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An Ising model of a disordered granular magnet is proposed. In this model, identi
al grains with

approximately N � 10

4

� 10

5

magneti
 atoms are pla
ed at random into a nonmagneti
 matrix,

Ising spins inside ea
h grain are 
oupled with ea
h other by a strong ferromagneti
 ex
hange, and

the spins of di�erent granules 
oupled by a weak random ex
hange intera
tion whi
h is des
ribed

by a nonsymmetri
 Gaussian distribution.

The model exhibits two 
riti
al temperatures of magneti
 ordering: �rst, lo
al ferromagneti


ordering appears inside grains in the absen
e of a long-range 
orrelation between spontaneous mag-

neti
 moments of di�erent grains; then, at a lower temperature either a long-range superferromag-

neti
 state or a ma
rospin glass one is established over the whole sample. Above the upper 
riti
al

temperature the usual paramagneti
 behaviour of Ising spins is observed, and a \soft" superpara-

magneti
 state (with temperature-dependent absolute values of spontaneous magneti
 moments of

grains) is established between the upper and lower 
riti
al temperatures.

The partition fun
tion of the model is 
al
ulated in the mole
ular-�eld approximation, and the

temperature dependen
e of the linear and nonlinear magneti
 sus
eptibilities in the \soft" super-

paramagneti
 state is analyzed. As well the de Almeida{Thouless instability line at �nite magneti


�elds is 
al
ulated for the 
ase when the system shows a transition from the superparamagneti


state into a low-temperature ma
rospin glass one.

Key words: granular magnet, Ising model, magneti
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I. INTRODUCTION

Re
ently, the authors of this paper have 
onsidered

an Ising model of a granule ferromagnet [1,2℄ in whi
h

mesos
opi
 pre
ipitates of magneti
 atoms of identi
al

sizes (granules) form a regular latti
e inside a nonmag-

neti
 matrix. The magneti
 moments of the atoms inside

ea
h granule are 
oupled by a strong ferromagneti
 in-

tera
tion between the nearest neighbors, and the mag-

neti
 moments of the neighboring granules are 
oupled

by a weak long-range ferromagneti
 intera
tion. In su
h

a model there exist two 
riti
al temperatures of mag-

neti
 ordering: an upper 
riti
al temperature T


1

of mag-

neti
 ordering, 
orresponding to a lo
al ordering, when

the spins be
ome ordered inside a granule, but the dire
-

tions of the total magneti
 moments of di�erent granules

do not 
orrelate with one another, and a lower 
riti
al

temperature T


2

, 
orresponding to the global superfer-

romagneti
 order, when the total spontaneous magneti


moments of di�erent granules prove to be aligned. It was

assumed that the magneti
 granules in a nonmagneti


matrix have the same size and shape and a regular dis-

tribution as atoms in a regular 
rystal latti
e.

In the real granular magnets the pre
ipitates of mag-

neti
 atoms are distributed, as a rule, in a random way

and be
ause of that intergranular intera
tions are also

random. There are two main reasons for investigating

the model of su
h a magnet. On the one hand, the mag-

neti
 sus
eptibility of Cu{Co supersaturated solid solu-

tions with pre
ipitation of 
obalt granules was found to

have maxima [3℄ in the temperature range of 100{500 K,

depending on the 
omposition of the alloy and the time

of its holding at a temperature. This phenomenon was

interpreted as the appearan
e of a ma
rospin glass. In


onne
tion with that it is interesting to reveal, what pe-


uliarities in magneti
 
hara
teristi
s of granule system


an be 
aused by the disordered e�e
ts in intergranular

intera
tions.

On the other hand, the Ising model of disordered

granule magnet with Gaussian random intergranular ex-


hange intera
tions let us make 
omparison with well

known Sherrington{Kirkpatri
k model of spin glass [4℄.

This help us to understand, what is the di�eren
e in the

behaviour between usual spin glass of individual mag-

neti
 moments and ma
rospin glass of mesos
opi
 super-

magneti
 granule moments.

II. AN ISING HAMILTONIAN AND THE

PARTITION FUNCTION FOR GRANULE

MAGNET IN THE MOLECULAR FIELD

APPROXIMATION

Let the granules of magneti
 atoms be pla
ed in a non-

magneti
 matrix so that the number of granules N

g

is

great (N

g

� 1), ea
h of them 
ontainsN magneti
 atoms

with Ising spins �

i

(n) = �1, where i is granular number

and n is the spin number inside the granule. We assume
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that all the granules 
ontain an equal number of atoms

N , but in general 
ase the granules are distributed in

a random way, and intragranular ex
hange J

ij

(n;m) is

random. The Ising Hamiltonian for this system 
an be

written as

H(f�g) = �

1

2

N

g

X

i=1

I

N

N

X

n=1

N

X

m=1;n6=m

�

i

(n)�

i

(m)

�

1

2

N

g

X

i=1

N

g

X

j=1;i 6=j

N

X

n=1

N

X

m=1

J

ij

(n;m)�

i

(n)�

j

(m)

� h

e

N

g

X

i=1

N

X

n=1

�

i

(n): (1)

In the �rst term of the Hamiltonian, whi
h takes into

a

ount only the intragranular intera
tions, I > 0 is the

parameter of the intragranule ferromagneti
 ex
hange.

We a

ept the model of intera
tion among all spins and

following [5℄ we introdu
e the normalizing fa
tor 1=N

for intergranular ex
hange energy per magneti
 atom of

the system to be independent of granular size. The se
-

ond term des
ribes the random intergranular intera
tion

among all spins of di�erent granules and for simpli�
a-

tion we assume J

ij

(n;m) = J

i;j

that means that random

intera
tion J

ij

depends only on the lo
ations of 
enters

of granules i and j, but does not depend on the lo
ation

of n and m sites inside granules. That model means, that

the ex
hange parameter J

ij

weakly depends on distan
es


omparable with the granular size. And in the third term,

whi
h responsible for the Zeeman intera
tion, we signify

h

e

= g�

B

H

a

.

