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An Ising model of a disordered granular magnet is proposed. In this model, identical grains with
approximately N = 10* — 10° magnetic atoms are placed at random into a nonmagnetic matrix,
Ising spins inside each grain are coupled with each other by a strong ferromagnetic exchange, and
the spins of different granules coupled by a weak random exchange interaction which is described
by a nonsymmetric Gaussian distribution.

The model exhibits two critical temperatures of magnetic ordering: first, local ferromagnetic
ordering appears inside grains in the absence of a long-range correlation between spontaneous mag-
netic moments of different grains; then, at a lower temperature either a long-range superferromag-
netic state or a macrospin glass one is established over the whole sample. Above the upper critical
temperature the usual paramagnetic behaviour of Ising spins is observed, and a “soft” superpara-
magnetic state (with temperature-dependent absolute values of spontaneous magnetic moments of
grains) is established between the upper and lower critical temperatures.

The partition function of the model is calculated in the molecular-field approximation, and the
temperature dependence of the linear and nonlinear magnetic susceptibilities in the “soft” super-
paramagnetic state is analyzed. As well the de Almeida—Thouless instability line at finite magnetic
fields is calculated for the case when the system shows a transition from the superparamagnetic
state into a low-temperature macrospin glass one.
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I. INTRODUCTION

Recently, the authors of this paper have considered
an Ising model of a granule ferromagnet [1,2] in which
mesoscopic precipitates of magnetic atoms of identical
sizes (granules) form a regular lattice inside a nonmag-
netic matrix. The magnetic moments of the atoms inside
each granule are coupled by a strong ferromagnetic in-
teraction between the nearest neighbors, and the mag-
netic moments of the neighboring granules are coupled
by a weak long-range ferromagnetic interaction. In such
a model there exist two critical temperatures of mag-
netic ordering: an upper critical temperature 7,1 of mag-
netic ordering, corresponding to a local ordering, when
the spins become ordered inside a granule, but the direc-
tions of the total magnetic moments of different granules
do not correlate with one another, and a lower critical
temperature 7o, corresponding to the global superfer-
romagnetic order, when the total spontaneous magnetic
moments of different granules prove to be aligned. It was
assumed that the magnetic granules in a nonmagnetic
matrix have the same size and shape and a regular dis-
tribution as atoms in a regular crystal lattice.

In the real granular magnets the precipitates of mag-
netic atoms are distributed, as a rule, in a random way
and because of that intergranular interactions are also
random. There are two main reasons for investigating
the model of such a magnet. On the one hand, the mag-
netic susceptibility of Cu—Co supersaturated solid solu-

tions with precipitation of cobalt granules was found to
have maxima [3] in the temperature range of 100-500 K,
depending on the composition of the alloy and the time
of its holding at a temperature. This phenomenon was
interpreted as the appearance of a macrospin glass. In
connection with that it is interesting to reveal, what pe-
culiarities in magnetic characteristics of granule system
can be caused by the disordered effects in intergranular
interactions.

On the other hand, the Ising model of disordered
granule magnet with Gaussian random intergranular ex-
change interactions let us make comparison with well
known Sherrington—Kirkpatrick model of spin glass [4].
This help us to understand, what is the difference in the
behaviour between usual spin glass of individual mag-
netic moments and macrospin glass of mesoscopic super-
magnetic granule moments.

II. AN ISING HAMILTONIAN AND THE

PARTITION FUNCTION FOR GRANULE

MAGNET IN THE MOLECULAR FIELD
APPROXIMATION

Let the granules of magnetic atoms be placed in a non-
magnetic matrix so that the number of granules N, is
great (N, > 1), each of them contains N magnetic atoms
with Ising spins o;(n) = +1, where ¢ is granular number
and n is the spin number inside the granule. We assume
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that all the granules contain an equal number of atoms
N, but in general case the granules are distributed in
a random way, and intragranular exchange J;;(n, m) is
random. The Ising Hamiltonian for this system can be
written as

H({oh) = -3

1 Ny Ny N N
-5 S 3 Jijn,miai(n)a; (m)
1=l j=1,iZjn=1m=1
Ng N
3OS e (1)
i=1 n=1

In the first term of the Hamiltonian, which takes into
account only the intragranular interactions, 7 > 0 is the
parameter of the intragranule ferromagnetic exchange.
We accept the model of interaction among all spins and
following [5] we introduce the normalizing factor 1/N
for intergranular exchange energy per magnetic atom of
the system to be independent of granular size. The sec-
ond term describes the random intergranular interaction
among all spins of different granules and for simplifica-
tion we assume J;;(n, m) = J; ; that means that random
interaction J;; depends only on the locations of centers
of granules ¢ and 7, but does not depend on the location
of n and m sites inside granules. That model means, that
the exchange parameter J;; weakly depends on distances
comparable with the granular size. And in the third term,
which responsible for the Zeeman interaction, we signify
he =gupH,.

