well to the

marospin glass state.

If J

0

> J and we have a transition at the temperature T

2

, expressed by ondition 1 ' N e�

2

�

2

J

0

, then in the

neighborhood of the point T

2

we �nd

�

nl

�

=

N

3

g

4

�

4

B

1� (J=J

0

)

2

1

(1� 2(e�

0

=e�)T

2

)

4

k

B

T

2

[k

B

(T � T

2

)℄

4

�

�

1

3

N e�

4

[1 + 2(J=J

0

)

2

℄ +

2e�

2

(1� e�

2

)

2

�

2

I

1� (1� e�

2

)�

2

I

�

: (63)

Thus in the ase 1� T

2

=T

1

� 1 it an be expressed as

�

nl

� �3(Ng�

B

)

4

J

2

0

+ 2J

2

J

2

0

� J

2

(1� T

2

=T

1

)

6

k

B

T

2

[k

B

(T � T

2

)℄

4

(64)

and in the ase T

2

=T

1

� 1 as
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�

nl

� �

1

3

(Ng�

B

)

4

J

2

0

+ 2J

2

J

2

0

� J

2

h

1� 8(4T

1

=T

2

+ 1)e

�2T

1

=T

2

i

k

B

T

2

[k

B

(T � T

2

)℄

4

: (65)

At J > J

0

in (62) the pole appears at �rst at 1�N e�

2

�

msg

J = 0 (50). Then in the viinity of T

msg

it will be

�

nl

�

=

N

3

g

4

�

4

B

2(1� (J=J

0

))

4

1

(1� 2(e�

0

=e�)T

msg

)

1

k

3

B

T

2

msg

(T � T

msg

)

�

�N e�

4

+

2e�

2

(1 � e�

2

)

2

�

msg

I

1� (1� e�

2

)�

msg

I

�

; (66)

so at 1� T

msg

=T

1

� 1 we get

�

nl

= �

9

2

(Ng�

B

)

4

�

J

J � J

0

�

4

(1� T

msg

=T

1

)

3

1

k

3

B

T

2

msg

(T � T

msg

)

(67)

and at T

msg

=T

1

� 1 we �nd

�

nl

= �

1

2

(Ng�

B

)

4

�

J

J � J

0

�

4

h

1� 8(T

1

=T

msg

+ 1)e

�2T

1

=T

msg

i

1

k

3

B

T

2

msg

(T � T

msg

)

: (68)

It an be shown that, as well as at transition to the

spin glass state [9,10℄, nonlinear suseptibility at the ap-

proah to the marospin glass state from above tends to

�1.

IV. THE DE ALMEIDA{THOULESS

INSTABILITY LINE

The de Almeida{Thouless instability line [7℄ means the

appearane of the nonergodi region on the phase dia-

gram of a disordered magnet (see, for example, [6℄). In

the limit of nonzero magneti �eld H

a

in the Ising model

for Sherrington{Kirkpatrik spin glass this line oinide

with the temperature transition line T

sg

into the spin

glass phase, and at H

a

6= 0, when the system starts mag-

netized, the de Almeida{Thouless line T

AT

shifted lower

then temperatures T

sg

[6℄.

One of the easiest way to reveal the de Almeida{

Thouless line is the following. If we alulate the mean

square value of one-site magneti suseptibility �

2

i

with

the help of suh methods, whih do not take into aount

the ompliated intrinsi struture of spin glass phase

(like the symmetrial replia method [4℄ or like heuristi

methods [6℄), then in a ertain �eld and temperature re-

gion the ondition �

2

i

> 0 will be broken. Let us use this

method in our problem.

We shall onsider a random one-site magneti susep-

tibility in the following way:

�

i

= g�

B

dh�

i

i

dH

a

: (69)

Then, taking derivations for all terms of expansion h�

i

i

(35), we get

�

i

= g

2

�

2

B

(

h

d

dH

a

A

1

(i)

i

b

i

�

h

d

dH

a

A

2

(i)

i

b

3

i

+

h

d

dH

a

A

3

(i)

i

b

5

i

� : : :

)

+

h

A

1

(i) � 3A

2

(i)b

2

i

+ 5A

3

(i)b

4

i

� : : :

i

� �

 

g

2

�

2

b

+ N

N

g

X

j=1

J

ij

�

j

!