Later we shall 
onsider only the 
ase when ex
hange

energy of atom with its neighborhood in granule is mu
h

greater then its ex
hange energy with atoms of another

granule. Hen
e, at temperature de
reasing �rst a lo
al

ferromagneti
 ordering appears inside granules and then,

at a lower temperature, a long-range ferromagneti
 order

is established over the whole sample.

Let us take into a

ount, that the lo
al magneti
 or-

der 
an appear on every granule, but at the same time

the lo
al magnetization of the granule i 
an be dire
ted

parallel or antiparallel to the OZ-axis of the laboratory


oordinate system. Therefore in ea
h granule we will use

a lo
al 
oordinate system, the OZ

i

-axis of whi
h rigidly


onne
ted with the dire
tion of the lo
al magnetization

of the granule. Then instead of Ising variables �

i

(n) in

the laboratory 
oordinate system we 
an use new vari-

ables �

i

(n) in the lo
al 
oordinate system with the help

of the following equation:

�

i

(n) = �

i

(n) 
os(

d

OZ; OZ

i

) � �

i

(n)�

i

; (2)

where �

i

(n) takes the value �1 in the proje
tion onto the

OZ

i

-axis and 
os(

d

OZ; OZ

i

) � �

i

is also an Ising variable:

�

i

= 1, when the granule magnetization is dire
ted along

OZ-axis, �

i

= �1, when the granule magnetization is

antiparallel to the OZ laboratory axis.

Then, after the introdu
tion of the lo
al 
oordinate

systems, the Hamiltonian (1) takes the form

H(f�; �g) = �

1

2

I

N

N

g

X

i=1

N

X

n=1

N

X

m=1;n6=m

�

i

(n)�

i

(m)

�

1

2

N

g

X

i=1

N

g

X

j=1;i 6=j

J

ij

N

X

n=1

N

X

m=1

�

i

(n)�

i

�

j

(m)�

j

� h

e

N

g

X

i=1

N

X

n=1

�

i

(n)�

i

: (3)

Following [1℄, we introdu
e in Hamiltonian (3) the

mole
ular-�eld approximation. Representing the spin

variables �

i

(n) and �

i

(n)�

i

as the mean values h�

i

(n)i

and h�

i

(n)�

i

i and 
u
tuations above them and negle
t-

ing the 
u
tuation intera
tion, we obtain

H

MF

(f�; �g) =

f

E

0

�

N

g

X

i=1

N

X

n=1

[h

ai

(n) + h

bi

(n)�

i

℄�

i

(n);

(4)

where we introdu
ed two types of mole
ular �elds |

mole
ular �eld, whi
h a
ts on a given spin from the spins

of its own granule

h

ai

(n) =

I

N

N

X

m=1

h�

i

(m)i; (5)

and the mole
ular �eld, whi
h a
ts on this spin from the

spins of other granules

h

bi

(n) = h

e

+

N

g

X

j=1;j 6=i

J

ij

N

X

m=1

h�

j

(m)�

j

i: (6)

Here we denote:

f

E

0

=

1

2

N

g

X

i=1

N

X

n=1

fh

ai

(n)h�

i

(n)i

+ [h

bi

(n) � h

e

℄h�

i

(n)�

i

ig: (7)

For brevity, the dimensionless mole
ular �elds are de-

noted as

a

i

(n) = �h

ai

(n); b

i

(n) = �h

bi

(n): (8)

Using the partition fun
tion Z
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Z = Sp

f�g

exp[��H(f�g)℄ =

1

2

N

g

Sp

f�;�g

exp[��H(f��g)℄; (9)

it 
an be shown [1℄ that

Sp

f�;�g

�

N

g

Y

i=1

N

Y

n=1

exp[(a

i

(n) + b

i

(n)�

i

)�

i

(n)℄

�

= Sp

f�g

�

N

g

Y

i=1

N

Y

n=1

h

exp[a

i

(n) + b

i

(n)�

i

℄ + exp[�(a

i

(n) + b

i

(n)�

i

)℄

i

�

= 2

NN

g

N

g

Y

i=1

�

N

Y

n=1


osh[(a

i

(n) + b

i

(n)℄ +

N

Y

n=1


osh[(a

i

(n)� b

i

(n)℄

�

: (10)

Hen
e, the partition fun
tion Z is

Z = e

��

e

E

0

2

N

g

(N�1)

N

g

Y

i=1

fK

(+)

i

+K

(�)

i

g; (11)

K

(�)

i

=

N

Y

p=1


osh[a

i

(p)� b

i

(p)℄: (12)

Knowing Z, we derive the self-
onsistent equations for the order parameters in the lo
al 
oordinate system

h�

i

(n)i =

tanh[a

i

(n) + b

i

(n)℄K

(+)

i

+ tanh[a

i

(n)� b

i

(n)℄K

(�)

i

K

(+)

i

+K

(�)

i

(13)

and in the laboratory 
oordinate system

h�

i

(n)�

i

i = h�

i

(n)i =

tanh[a

i

(n) + b

i

(n)℄K

(+)

i

� tanh[a

i

(n)� b

i

(n)℄K

(�)

i

K

(+)

i

+K

(�)

i

: (14)