Later we shall consider only the case when exchange
energy of atom with its neighborhood in granule is much
greater then its exchange energy with atoms of another
granule. Hence, at temperature decreasing first a local
ferromagnetic ordering appears inside granules and then,
at a lower temperature, a long-range ferromagnetic order
is established over the whole sample.

Let us take into account, that the local magnetic or-
der can appear on every granule, but at the same time
the local magnetization of the granule ¢ can be directed
parallel or antiparallel to the OZ-axis of the laboratory
coordinate system. Therefore in each granule we will use
a local coordinate system, the OZ;-axis of which rigidly
connected with the direction of the local magnetization
of the granule. Then instead of Ising variables o;(n) in
the laboratory coordinate system we can use new vari-
ables p;(n) in the local coordinate system with the help
of the following equation:

oi(n) = wi(n) cos(OZ/,bzi) = pi(n)m, (2)

where yi;(n) takes the value 1 in the projection onto the

0Z;-axis and cos(OZ,/bZi) = 7; is also an Ising variable:
7; = 1, when the granule magnetization is directed along
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OZ-axis, ; = —1, when the granule magnetization is
antiparallel to the OZ laboratory axis.

Then, after the introduction of the local coordinate
systems, the Hamiltonian (1) takes the form

i) = 577 pin) )

1 N N
Y. JZJZZF‘Z n)Tip;(m)7;

1£] n=1m=

—_

> pi(n)i. (3)

Following [1], we introduce in Hamiltonian (3) the
molecular-field approximation. Representing the spin
variables y;(n) and p;(n)7; as the mean values (u;(n))
and {p;(n)7;) and fluctuations above them and neglect-
ing the fluctuation interaction, we obtain

Hyr({p, 7)) = ) + hi(

Eo — ZZ ai (n)7ilpi(n),

i=1 n=1

(4)

where we introduced two types of molecular fields —
molecular field, which acts on a given spin from the spins
of its own granule

n = S ) )

and the molecular field, which acts on this spin from the
spins of other granules

Ng

hoi(n) = he+ 3 Ty Yo (wmm). (6)

J=15#4 m=1
Here we denote:

= 23S (el ()

i=1l n=1

+ [hei(n) — hel(pi(n)7i)}- (7)

For brevity, the dimensionless molecular fields are de-
noted as

al(n) = ﬁhm’ (n), bl(n) = ﬁhbl(n) (8)

Using the partition function 7
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Z = Spyoy exp[—BH({o})] = 2N N SPyu,r} exp[=LH ({pT})],

it can be shown [1] that

Ng

T expl(as(n) + bi(mym )y >]}

i=ln=1

Sp{u,r}{

Ng

S {TETT exples )+ 612 + ol + o] |

i=ln=1

—

Ny . N N
= H{ H cosh|( H cosh|( bl(n)]}
i=1 “n=1 n=1
Hence, the partition function 7 is
~ Ny
7 = e PPN W=D TT k™ + k(7
i=1

H cosh[a; (p) & bi(p)].

Knowing Z, we derive the self-consistent equations for the order parameters in the local coordinate system

tanh[a; (n) + b;(n)] K + tanh[a; (n) — b;(n)] K7

i(n)) =
{pi(n)) K 4 k)

and in the laboratory coordinate system

(i(n)7i) = (o4(n)) =

K| o + K7
Further simplification of (11)—(14) can be made with tak- Ny
ing into account, that molecular field hy;(n) will be equal bi(n) =b; =0 | he+ N Z ity |
for all sites n of single granule ¢ (but various for the differ- j=1

ent granules) as we consider for intergranular exchange

J;; the dependence only from the distance between cen-

ters of granules. Moreover, all spins inside the granule

are connected with each other by equal exchange inter-

actions, and in the absence of random intergranular ex- Ki(i) = coshN(ai + b;),
change {(p;(n)) would be equal for all sites and all gran-

ules. As a result it leads to the dependence of (u;(n))

and {(p;(n)r) only on the number ¢ of granule, but no

dependence on the site number n. We obtain

tanh(a; + b;) K it tanh(a; — bi)Ki(_)

A
<ﬂi> = (

a;(n) = a; = BI{p;), +) N Ki(_)
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(nimi) = (o)

tanh(a; + b)) KT — tanh(a; — b;) K\
KM+ k[ .