: (70)

Squaring both the sides of (70) and making averaging

over disorder, we �nd

�

2

i

= �

n

1� �

2

J

2

[A

2

1

� 6A

1

A

2

b

2

i

+ (9A

2

2

+ 10A

1

A

2

)b

4

i

� : : : ℄

o

�1

; (71)

(where we do not give a general form of numerator � be-

ause of its insigni�ane), and the denominator beause

of �

2

i

> 0 should satisfy the ondition

1� �

2

J

2

h

A

2

1

� 6A

1

A

2

b

2

i

+(9A

2

2

+ 10A

1

A

3

)b

4

i

� : : :

i

> 0: (72)
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Inequality (72) is a high-temperature expansion of the de

Almeida{Thouless stable ondition whih is generalized

for ase of disordered granular Ising magnet. At I = 0

(or tanh a = 0) it turns to usual de Almeida{Thouless

ondition [7℄:

1 � �

2

J

2

seh

4

b

i

� 1� �

2

J

2

(1� 2b

2

i

+ 7=3b

4

i

� : : :) > 0: (73)

Let us alulate the de Almeida{Thouless line for

the ase J > J

0

assuming that it lies in the temper-

ature range, where the following assumption N e�

2

�

N tanh

2

a � 1 is valid. Then, leaving in the oeÆients

A

1

; A

2

; A

3

(37) the largest ontributions and taking in

b

2

i

and b

4

i

ontributions � h

2

e

, we get

1� �

2

J

2

N

2

tanh

4

a

n

1� 2�

2

N

2

tanh

2

a[(J

0

� + h

e

)

2

+ J

2

q℄ + 7�

4

N

4

tanh

4

a[2(J

0

� + h

e

)

2

J

2

q + J

4

q

2

℄� : : :

o

> 0: (74)

At temperatures T � T

msg

with the help of equations (39){(41) we obtain q; � and also �, orret to amount � h

2

e

:

q = e�

2

1 + p(1� e�

2

)

1� p(1� e�

2

)

t+

1

3

e�

2

1 + p(7� 6p)(1� e�

2

) + 2p

2

(1� e�

2

)

2

� 4p

3

(1� e�

2

)

3

(1� p(1� e�

2

))

3

t

2

+ : : :

+

1

(J � J

0

)

2

1� p(1� e�

2

)

1 + p(1� e�

2

)

h

2

e

2t

+ : : : ; (75)

� '

1

J � J

0

h

e

+O(h

3

e

); (76)

� = e�+ e�(1� e�

2

)

p

1� p(1� e�

2

)

t+ e�(1� e�

2

)

p(1� p)

(1� p(1� e�

2

))

3

t

2

+ : : :

+

(1� e�

2

)

N e�

3

1

(J � J

0

)

2

1

1 + p(1� e�

2

)

h

2

e

2t

+ : : : ; (77)

where we denote t = 1� T=T

msg

and p � �

msg

I.

Putting (75){(77) in the left part of (74), negleting

terms � h

2

e

of � in omparison with analogous terms of

q (it means a more severe requirement N e�

3

� 1) and

equating this result to zero, we get an equation for the

de Almeida{Thouless temperature T

AT

:

4

3

e�

2

"

1 + (1� e�

2

)�

msg

I

1� (1� e�

2

)�

msg

I

#

3

t

3

AT

=

 

g�

B

H

a

J � J

0

!

2

(78)

(here t

AT

= 1� T

AT

=T

msg

).

If 1 � T

msg

=T

1

� 1 is valid, then using for e� �

�

0

(T

msg

) an expression (23), we �nd

t

3

AT

=

1

4

 

1�

T

msg

T

1

!

2

 

g�

B

H

a

J � J

0

!

2

: (79)

On another ondition, when T

1

� T

msg

and e� � 1, it

follows

t

3

AT

=

3

4

"

1� 4

�

6

T

1

T

msg

� 1

�

e

�2T

1

=T

msg

#

�

g�

B

H

a

J � J

0

�

2

:

(80)

Let us ompare these results with the familiar result

of de Almeida{Thouless [7℄

t

3

AT

=

3

4

�

g�

B

H

a

J � J

0

�

2

; (81)

whih an be obtained in our model in the ase of ig-

noring the intragranular interations (I = 0). It an be

seen, that at onrete H

a

; J and J

0

the lower is the aver-

age value of e�, omposing the spontaneous loal granular

magnetization in the moment of spin-glass appearing, the

wider is a relative width of stability region t

AT

. And only

in the limit I ! 1 or T

1

!1, as it an be seen from

(80), a relative width of temperature stable region t

AT

will oinide with (94). Of ourse, we should take into
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aount that in this limit I !1 the transition temper-

ature itself k

B

T

msg

(I !1) = NJ (see (53)) is N times

greater, then the \bare" temperature k

B

T

sg0

= J (33),

obtained at I = 0.

Let us note in onlusion that the physial results of

the limit transition I ! 1 to the rigid superparamag-

neti granular moment an be easily derived if in the

HamiltonianH(f�; �g) (3) we replae all the �

i

(n) by 1.

Then there appears a model of disordered magnet with

generalized Ising superspins N�

i

whih take two values:

+N and �N and all the following alulations are the

same as for the usual Ising magnet.

V. CONCLUSION

The granular magnets have a very important peu-

liarity | a sharp spatial inhomogenity of atomi stru-

ture and thus a sharp di�erene (in several orders) of in-

tragranular and intergranular interations in magnitude

and in the spatial extension. Strong but short-ranged ex-

hange interations are responsible for appearing on the

granules of giganti magneti moments and their super-

paramagneti behaviour at intermediate temperatures.