Further simpli�
ation of (11){(14) 
an be made with tak-

ing into a

ount, that mole
ular �eld h

bi

(n) will be equal

for all sites n of single granule i (but various for the di�er-

ent granules) as we 
onsider for intergranular ex
hange

J

ij

the dependen
e only from the distan
e between 
en-

ters of granules. Moreover, all spins inside the granule

are 
onne
ted with ea
h other by equal ex
hange inter-

a
tions, and in the absen
e of random intergranular ex-


hange h�

i

(n)i would be equal for all sites and all gran-

ules. As a result it leads to the dependen
e of h�

i

(n)i

and h�

i

(n)�

i

i only on the number i of granule, but no

dependen
e on the site number n. We obtain

a

i

(n) = a

i

= �Ih�

i

i;

b

i

(n) = b

i

= �

0

�

h

e

+ N

N

g

X

j=1

J

ij

h�

j

�

j

i

1

A

; (15)

K

(�)

i

= 
osh

N

(a

i

� b

i

); (16)

h�

i

i =

tanh(a

i

+ b

i

)K

(+)

i

+ tanh(a

i

� b

i

)K

(�)

i

K

(+)

i

+K

(�)

i

; (17)
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h�

i

�

i

i = h�

i

i

=

tanh(a

i

+ b

i

)K

(+)

i

� tanh(a

i

� b

i

)K

(�)

i

K

(+)

i

+K

(�)

i

: (18)

III. BOUNDARIES OF THE STABILITY FOR

THE SUPERPARAMAGNETIC STATE

At �rst we 
onsider parti
ular 
ase J

ij

= 0. In the

absen
e of random intergranular ex
hange the mole
ular

�elds b

i

(8) are equal for all granules for the reason of de-

pending only on the uniformmagneti
 �eld h

e

= g�

B

H

a

.

Then h�

i

i and h�

i

i are also equal for all granules, and,

omitting i, in the 
ase of weak external �eld b = �h

e

� 1

from (11) and (18) we 
an get:

h�i � tanha+ O(b

2

); (19)

h�i = h�� i � [1 + (N � 1)tanh

2

a℄b+O(b

3

): (20)

From (19) follows, that at b = 0 spontaneous ther-

modynami
 mean value h�i

H

a

=0

� �

0

is given by well

known Ising equation

�

0

= tanha

0

= tanh (�I�

0

) (21)

with the 
riti
al temperature of the appearan
e of the

lo
al magneti
 order T


1

k

B

T


1

= I (22)

and temperature dependen
ies of lo
al magneti
 order

parameter

�

0

�

=

�

3

�

1�

T

T


1

��

1=2

at 1�

T

T


1

� 1; (23)

�

0

�

=

1� 2 exp

�

�

2I

k

B

T

�

= 1� 2 exp

�

�

2T


1

T

�

at

T

T


1

� 1: (24)

An initial paramagneti
 sus
eptibility per granule 
an

be derived from (20)

�

0

= Ng�

B

d

dH

a

h�i

�

�

�

�

�

H

a

=0

=

Ng

2

�

2

B

[1 + (N � 1)�

2

0

℄

k

B

T

;

(25)

whi
h in the limit I ! 1 or �

0

= 1 leads to the


ase of rigid superparamagneti
 moment with �

0

=

N

2

g

2

�

2

B

=k

B

T .

Before investigating the general 
ase of taking into a
-


ount intergranular and intragranular intera
tions simul-

taneously, we 
onsider an instru
tive parti
ular 
ase, in

whi
h intragranular intera
tion is 
ompletely negle
ted

I = 0. Then from (15) follows a

i

= 0 and h�

i

i = 0, it

means that no lo
al ferromagneti
 order exists at I = 0

on the granule with the 
u
tuating axis dire
tion for this

ordering. Now the granules 
onsist of N nonintera
ting

spins that are 
onne
ted with ea
h other only by inter-

granular ex
hange J

ij

, and equations for h�

i

i (18) take

the form

h�i = tanh b

i

= tanh[�(h

e

+ N

X

j

J

ij

h�

j

i)℄: (26)

We 
hoose a Gaussian random distribution model for

intergranular intera
tion

P (J

ij

) =

1

[2�D(J

ij

)℄

1=2

exp[�

(J

ij

�

�

J

ij

)

2

2D(J

ij

)

℄; (27)

where a mean value of random ex
hange integrate

�

J

ij

(the overline means an averaging over disorder) and its

dispersion D(J

ij

) are normalized in the following way:

�

J

ij

=

1

NN

g

J

0

; D(J

ij

) =

1

N

2

N

g

J

2

: (28)

Then we 
an get

b

i

= �(h

e

+ J

0

�); (29)

b

2

i

= �

2

[(h

e

+ J

0

�)

2

+ J

2

q℄; (30)

where

� = h�

j

i; q = h�

j

i

2

(31)

(� is ferromagneti
 order parameter over the whole sam-

ple and q is Edwards{Anderson parameter of spin-glass

order [4℄). It is seen that with su
h normalization of dis-

tribution parameters (27) the mean values of dimension-

less mole
ular �eld b

i

and its squared value b

2

i

do not

depend on the system size and are 
oin
ident with 
orre-

sponding expressions for these values in the Sherrington{

Kirkpatri
k model [4℄ (at N = 1 | one spin per granule

| (27) and (28) turn to the formulas of [4℄).

Therefore in the 
ase I = 0, as in [4℄, at J

0

> J the sys-

tem from ordinary paramagneti
 state would turn to the

global ferromagneti
 order over the whole sample � 6= 0,

q 6= 0 at temperature
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k

B

T


0

= J

0

; (32)

and at J

0

< J | to the spin glass order with � = 0; q 6= 0

at temperature

k

B

T

sg0

= J (33)

(with one pe
uliarity: a

ording to our model of inter-

granular intera
tions, all spins inside an individual gran-

ule would be e�e
ted by the same random intergranular

�eld, that gives the same random dire
tion for all spins

inside granule in the spin-glass state).