(18)

III. BOUNDARIES OF THE STABILITY FOR
THE SUPERPARAMAGNETIC STATE

At first we consider particular case J;; = 0. In the
absence of random intergranular exchange the molecular
fields b; (8) are equal for all granules for the reason of de-
pending only on the uniform magnetic field h, = gup H,.
Then (p;) and {o;) are also equal for all granules, and,
omitting 4, in the case of weak external field b = gh, < 1
from (11) and (18) we can get:

(i) ~ tanha + O(b?), (19)

(o) = (ur) = [1 4 (N — 1)tanh?a]b + O(b%).  (20)

From (19) follows, that at & = 0 spontaneous ther-
modynamic mean value ()g,—¢ = po is given by well
known Ising equation

po = tanhag = tanh (81ug) (21)

with the critical temperature of the appearance of the
local magnetic order T¢q

kpT =1 (22)

and temperature dependencies of local magnetic order
parameter

T \1Y* T
~213(1—- t 11—
Ho [ ( Tcl)] : Tcl

21 2Tcl
=1-2 - ) =1-=2 _
o P ( kBT) P ( r )

T
1. 24
7 < (24)

<1,  (23)

at

An initial paramagnetic susceptibility per granule can

be derived from (20)

_ NgPpg [+ (N — D)
kpT ’

xo = Ngus a0, (o)

- (25)
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which in the limit 7 — oo or g = 1 leads to the
case of rigid superparamagnetic moment with yo =
N2g?u% [kpT.

Before investigating the general case of taking into ac-
count intergranular and intragranular interactions simul-
taneously, we consider an instructive particular case, in
which intragranular interaction is completely neglected
I = 0. Then from (15) follows a; = 0 and {y;) = 0, it
means that no local ferromagnetic order exists at I =0
on the granule with the fluctuating axis direction for this
ordering. Now the granules consist of N noninteracting
spins that are connected with each other only by inter-
granular exchange J;;, and equations for (o;) (18) take
the form

(0) = tanh b; = tanh[B(h. + N Z Jii(oi)].  (26)

We choose a Gaussian random distribution model for
intergranular interaction

1 (Jij = Jij)*
[27D(Ji;)]/? exp[— 2D(J;;)

P(Jij) = L @0

where a mean value of random exchange integrate jij
(the overline means an averaging over disorder) and its
dispersion D(J;;) are normalized in the following way:

_ 1 1

Jij = VN, Jo, D(Jij) = Nz—Nng' (28)
Then we can get
b = Blhe + Joo), (29)
B = B[(he + Joo)? + J%4), (30)
where
o= @, q = (0;)* (31)

(o is ferromagnetic order parameter over the whole sam-
ple and ¢ is Edwards—Anderson parameter of spin-glass
order [4]). Tt is seen that with such normalization of dis-
tribution parameters (27) the mean values of dimension-
less molecular field b; and its squared value b? do not
depend on the system size and are coincident with corre-
sponding expressions for these values in the Sherrington—
Kirkpatrick model [4] (at N = 1 — one spin per granule
— (27) and (28) turn to the formulas of [4]).

Therefore in the case I = 0, as in [4], at Jy > J the sys-
tem from ordinary paramagnetic state would turn to the
global ferromagnetic order over the whole sample ¢ # 0,
q # 0 at temperature
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kpTeo = Jo, (32)

and at Jy < J — to the spin glass order with o = 0,9 £ 0
at temperature

kpTygo = J (33)

(with one peculiarity: according to our model of inter-
granular interactions, all spins inside an individual gran-
ule would be effected by the same random intergranular
field, that gives the same random direction for all spins
inside granule in the spin-glass state).

Let us now consider the case, when the global mag-
netic order over the whole sample appears on the base
of established local ferromagnetic order po # 0 on gran-
ules, and we shall assume, that I > Jy, J. It means that
the temperature of appearance of a local ferromagnetic
order Ty (22) is much higher than “bare” temperatures
of the global magnetic order Tz (32) or Tsg0 (33).

Making expansions of (17) and (18) in powers of
b; < 1, we get

(pi) = tanh a; + Ty ()b7 — To(d)b} 4 .. ., (34)

(o) = (i) = Ay ()b — Ao (0)b3 + A3(1)b? — ..., (35)
where
Ty (¢) = (N — 1)tanh a; (1 — tanha?),
Ty() = %(N — 1)tanha; (1 — tanhzai)
X [24 (N? + N — 3)tanh’a,] (36)
and
A1(3) = 14 (N — 1)tanh?a;,
As(i) = %[1 + 4(N — 1)tanh®a;
+(N — 1)(N? + N — 3)tanh*q;],
As(i) = %[2 + 17(N — 1)tanh®q;
+10(N — 1)(N? + N — 3)tanh*q; (37)

+(N = 1)(2N* 4 2N3 — 8N? — 8N + 15)tanh’a,].