In this work we propose a mirosopi sheme of taking

into onsideration these short-ranged intragranular inter-

ations whih is based on the idea of a separate onsider-

ation of intragranular and intergranular moleular �elds

and the following introdution of two types of magneti

order | the loal one (on granule) and the global one

(on the whole sample). This sheme is tested on the sim-

plest Ising model, and it let us show, in partiular, suh

a phenomenon, as the transition of the system from the

usual paramagneti spin behaviour to the \soft" super-

paramagneti behaviour, and also a start of formation of

low-temperature global magneti order from the \soft"

granular supermoments.

At the same time it is obvious, that it is not enough

to use the Ising model for desribing the important ex-

perimental properties. It is known that at experiments

superparamagneti behaviour is observed in systems of

magneti partiles with only a narrow range of partile

sizes [11℄. On the one hand, the partile size should be

greater than some ritial size for us to be able to speak

about the appearane of a spontaneous magneti order

in it. The experiments show (see, for example, [11℄) that

in isolated ferromagneti partiles with the size smaller

than the ritial one there is no magneti ordering. On

the other hand, the partile size has an upper limit be-

ause of the bloking e�et whih means that the relax-

ation time of suÆiently large partiles (the time when

magneti moment of the granule as a whole reahes the

thermal equilibrium state) an be larger than the time

of experimental investigations. This phenomenon is on-

neted with the e�et of inreasing the energy barrier

(getting over by granular magneti moment at it rota-

tion) at inrease of partile size. Besides the energy bar-

rier is de�ned mainly with intrinsi anisotropy of the

partile and, evidently, to a lesser degree with the weak

intergranular exhange [11℄. That is why it is lear, that

desription of bloking e�ets in granular magnets re-

quire the transition to vetor magneti models with tak-

ing into aount the e�ets of �nal magneti intragranu-

lar anisotropy.
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\M'�KI�" SUPERPARAMAGNETNI� STAN � ME�� �OGO ST��KOSTI V

MODEL� �ZIN�A NEVPOR�DKOVANOGO �RANUL^OVANOGO MAGNETU

E. E. Kokor�na, M. V. Medvedv

�nstitut elektrof�ziki, Ural~s~ke v�dd�lenn�, Ros��s~ka akadem�� nauk,

vul. Amundsena, 106, �katerinbur�, 620016, Ros��

E-mail: medvedev�ief.uran.ru

Zaproponovano model~ �zin�a nevpor�dkovanogo �ranul~ovanogo magnetu. U �� model� �dentiqn� �ra-

nuli z priblizno N � 10

4

�10

5

magnetnimi atomami haotiqno pom�wen� v nemagnetnu matri�, �zin��vs~k�

sp�ni vseredin� ko�noÝ �ranuli vzamod��t~ m�� sobo� za dopomogo� sil~noÝ feromagnetnoÝ obm�nnoÝ vza-

mod�Ý, a sp�ni z r�znih �ranul vzamod��t~ m�� sobo� za dopomogo� slabkoÝ haotiqnoÝ obm�nnoÝ vzamod�Ý,

�ka opisut~s� nesimetriqnim rozpod�lom �ausa.

U �� model�  dv� kritiqn� temperaturi magnetnogo vpor�dkuvann�: sperxu z'�vl�t~s� lokal~ne

feromagnetne vpor�dkuvann� vseredin� �ranul za v�dsutnosti dalekos��nih korel��� m�� spontannimi

magnetnimi momentami r�znih �ranul, pot�m pri ni�q�� temperatur� z'�vl�t~s� dalekos��ni� superfe-

romagnetni� stan abo stan makrosp�novogo skla u vs~omu zrazku. Viwe v�d verhn~oÝ kritiqnoÝ temperaturi

sposter�gat~s� zviqa�na paramagnetna poved�nka �zin��vs~kih sp�n�v, \m'�ki�" superparamagnetni� stan

(�z zale�nimi v�d temperaturi absol�tnimi znaqenn�mi spontannih magnetnih moment�v �ranul) vi�vleno

m�� verhn~o� ta ni�n~o� kritiqnimi temperaturami.

Funk�� rozpod�lu model� rozrahovano v nabli�enn� molekul�rnogo pol�, proanal�zovano tempera-

turnu zale�n�st~ l�n��noÝ ta nel�n��noÝ magnetnoÝ spri�n�tlivosti v \m'�komu" superparamagnetnomu

stan�. Tako� rozrahovano l�n�� nest��kosti de Alme�di{Taulesa pri sk�nqennih magnetnih pol�h dl�

vipadku, koli v sistem� pro�vl�t~s� pereh�d v�d superparamagnetnogo stanu v niz~kotemperaturni� stan

makrosp�novogo skla.
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