Let us now 
onsider the 
ase, when the global mag-

neti
 order over the whole sample appears on the base

of established lo
al ferromagneti
 order �

0

6= 0 on gran-

ules, and we shall assume, that I � J

0

; J . It means that

the temperature of appearan
e of a lo
al ferromagneti


order T


1

(22) is mu
h higher than \bare" temperatures

of the global magneti
 order T


0

(32) or T

sg0

(33).

Making expansions of (17) and (18) in powers of

b

i

� 1, we get

h�

i

i

�

=

tanh a

i

+ �

1

(i)b

2

i

� �

2

(i)b

4

i

+ : : : ; (34)

h�

i

i � h�

i

�

i

i

�

=

A

1

(i)b

i

� A

2

(i)b

3

i

+A

3

(i)b

5

i

� : : : ; (35)

where

�

1

(i) = (N � 1)tanh a

i

(1� tanha

2

i

);

�

2

(i) =

1

3

(N � 1)tanh a

i

(1� tanh

2

a

i

)

� [2 + (N

2

+N � 3)tanh

2

a

i

℄ (36)

and

A

1

(i) = 1 + (N � 1)tanh

2

a

i

;

A

2

(i) =

1

3

[1 + 4(N � 1)tanh

2

a

i

+(N � 1)(N

2

+N � 3)tanh

4

a

i

℄;

A

3

(i) =

1

15

[2 + 17(N � 1)tanh

2

a

i

+10(N � 1)(N

2

+ N � 3)tanh

4

a

i

(37)

+(N � 1)(2N

4

+ 2N

3

� 8N

2

� 8N + 15)tanh

6

a

i

℄:

At I = 0; tanha

i

= 0 
oeÆ
ients (37) turn to the 
oef-

�
ients of tanhb

i

expansion in powers of b

i

:A

1

= 1; A

2

=

1

3

and A

3

=

2

15

, and in the limit I ! 1; tanha

i

! 1

turn to A

1

= N; A

2

=

1

3

N

3

and A

3

=

2

15

N

5

.

For further solution of expansions (34) and (35) should

be averaged over disorder. For a more 
omplex analysis

of this problem the repli
a method should be used [4℄

for 
al
ulating the free energy of a system on the ba-

sis of Hamiltonian (3). But we restri
t ourselves by a

more simple approa
h, based on the usage of averaging

pro
ess with Gaussian distribution of random mole
ular

�elds. This approa
h (as shown in [6℄) in the tempera-

ture region over the de Almeida{Thouless instability line

[7℄ in spin glass leads to the same results as the repli
a-

symmetri
 method [4℄.

Taking into a

ount, that b

i

(15) 
onsists of N � 1

random parts, we 
an get a distribution fun
tion with

the help of saddle-point method (see also [6℄)

P (b

i

) =

1

(2��

2

J

2

q)

1=2

exp

n

�

[b

i

� �(h

e

+ J

0

�)℄

2

2�

2

J

2

q

o

:

(38)

As for the random intragranular mole
ular �eld a

i

=

�Ih�

i

i (15), at h

e

= 0 and in the temperature interval

above the appearan
e of the spontaneous globalmagneti


order the values h�

i

i and a

i

are equal for all granules that

means they are not random. The \swit
hing on" of the

magneti
 �eld h

e

6= 0 or lowering of temperature leads

to the o

urren
e of random part in h�

i

i. But these ad-

ditional terms to h�

i

i in (17) 
annot be expressed by

a simple sum of the N

g

� 1 terms from the granules

j 6= i, whi
h 
ould give us an opportunity to get the

distribution fun
tion P (a

i

). But we may take into a
-


ount, that be
ause of 
onditions I � J

0

; J a relative


ontribution from the intergranular intera
tions in the

formation of h�

i

i 
an be mu
h less then the 
ontribution

from the regular intragranular intera
tions. That is why

we 
an suppose, that deviation of �

i

from the mean value

� � �

i

will not be large. That is the reason for taking the

simplest approximation, that at averaging over disorder

we 
an repla
e everywhere random �

i

and a

i

with their

mean values a � a

i

and � � �

i

.

Finally, after averaging expansions of h�

i

i (34) and

h�

i

i (35), and also of h�

i

i

2

over disorder, we obtain

� = tanh a+ �

1

�

2

[(h

e

+ J

0

�)

2

+ J

2

q℄ (39)

��

2

�

4

[(h

e

+ J

0

�)

4

+ 6(h

e

+ J

0

�)

2

J

2

q + 3J

4

q

2

℄ + : : : ;

� = A

1

�(h

e

+ J

0

�) �A

2

�

3

[(h

e

+ J

0

�)

3

+ 3(h

e

+ J

0

�)J

2

q℄ + A

3

�

5

[(h

e

+ J

0

�)

5

+ 10(h

e

+ J

0

�)

3

J

2

q + 15(h

e

+ J

0

�)J

4

q

2

℄� : : : ; (40)

q = A

2

1

�

2

h

(h

e

+ J

0

�)

2

+ J

2

q

i

�2A

1

A

2

�

4

h

(h

e

+ J

0

�)

4

+ 6(h

e

+ J

0

�)

2

J

2

q + 3J

4

q

2

i
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+(A

2

2

+ 2A

1

A

3

)�

6

h

(h

e

+ J

0

�)

6

+ 15(h

e

+ J

0

�)

4

J

2

q

+45(h

e

+ J

0

�)

2

J

4

q

2

+ 15J

6

q

3

i

� : : : : (41)

A. The temperature of spontaneous transition to

the state with the global magneti
 order

In the absen
e of applied �eld (h

e

= 0) from (40) and

(41) we get linearized equations for the order parameters

�

0

and q

0

:

�

�

0

= A

1

�J

0

�

0

;

q

0

= A

2

1

�

2

[J

2

0

�

2

0

+ J

2

q

0

℄

(42)

(index 0 marks order parameters �

0

and q

0

, obtained at

h

e

= 0).