At I =0, tanha; = 0 coefficients (37) turn to the coef-
ficients of tanhb; expansion in powers of b;: Ay = 1, As =
% and Az = 12—5, and in the limit I — oo, tanha; — 1
turn to Ay = N, Ay = %N?’ and Az = %NE’.

For further solution of expansions (34) and (35) should
be averaged over disorder. For a more complex analysis

of this problem the replica method should be used [4]
for calculating the free energy of a system on the ba-
sis of Hamiltonian (3). But we restrict ourselves by a
more simple approach, based on the usage of averaging
process with Gaussian distribution of random molecular
fields. This approach (as shown in [6]) in the tempera-
ture region over the de Almeida—Thouless instability line
[7] in spin glass leads to the same results as the replica-
symmetric method [4].

Taking into account, that b; (15) consists of N > 1
random parts, we can get a distribution function with
the help of saddle-point method (see also [6])

1 b
e P -

i — B(he + Joo)]? }

P(b) = BT

(38)

As for the random intragranular molecular field a; =
BI{p;) (15), at he = 0 and in the temperature interval
above the appearance of the spontaneous global magnetic
order the values (y;) and a; are equal for all granules that
means they are not random. The “switching on” of the
magnetic field h, # 0 or lowering of temperature leads
to the occurrence of random part in {g;). But these ad-
ditional terms to {(g;) in (17) cannot be expressed by
a simple sum of the N; > 1 terms from the granules
J # i, which could give us an opportunity to get the
distribution function P(a;). But we may take into ac-
count, that because of conditions I > Jy,J a relative
contribution from the intergranular interactions in the
formation of {y4;) can be much less then the contribution
from the regular intragranular interactions. That is why
we can suppose, that deviation of y; from the mean value
1 = n; will not be large. That is the reason for taking the
simplest approximation, that at averaging over disorder
we can replace everywhere random p; and a; with their
mean values ¢ = a@; and u =7;.

Finally, after averaging expansions of {(yu;) (34) and
{(o;) (35), and also of {(a;)? over disorder, we obtain

i = tanh a—|—F162[(he—|-J00')2+J2(]] (39)

—T98%[(he + Joo)* 4+ 6(he + Joo)2 T2 q + 3T%¢* ]|+ ...,

o = A1f(he + Joo) — A2 B°[(he + Joo)?
+ 3(he + Joo) J*q) + AsB°[(he + Joo)®

+ 10(he + Joo)?J%q 4+ 15(he + Joo)JJ ¢ — ..., (40)

g = A3 [(he + Joo)? + J%
94, Ay [(he + Joo) 4 6(he + Joo)2J2q + 3T
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(A2 4 24, A)6° [(he ¥ J00)® + 15(he + Joo ) J %

45 (he + Joo) 2T % + 15J6q3} — (41)

A. The temperature of spontaneous transition to
the state with the global magnetic order

In the absence of applied field (he = 0) from (40) and
(41) we get linearized equations for the order parameters
oo and qp:

g0 = AIBJOO-Oa (42)
q0 = A3B*[J508 + J*qo]

(index 0 marks order parameters o and ¢, obtained at
he = 0).

Hence, the temperature of thr transition to the state
with spontaneous magnetization throughout the sample
oo 7 0,q0 # 0 (let us call it superferromagnetic, follow-
ing [8]) can be derived from the equation

1=|14+(N- l)tanhzao(ﬁcz) Be2Jo, (43)

but the transition temperature to the state without spon-
taneous magnetization og = 0,990 # 0 (let us call it
macrospin glass) can be derived from the equation

L= |14 (N — Dtanh®ag(Bmsg) | Bmsg - (44)

At the moment when the global ordering appears, in-
tergranular molecular fields are infinitely small, and then
ag(Ber ), where 8o = Beo OF Pisg, is defined only by reg-
ular intragranular interactions:

/10(667') = tanh aO(ﬁcr) = tanh [BCTI/'LO(BCT)] (45)

Then (43) and (44) can be rewritten as
1= {1 + (N - 1)ﬁ2}ﬁczjo, (46)
1= {1 + (N - 1)ﬁ2}ﬁmsgj (47)