Hen
e, the temperature of thr transition to the state

with spontaneous magnetization throughout the sample

�

0

6= 0; q

0

6= 0 (let us 
all it superferromagneti
, follow-

ing [8℄) 
an be derived from the equation

1 =

h

1 + (N � 1)tanh

2

a

0

(�


2

)

i

�


2

J

0

; (43)

but the transition temperature to the state without spon-

taneous magnetization �

0

= 0; q

0

6= 0 (let us 
all it

ma
rospin glass) 
an be derived from the equation

1 =

h

1 + (N � 1)tanh

2

a

0

(�

msg

)

i

�

msg

J: (44)

At the moment when the global ordering appears, in-

tergranular mole
ular �elds are in�nitely small, and then

a

0

(�


r

), where �


r

= �


2

or �

msg

, is de�ned only by reg-

ular intragranular intera
tions:

�

0

(�


r

) = tanh a

0

(�


r

) = tanh [�


r

I�

0

(�


r

)℄ (45)

Then (43) and (44) 
an be rewritten as

1 =

h

1 + (N � 1)e�

2

i

�


2

J

0

; (46)

1 =

h

1 + (N � 1)e�

2

i

�

msg

J (47)

(here we signify e� � �

0

(�


r

)).

Equations (46) and (47) 
an be easily solved, with the

usage for e� of a well-known relation (23) in the 
ase

1 � (T


r

=T


1

) � 1 or (24) at T


r

=T


1

� 1. Assuming

that T


2

lies in the temperature range, where �

0

(T ) is

des
ribed by the relation (23), we obtain

T


2

=

1

1 + (k

B

T


1

� J

0

)=(3N � 2)J

0

T


1

�

1

1 + k

B

T


1

=3NJ

0

T


1

: (48)

If the following 
ondition 3NJ

0

� I = k

B

T




� J

0

is

true, then

T


2

� (1� I=3NJ

0

)T


1

: (49)

The validity of equation 3NJ

0

� I � J

0

means also

the validity N e�

2

� 1, and in this 
ase equations (46)

and (47) turns to

1

�

=

N e�

2

�


2

J

0

; 1

�

=

N e�

2

�

msg

J: (50)

In the same way we obtain

T

msg

�

1

1 + k

B

T


1

=3NJ

T


1

� (1�

I

3NJ

)T


1

(51)

at 3NJ � I � J .

If T


2

or T

msg

falls in the temperature range, where e�

have the exponential form (24), then

k

B

T


2

� NJ

0

(1� 4e

�2I=NJ

0

); (52)

k

B

T

msg

� NJ(1� 4e

�2I=NJ

); (53)

that will take pla
e at I � NJ

0

� J

0

and I � NJ � J .

Comparing (46) and (47) we see that at J

0

> J with

de
reasing temperature the system exhibits the transi-

tion from the superparamagneti
 state to the superfer-

romagneti
 one, and at J

0

< J the system passes into

the ma
rospin glass state.

B. Linear and nonlinear magneti
 sus
eptibility of

superparamagneti
 state

A magnetization of the granuleM

g

in the applied �eld

H

a

at temperatures above the 
riti
al ones T


2

and T

msg


an be expressed in the form

M

g

(H

a

) = Ng�

B

�(H

a

) = �

0

H

a

+ �

nl

H

3

a

+ : : : : (54)

In order to �nd linear �

0

and nonlinear �

nl

magneti


sus
eptibilities, let us solve equations (39){(41), putting

the expansions of �; � and q in the form:

� = �

0

+ �

1

h

2

e

+ : : : ; � = �

1

h

e

+ �

3

h

3

e

+ : : : ;

q = q

1

h

2

e

+ : : : : (55)

For the averaged linear sus
eptibility �

0

(per one gran-

ule) we �nd
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�

0

= Ng

2

�

2

B

�

1

= Ng

2

�

2

B

�

1 + (N � 1)�

2

0

1� [1 + (N � 1)�

2

0

℄�J

0

:

(56)

Thus, at T > T


1

and �

0

= 0 an expression (56) turns to

be a Curie{Weiss sus
eptibility for N spins:

�

0

= Ng

2

�

2

B

(k

B

T � J

0

)

�1

at T > T


1

(57)

with pole, having been proje
ting on the \bare" Curie

temperature k

B

T


0

= J

0

. In the 
ase of transition over

T


1

and the o

urren
e of the lo
al ferromagneti
 order

in the granule the pole of �

0

is shifted to the point T


2

,

whi
h is de�ned by equation (46).

Assuming that the 
riti
al temperature of transition

to superferromagneti
 state T


2

is rather low in 
om-

parison with T


1

, so that on the large part of tempera-

ture range of superparamagnetism existen
e the 
ondi-

tion N�

2

0

(T ) � 1 is valid, then �

0

in this region 
an be

expressed in the form

�

0

'

[Ng�

B

�

0

(T )℄

2

k

B

T �N�

2

0

(T )J

0

at N�

2

0

(T )� 1 (58)

and approa
hing T


2

from above

�

0

'

[Ng�

B

e�℄

2

(1 � 2(e�

0

=e�)T


2

)k

B

(T � T


2

)

: (59)

Here e�

0

=

d

dT

�

0

(T )j

T=T


2

.

For the 
ases 1� T


2

=T


1

� 1 and T


2

=T


1

we get

�

0

=

8

>

>

>

>

<

>

>

>

>

:

3

�

1�

T


2

T


1

�

2

(Ng�

B

)

2

k

B

(T � T


2

)

at 1�

T


2

T


1

� 1;

�

1� 4

�

2

T


1

T


2

+ 1

�

e

�2T


1

=T


2

�

(Ng�

B

)

2

k

B

(T � T


2

)

at

T


2

T


1

� 1:

(60)

If J > J

0

and T

msg

> T


2

, then as the temperature de
reases �

0


an not get the pole, and at T = T

msg

a 
usp

o

urs in the temperature behaviour of �

0

(T ), so that at the point T = T

msg

we obtain

�

0

(T

msg

) = Ng

2

�

2

B

1

J � J

0

: (61)

As for the nonlinear sus
eptibility �

nl

, we �nd in the superparamagneti
 region that

�

nl

= Ng

4

�

4

B

�

3

�

N

3

g

4

�

4

B

(1�N�

2

0

�J

0

)

4

(1�N

2

�

4

0

�

2

J

2

)

�

�

1

3

N�

4

0

�

3

(1 + 2N

2

�

4

0

�

2

J

2

) +

2�

2

0

(1� �

2

0

)

2

�

4

I

1� (1� �

2

0

)�I

�

(62)

(as a general expression is too unwieldy we represent a result whi
h is valid only in the temperature range where

N�

2

0

(T )� 1).

It 
an be easily seen that �

nl

will be singular at the transition as to superferromagneti
 state as well to the

ma
rospin glass state.

If J

0

> J and we have a transition at the temperature T


2

, expressed by 
ondition 1 ' N e�

2

�


2

J

0

, then in the

neighborhood of the point T


2

we �nd

�

nl

�

=

N

3

g

4

�

4

B

1� (J=J

0

)

2

1

(1� 2(e�

0

=e�)T


2

)

4

k

B

T


2

[k

B

(T � T


2

)℄

4

�

�

1

3

N e�

4

[1 + 2(J=J

0

)

2

℄ +

2e�

2

(1� e�

2

)

2

�


2

I

1� (1� e�

2

)�


2

I

�

: (63)

Thus in the 
ase 1� T


2

=T


1

� 1 it 
an be expressed as

�

nl

� �3(Ng�

B

)

4

J

2

0

+ 2J

2

J

2

0

� J

2

(1� T


2

=T


1

)

6

k

B

T


2

[k

B

(T � T


2

)℄

4

(64)

and in the 
ase T


2

=T


1

� 1 as
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�

nl

� �

1

3

(Ng�

B

)

4

J

2

0

+ 2J

2

J

2

0

� J

2

h

1� 8(4T


1

=T


2

+ 1)e

�2T


1

=T


2

i

k

B

T


2

[k

B

(T � T


2

)℄

4

: (65)

At J > J

0

in (62) the pole appears at �rst at 1�N e�

2

�

msg

J = 0 (50). Then in the vi
inity of T

msg

it will be

�

nl

�

=

N

3

g

4

�

4

B

2(1� (J=J

0

))

4

1

(1� 2(e�

0

=e�)T

msg

)

1

k

3

B

T

2

msg

(T � T

msg

)

�

�N e�

4

+

2e�

2

(1 � e�

2

)

2

�

msg

I

1� (1� e�

2

)�

msg

I

�

; (66)

so at 1� T

msg

=T


1

� 1 we get

�

nl

= �

9

2

(Ng�

B

)

4

�

J

J � J

0

�

4

(1� T

msg

=T


1

)

3

1

k

3

B

T

2

msg

(T � T

msg

)

(67)

and at T

msg

=T


1

� 1 we �nd

�

nl

= �

1

2

(Ng�

B

)

4

�

J

J � J

0

�

4

h

1� 8(T


1

=T

msg

+ 1)e

�2T


1

=T

msg

i

1

k

3

B

T

2

msg

(T � T

msg

)

: (68)

It 
an be shown that, as well as at transition to the

spin glass state [9,10℄, nonlinear sus
eptibility at the ap-

proa
h to the ma
rospin glass state from above tends to

�1.

IV. THE DE ALMEIDA{THOULESS

INSTABILITY LINE

The de Almeida{Thouless instability line [7℄ means the

appearan
e of the nonergodi
 region on the phase dia-

gram of a disordered magnet (see, for example, [6℄). In

the limit of nonzero magneti
 �eld H

a

in the Ising model

for Sherrington{Kirkpatri
k spin glass this line 
oin
ide

with the temperature transition line T

sg

into the spin

glass phase, and at H

a

6= 0, when the system starts mag-

netized, the de Almeida{Thouless line T

AT

shifted lower

then temperatures T

sg

[6℄.

One of the easiest way to reveal the de Almeida{

Thouless line is the following. If we 
al
ulate the mean

square value of one-site magneti
 sus
eptibility �

2

i

with

the help of su
h methods, whi
h do not take into a

ount

the 
ompli
ated intrinsi
 stru
ture of spin glass phase

(like the symmetri
al repli
a method [4℄ or like heuristi


methods [6℄), then in a 
ertain �eld and temperature re-

gion the 
ondition �

2

i

> 0 will be broken. Let us use this

method in our problem.

We shall 
onsider a random one-site magneti
 sus
ep-

tibility in the following way:

�

i

= g�

B

dh�

i

i

dH

a

: (69)

Then, taking derivations for all terms of expansion h�

i

i

(35), we get

�

i

= g

2

�

2

B

(

h

d

dH

a

A

1

(i)

i

b

i

�

h

d

dH

a

A

2

(i)

i

b

3

i

+

h

d

dH

a

A

3

(i)

i

b

5

i

� : : :

)

+

h

A

1

(i) � 3A

2

(i)b

2

i

+ 5A

3

(i)b

4

i

� : : :

i

� �

 

g

2

�

2

b

+ N

N

g

X

j=1

J

ij

�

j

!