(here we signify i = po(Ber))-

Equations (46) and (47) can be easily solved, with the
usage for g of a well-known relation (23) in the case
1= (Ter /Te1) < 1 or (24) at Te, /Ty < 1. Assuming
that T¢o lies in the temperature range, where po(7) is
described by the relation (23), we obtain

1

Teo =
T 1+ (kpTo — Jo)/BN = 2)Jy

Tc 1
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1
T 14 kpT.1/3NJ,

Tcl~ (48)

If the following condition 3N Jy > I = kg1, > Jy is
true, then

Too 0 (1= I/3N Jo) Ty (49)

The validity of equation 3N Jy > I > Jy means also
the validity N2 > 1, and in this case equations (46)
and (47) turns to

12 N B, Jo, 1= N Bnsg . (50)

In the same way we obtain

1 I
- Tu~(l-—
1+ kpTo/3NJ (=357

Tinsg =

T (1)

at SN > 1> J.
If Tz or Thnsg falls in the temperature range, where
have the exponential form (24), then

kpTeo ~ NJo(1 — de 21N oy, (52)

kpTmsg ~ NJ(1 — de™ /NIy, (53)

that will take place at I > NJy > Joand [ > NJ > J.

Comparing (46) and (47) we see that at Jy > J with
decreasing temperature the system exhibits the transi-
tion from the superparamagnetic state to the superfer-
romagnetic one, and at Jy < .J the system passes into
the macrospin glass state.

B. Linear and nonlinear magnetic susceptibility of
superparamagnetic state

A magnetization of the granule M, in the applied field
H, at temperatures above the critical ones 1.2 and Ty,54
can be expressed in the form

My(H,) = Ngppo(Hg) = xoHa + xntH2 + ... . (54)

In order to find linear yg and nonlinear y,; magnetic
susceptibilities, let us solve equations (39)—(41), putting
the expansions of u, ¢ and ¢ in the form:

ﬂ:ﬂo—l—/ilhz—l—..., a:alhe+03h§+...,

g=qh’+. ... (55)

For the averaged linear susceptibility xo (per one gran-

ule) we find



A “SOFT” SUPERPARAMAGNETIC STATE AND BOUNDARIES OF ITS STABILITY ...

L+ (N = 13
T+ (V= Dedlid

(56)

Xo = Ng*upon = Ng*pup f7— [

Thus, at T' > T¢; and po = 0 an expression (56) turns to
be a Curie—Weiss susceptibility for N spins:

o= Ng*p%(kgT — Jo)™t at T > 1Ty (57)
with pole, having been projecting on the “bare” Curie
temperature kgT.o = Jo. In the case of transition over
T.1 and the occurrence of the local ferromagnetic order
in the granule the pole of g is shifted to the point T¢s,
which is defined by equation (46).

Assuming that the critical temperature of transition
to superferromagnetic state 7.5 is rather low in com-

(Ngug)*
kp(T — Tea)

TcZ ’
1—
3( Tcl)

X0

1. _
{1 —4 (2—1 i 1) e 2Tc1/Tc2}
TcZ

parison with T¢q, so that on the large part of tempera-
ture range of superparamagnetism existence the condi-
tion NpZ(T) > 1 is valid, then yq in this region can be
expressed in the form

. [Ngpppo(T)]*

~ t NuZ(T 1 58
0= EeT — N2 (1) s a po(T) > (58)

and approaching T, from above

[Ngupii)*
1= 2(f1' [0) Tea) kg (T — Tez) |

Yo ( (59)

- d
Here i’ = WNO(THT:TCT
For the cases 1 — Tyo/Te1 < 1 and Tea /Ty we get

TcZ
t 1-— 1
a T < 1,
(60)
(Ngps)® Tes
_— at < 1.
kB (T - TCZ) Tcl

If J > Jy and Tp,sg9 > Teo, then as the temperature decreases xo can not get the pole, and at T' = T;,,,4 a cusp
occurs in the temperature behaviour of xo(7'), so that at the point T' = T,,,, we obtain

X0 (Tmsg) —

Ng®ug

1
J—Jy

(61)

As for the nonlinear susceptibility x,;, we find in the superparamagnetic region that

= Ngtubos ~
Xnl g Hpo3 (1 —Nﬂgﬁjo)4(1 —Nzﬂéﬁzﬂ)

N3g4 4 1
= {——Nu363(1+2N2ﬂ362J2)+

2u3(1 — u%)zﬁ”}

TN S

(as a general expression is too unwieldy we represent a result which is valid only in the temperature range where

Np3(T) > 1).