: (70)

Squaring both the sides of (70) and making averaging

over disorder, we �nd

�

2

i

= �

n

1� �

2

J

2

[A

2

1

� 6A

1

A

2

b

2

i

+ (9A

2

2

+ 10A

1

A

2

)b

4

i

� : : : ℄

o

�1

; (71)

(where we do not give a general form of numerator � be-


ause of its insigni�
an
e), and the denominator be
ause

of �

2

i

> 0 should satisfy the 
ondition

1� �

2

J

2

h

A

2

1

� 6A

1

A

2

b

2

i

+(9A

2

2

+ 10A

1

A

3

)b

4

i

� : : :

i

> 0: (72)

300



A \SOFT" SUPERPARAMAGNETIC STATE AND BOUNDARIES OF ITS STABILITY . . .

Inequality (72) is a high-temperature expansion of the de

Almeida{Thouless stable 
ondition whi
h is generalized

for 
ase of disordered granular Ising magnet. At I = 0

(or tanh a = 0) it turns to usual de Almeida{Thouless


ondition [7℄:

1 � �

2

J

2

se
h

4

b

i

� 1� �

2

J

2

(1� 2b

2

i

+ 7=3b

4

i

� : : :) > 0: (73)

Let us 
al
ulate the de Almeida{Thouless line for

the 
ase J > J

0

assuming that it lies in the temper-

ature range, where the following assumption N e�

2

�

N tanh

2

a � 1 is valid. Then, leaving in the 
oeÆ
ients

A

1

; A

2

; A

3

(37) the largest 
ontributions and taking in

b

2

i

and b

4

i


ontributions � h

2

e

, we get

1� �

2

J

2

N

2

tanh

4

a

n

1� 2�

2

N

2

tanh

2

a[(J

0

� + h

e

)

2

+ J

2

q℄ + 7�

4

N

4

tanh

4

a[2(J

0

� + h

e

)

2

J

2

q + J

4

q

2

℄� : : :

o

> 0: (74)

At temperatures T � T

msg

with the help of equations (39){(41) we obtain q; � and also �, 
orre
t to amount � h

2

e

:

q = e�

2

1 + p(1� e�

2

)

1� p(1� e�

2

)

t+

1

3

e�

2

1 + p(7� 6p)(1� e�

2

) + 2p

2

(1� e�

2

)

2

� 4p

3

(1� e�

2

)

3

(1� p(1� e�

2

))

3

t

2

+ : : :

+

1

(J � J

0

)

2

1� p(1� e�

2

)

1 + p(1� e�

2

)

h

2

e

2t

+ : : : ; (75)

� '

1

J � J

0

h

e

+O(h

3

e

); (76)

� = e�+ e�(1� e�

2

)

p

1� p(1� e�

2

)

t+ e�(1� e�

2

)

p(1� p)

(1� p(1� e�

2

))

3

t

2

+ : : :

+

(1� e�

2

)

N e�

3

1

(J � J

0

)

2

1

1 + p(1� e�

2

)

h

2

e

2t

+ : : : ; (77)

where we denote t = 1� T=T

msg

and p � �

msg

I.

Putting (75){(77) in the left part of (74), negle
ting

terms � h

2

e

of � in 
omparison with analogous terms of

q (it means a more severe requirement N e�

3

� 1) and

equating this result to zero, we get an equation for the

de Almeida{Thouless temperature T

AT

:

4

3

e�

2

"

1 + (1� e�

2

)�

msg

I

1� (1� e�

2

)�

msg

I

#

3

t

3

AT

=

 

g�

B

H

a

J � J

0

!

2

(78)

(here t

AT

= 1� T

AT

=T

msg

).

If 1 � T

msg

=T


1

� 1 is valid, then using for e� �

�

0

(T

msg

) an expression (23), we �nd

t

3

AT

=

1

4

 

1�

T

msg

T


1

!

2

 

g�

B

H

a

J � J

0

!

2

: (79)

On another 
ondition, when T


1

� T

msg

and e� � 1, it

follows

t

3

AT

=

3

4

"

1� 4

�

6

T


1

T

msg

� 1

�

e

�2T


1

=T

msg

#

�

g�

B

H

a

J � J

0

�

2

:

(80)

Let us 
ompare these results with the familiar result

of de Almeida{Thouless [7℄

t

3

AT

=

3

4

�

g�

B

H

a

J � J

0

�

2

; (81)

whi
h 
an be obtained in our model in the 
ase of ig-

noring the intragranular intera
tions (I = 0). It 
an be

seen, that at 
on
rete H

a

; J and J

0

the lower is the aver-

age value of e�, 
omposing the spontaneous lo
al granular

magnetization in the moment of spin-glass appearing, the

wider is a relative width of stability region t

AT

. And only

in the limit I ! 1 or T


1

!1, as it 
an be seen from

(80), a relative width of temperature stable region t

AT

will 
oin
ide with (94). Of 
ourse, we should take into

301



E. E. KOKORINA, M. V. MEDVEDEV

a

ount that in this limit I !1 the transition temper-

ature itself k

B

T

msg

(I !1) = NJ (see (53)) is N times

greater, then the \bare" temperature k

B

T

sg0

= J (33),

obtained at I = 0.

Let us note in 
on
lusion that the physi
al results of

the limit transition I ! 1 to the rigid superparamag-

neti
 granular moment 
an be easily derived if in the

HamiltonianH(f�; �g) (3) we repla
e all the �

i

(n) by 1.