It can be easily seen that y,; will be singular at the transition as to superferromagnetic state as well to the

macrospin glass state.

If Jo > J and we have a transition at the temperature 7,5, expressed by condition 1 ~ Nfi?B.5Jp, then in the

neighborhood of the point 7,2 we find

N3g*ug 1 kpTe

Xnl =
Thus in the case 1 — T.o/Tp1 € 1 it can be expressed as
4 JE+ 272

Xnt ~ —3(Ngug)

and in the case Tpo/Te1 < 1 as

1= (J/Jo)? (1 = 2(p' /) Tea)* [k (T — Te2)]*

—(1
e

{_%Nﬁ‘*[l +2(J/ o) + 21ﬁ_((11_—ﬁﬁ2‘))§;~211} ' )
_ Tcz/Tc1)6 AL oy

[kp (T —Teo)]*
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LR 427

kBTC2

1
al R —=(N O 1 = 8(4Toy [Ty + 1)e 2T/ Tz 2272 65
Xnl 3( gﬂB) Jg _J? ( 1/ 2+ )6 } [kB(T_Tcz)]4 ( )
At J > Jy in (62) the pole appears at first at 1 — Ni?3,54 = 0 (50). Then in the vicinity of T}, it will be
N344 1 N 2~21_~22msl
Ynt o g /’LB - —— s {_Nﬂ4+ H ( /’L~2) 6 g }’ (66)
20— (3] J0)) (1= 277 Tonsg) Ky T2ng (T = ) = (1= 7)1
so at 1 — Thog/To1 < 1 we get
= o) (72 (= T/ T)? 1 (67)
Xnl = 9 9uB 7 JO msg/Lcl k%T%sg(T — Tmsg)
and at Tpn.y/Te1 < 1 we find
4
Yni = _l(NgﬂB)‘* {1 — 8(To1/Tonsg + 1)e~ 2Tt/ Tmsg ! : (68)
2 J — Jo g k%Tnz’Lsg(T - Tmsg)

It can be shown that, as well as at transition to the
spin glass state [9,10], nonlinear susceptibility at the ap-
proach to the macrospin glass state from above tends to
—00.

IV. THE DE ALMEIDA-THOULESS
INSTABILITY LINE

The de Almeida—Thouless instability line [7] means the
appearance of the nonergodic region on the phase dia-
gram of a disordered magnet (see, for example, [6]). In
the limit of nonzero magnetic field H, in the Ising model
for Sherrington—Kirkpatrick spin glass this line coincide
with the temperature transition line Ti, into the spin
glass phase, and at H, # 0, when the system starts mag-
netized, the de Almeida—Thouless line T4 shifted lower
then temperatures Ti, [6].

One of the easiest way to reveal the de Almeida—
Thouless line is the following. If we calculate the mean
square value of one-site magnetic susceptibility x? with
the help of such methods, which do not take into account
the complicated intrinsic structure of spin glass phase
(like the symmetrical replica method [4] or like heuristic
methods [6]), then in a certain field and temperature re-
gion the condition x? > 0 will be broken. Let us use this
method in our problem.

We shall consider a random one-site magnetic suscep-
tibility in the following way:

(G
Xi = JHB aH, (69)

Then, taking derivations for all terms of expansion (o;)
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[
(35), we get

Xi = gzﬂ%{ {%Al(i)} b — {%Az(i)} b

+ [dgaAg(i)}bf_...}

+ [Al(i) — 3A5(i)b? + BAs(i)bF — .. ]

Ng
X ﬁ(gzﬂg + NZ Jinj) . (70)

j=1

Squaring both the sides of (70) and making averaging
over disorder, we find

X7 = o{1— 5747 - 6.4, 4507

_ -1
4 (942 4+ 104, Ap)bE — .. .]} , (71)

(where we do not give a general form of numerator @ be-
cause of its insignificance), and the denominator because

of X_ZZ > 0 should satisfy the condition

1— G2 A} — 64,4507

+(9A2 + 1041 A3)bt — ... | > 0. (72)
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Inequality (72) is a high-temperature expansion of the de
Almeida—Thouless stable condition which is generalized
for case of disordered granular Ising magnet. At 7 = 0
(or tanha = 0) it turns to usual de Almeida—Thouless
condition [7]:

1 — B%J%sech®d;

1—ﬁaﬂN%mm%{l—M?N%Mm%ﬁha+hgz+J%}+U¢Nﬂam#ﬂﬂha+h)tﬂq+J42

1= 2T (1 =267 +7/3bF — .. ) > 0. (73)

Let us calculate the de Almeida—Thouless line for
the case J > Jy assuming that it lies in the temper-
ature range, where the following assumption N2 ~
N tanh® @ > 1 is valid. Then, leaving in the coefficients

Ay, As, Ag (37) the largest contributions and taking in
b2 and b4 contributions ~ h?, we get

>0

At temperatures 7' < 7,5, with the help of equations (39)—(41) we obtain ¢, o and also p, correct to amount ~ hZ:

_ /’IZ) + 2])2(1 _ /’IZ

2_431_~23
) P( ﬂ)tz—l—...

o1+ p(1—p? 1. ,14p(7—-6p)(1
=i ( g£t4__ﬂz p(7 = 6p)(
l—p(l—p) 3
1L 1-p(l-@)he
(J Jo2 1+p(l—p2)2t
~ he K3
=i+ il = )t + (1~ )
1—p(1—7?)
(1—p 1 1 h?

NG (] = Jo)? 1+ p(1—7%) 20

where we denote t =1 —T/T,,54 and p = Bmsql.

Putting (75)- (77) in the left part of (74), neglecting
terms ~ h? of y in comparison with analogous terms of
q (it means a more severe requirement Ni® >> 1) and
equating this result to zero, we get an equation for the
de Almeida—Thouless temperature Tlyp:

3 2
ms H
;gﬂwz ] 3y = (%#E;JO) (78)

(here tAT =1- TAT/Tmsg)~
If 1 — Thsg/Ter < 1 is valid, then using for
1o(Tmsg) an expression (23), we find

2 2
1 Tms g/'LBHa
B==01- g .

On another condition, when 11 > Ty and i & 1, it
follows

4.

S| 1+ (11—
y

- (1

(= (=)

(75)
(76)
P(l _P) 2
- pa-mp
(77)

T.
tiF:%[1—4@ L

et | (Bt
Tinsg J—Jy

(80)

Let us compare these results with the familiar result

of de Almeida—Thouless [7]

guBHa)2

3
thr = Z(J—JO (81)

which can be obtained in our model in the case of ig-
noring the intragranular interactions (I = 0). It can be
seen, that at concrete H,, J and Jy the lower is the aver-
age value of ji, composing the spontaneous local granular
magnetization in the moment of spin-glass appearing, the
wider is a relative width of stability region ¢ 4. And only
in the limit I — oo or 1,3 — 00, as it can be seen from
(80), a relative width of temperature stable region ¢ 47
will coincide with (94). Of course, we should take into
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account that in this limit I — oo the transition temper-
ature itself kpTp,sq(f — 00) = NJ (see (53)) is N times
greater, then the “bare” temperature kgTss0 = J (33),
obtained at 1 = 0.

Let us note in conclusion that the physical results of
the limit transition I — oo to the rigid superparamag-
netic granular moment can be easily derived if in the
Hamiltonian H ({y, 7}) (3) we replace all the p;(n) by 1.
Then there appears a model of disordered magnet with
generalized Ising superspins N7; which take two values:
4+ N and —N and all the following calculations are the
same as for the usual Ising magnet.

V. CONCLUSION

The granular magnets have a very important pecu-
liarity — a sharp spatial inhomogenity of atomic struc-
ture and thus a sharp difference (in several orders) of in-
tragranular and intergranular interactions in magnitude
and in the spatial extension. Strong but short-ranged ex-
change interactions are responsible for appearing on the
granules of gigantic magnetic moments and their super-
paramagnetic behaviour at intermediate temperatures.
In this work we propose a microscopic scheme of taking
into consideration these short-ranged intragranular inter-
actions which is based on the idea of a separate consider-
ation of intragranular and intergranular molecular fields
and the following introduction of two types of magnetic
order — the local one (on granule) and the global one
(on the whole sample). This scheme is tested on the sim-
plest Ising model, and it let us show, in particular, such

a phenomenon, as the transition of the system from the
usual paramagnetic spin behaviour to the “soft” super-
paramagnetic behaviour, and also a start of formation of
low-temperature global magnetic order from the “soft”
granular supermorments.