Then there appears a model of disordered magnet with

generalized Ising superspins N�

i

whi
h take two values:

+N and �N and all the following 
al
ulations are the

same as for the usual Ising magnet.

V. CONCLUSION

The granular magnets have a very important pe
u-

liarity | a sharp spatial inhomogenity of atomi
 stru
-

ture and thus a sharp di�eren
e (in several orders) of in-

tragranular and intergranular intera
tions in magnitude

and in the spatial extension. Strong but short-ranged ex-


hange intera
tions are responsible for appearing on the

granules of giganti
 magneti
 moments and their super-

paramagneti
 behaviour at intermediate temperatures.

In this work we propose a mi
ros
opi
 s
heme of taking

into 
onsideration these short-ranged intragranular inter-

a
tions whi
h is based on the idea of a separate 
onsider-

ation of intragranular and intergranular mole
ular �elds

and the following introdu
tion of two types of magneti


order | the lo
al one (on granule) and the global one

(on the whole sample). This s
heme is tested on the sim-

plest Ising model, and it let us show, in parti
ular, su
h

a phenomenon, as the transition of the system from the

usual paramagneti
 spin behaviour to the \soft" super-

paramagneti
 behaviour, and also a start of formation of

low-temperature global magneti
 order from the \soft"

granular supermoments.

At the same time it is obvious, that it is not enough

to use the Ising model for des
ribing the important ex-

perimental properties. It is known that at experiments

superparamagneti
 behaviour is observed in systems of

magneti
 parti
les with only a narrow range of parti
le

sizes [11℄. On the one hand, the parti
le size should be

greater than some 
riti
al size for us to be able to speak

about the appearan
e of a spontaneous magneti
 order

in it. The experiments show (see, for example, [11℄) that

in isolated ferromagneti
 parti
les with the size smaller

than the 
riti
al one there is no magneti
 ordering. On

the other hand, the parti
le size has an upper limit be-


ause of the blo
king e�e
t whi
h means that the relax-

ation time of suÆ
iently large parti
les (the time when

magneti
 moment of the granule as a whole rea
hes the

thermal equilibrium state) 
an be larger than the time

of experimental investigations. This phenomenon is 
on-

ne
ted with the e�e
t of in
reasing the energy barrier

(getting over by granular magneti
 moment at it rota-

tion) at in
rease of parti
le size. Besides the energy bar-

rier is de�ned mainly with intrinsi
 anisotropy of the

parti
le and, evidently, to a lesser degree with the weak

intergranular ex
hange [11℄. That is why it is 
lear, that

des
ription of blo
king e�e
ts in granular magnets re-

quire the transition to ve
tor magneti
 models with tak-

ing into a

ount the e�e
ts of �nal magneti
 intragranu-

lar anisotropy.
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\M'�KI�" SUPERPARAMAGNETNI� STAN � ME�� �OGO ST��KOSTI V

MODEL� �ZIN�A NEVPOR�DKOVANOGO �RANUL^OVANOGO MAGNETU

E. E. Kokor�na, M. V. Medved
v

�nstitut elektrof�ziki, Ural~s~ke v�dd�lenn�, Ros��s~ka akadem�� nauk,

vul. Amundsena, 106, �katerinbur�, 620016, Ros��

E-mail: medvedev�ief.uran.ru

Zaproponovano model~ �zin�a nevpor�dkovanogo �ranul~ovanogo magnetu. U 
�� model� �dentiqn� �ra-

nuli z priblizno N � 10

4

�10

5

magnetnimi atomami haotiqno pom�wen� v nemagnetnu matri
�, �zin��vs~k�

sp�ni vseredin� ko�noÝ �ranuli vza
mod��t~ m�� sobo� za dopomogo� sil~noÝ feromagnetnoÝ obm�nnoÝ vza-


mod�Ý, a sp�ni z r�znih �ranul vza
mod��t~ m�� sobo� za dopomogo� slabkoÝ haotiqnoÝ obm�nnoÝ vza
mod�Ý,

�ka opisu
t~s� nesimetriqnim rozpod�lom �ausa.

U 
�� model� 
 dv� kritiqn� temperaturi magnetnogo vpor�dkuvann�: sperxu z'�vl�
t~s� lokal~ne

feromagnetne vpor�dkuvann� vseredin� �ranul za v�dsutnosti dalekos��nih korel�
�� m�� spontannimi

magnetnimi momentami r�znih �ranul, pot�m pri ni�q�� temperatur� z'�vl�
t~s� dalekos��ni� superfe-

romagnetni� stan abo stan makrosp�novogo skla u vs~omu zrazku. Viwe v�d verhn~oÝ kritiqnoÝ temperaturi

sposter�ga
t~s� zviqa�na paramagnetna poved�nka �zin��vs~kih sp�n�v, \m'�ki�" superparamagnetni� stan

(�z zale�nimi v�d temperaturi absol�tnimi znaqenn�mi spontannih magnetnih moment�v �ranul) vi�vleno

m�� verhn~o� ta ni�n~o� kritiqnimi temperaturami.

Funk
�� rozpod�lu model� rozrahovano v nabli�enn� molekul�rnogo pol�, proanal�zovano tempera-

turnu zale�n�st~ l�n��noÝ ta nel�n��noÝ magnetnoÝ spri�n�tlivosti v \m'�komu" superparamagnetnomu

stan�. Tako� rozrahovano l�n�� nest��kosti de Alme�di{Taulesa pri sk�nqennih magnetnih pol�h dl�

vipadku, koli v sistem� pro�vl�
t~s� pereh�d v�d superparamagnetnogo stanu v niz~kotemperaturni� stan

makrosp�novogo skla.
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