At the same time it is obvious, that it is not enough
to use the Ising model for describing the important ex-
perimental properties. It is known that at experiments
superparamagnetic behaviour is observed in systems of
magnetic particles with only a narrow range of particle
sizes [11]. On the one hand, the particle size should be
greater than some critical size for us to be able to speak
about the appearance of a spontaneous magnetic order
in it. The experiments show (see, for example, [11]) that
in isolated ferromagnetic particles with the size smaller
than the critical one there is no magnetic ordering. On
the other hand, the particle size has an upper limit be-
cause of the blocking effect which means that the relax-
ation time of sufficiently large particles (the time when
magnetic moment of the granule as a whole reaches the
thermal equilibrium state) can be larger than the time
of experimental investigations. This phenomenon is con-
nected with the effect of increasing the energy barrier
(getting over by granular magnetic moment at it rota-
tion) at increase of particle size. Besides the energy bar-
rier 1s defined mainly with intrinsic anisotropy of the
particle and, evidently, to a lesser degree with the weak
intergranular exchange [11]. That is why it is clear, that
description of blocking effects in granular magnets re-
quire the transition to vector magnetic models with tak-
ing into account the effects of final magnetic intragranu-
lar anisotropy.
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“M’IKUN” CYIEPIIAPAMATHETHUM CTAH I MEXKI MOTO CTIMKOCTHU B
MO/IEJII I3MHI'A HEBIIOPSAIKOBAHOTO I'PAHYJILOBAHOTO MATHETY

E. E. Kokopina, M. B. Mensenes
Inemumym eaexmpodhizuxu, Vparvcore eiddiaenna, Pocificoxa axademia nayx,
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3amporoHOBaHO MOOEJIb [3MHI'a HEBIIOPAIKOBAHOTO I'PaHYJILOBAHOTO MarHeTy. Y Iii Momesi iAeHTHYHI r'pa-
Hysn 3 npubiamsao N & 10* — 10° MarseTHEME aTOMaMH XaOTHYHO IIOMIIIeH] B HeMarHeTHY MATDUILO, 3HHIIBCHK]
CITIHA BCEPEeIrHl KOXHOI I'PaHy/Id B3a€MOMIIOTH MK COHOI0 3a JOMOMOTOI CHIbHOI hepoMarHeTHoOl 0OMIHHOI B3a-
€Mo/Iii, a CIIHU 3 PI3HUX I'PaHyJ B3a€MOMIIOTH MIXK CODOIO 3a JIOIMOMOIOI0 CJTabKOl XaoTHYHOl OOMIHHOI B3aeMoii,
AKa, OIMCYETHCA HeCHMETPUYHIM PO3momiioM | ayca.

V mii mMomesi € OBl KPUTHYHI TeMIlepaTypyd MarHETHOI'O BIIOPAIKYBAHHA: CIEPINY 3’ ABJIAETHCA JIOKaJIbHe
depomarteTHe BIIOPAIKYBaHHA BCEPEIWHI I'PAHYJI 3a BIIICYTHOCTH NAJIEKOCHKHUX KOPEJdlliii MizK CIIOHTAHHUMUI
MarHeTHUMHM MOMEeHTaMM PISHUX I'DaHyJ, ITOTIM IpU HIDKYIA TeMIepaTypl 3 aBJIAETbCA JadeKOCaKHINA cynepde-
poMarHeTHU# cTan abo cTaH MAaKPOCITIHOBOTO CKJa Y BCbOMY 3pa3Ky. Buile Bif BepXHBOI KDUTHYHOI TeMIlepaTypu
CriocTepiraeThcd 3BHYaiiHa MMapaMarHeTHa MOBEOIHKA 13MHTIBCBKHUX CIIHIB, ‘M’ aKuii” cymeprapaMarHeTHHid cTaH
(i3 3ayexkHUMU Big TeMnepaTypu aGCOIIOTHIME 3HAYEHHAMHU CIIOHTAHHUX MaTHETHHX MOMEHTIB I'DaHyJl) BUABIIEHO
MiXK BEPXHBOIO Ta HIKHBOI KPUTHUYHUMU TEMIIEPATypPAMHU.

OYHKINIO PO3IOILIY MOOEJl PO3paxoBaHO B HabOJIMKEHHI MOJIEKYJIAPHOTO IIOJIs, MPOaHaJI30BaHO TeMIepa-
TYPHY 3aJIeKHICTH JIHIAHOI Ta HeJIHIRHOI MarHeTHOl CIHPUAHATIMBOCTH B “M’dKoMy” CyHepliapaMarHeTHOMY
crani. Takox pospaxoBaHO JIHIIO HecTiikoctn ne Anmeinn—Tayseca mpu CKIHYEHHMX MAarHETHHUX MOJAX IJIA
BUIAIKY, KOJU B CUCTEMI TIPOABJIAETHCA TIEPEXil Bill CyleplapaMarHeTHOTO CTaHy B HU3bKOTEMIIepaTypHUll cTaH
MAaKpPOCIHOBOTO CKJIA.

303



