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The 
rossover from a quasi-two dimensional to three dimensional thermodynami
 behaviour near

the point of the super
ondu
ting phase transition in type I super
ondu
tors is dis
ussed with the

help of a theoreti
al approa
h in whi
h the 
u
tuations of the super
ondu
ting order parameter are

negle
ted but the magneti
 
u
tuations are taken into 
onsideration.
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I.

Under 
ertain 
onditions three- and four-dimensional

(3D and 4D) type I super
ondu
tors in zero external

magneti
 �eld undergo a \
u
tuation-indu
ed weakly-

�rst order phase transition" from normal to super
on-

du
ting (Meissner) state [1, 2℄. The interesting point

is that this result 
ontradi
ts to basi
 
on
epts about

the kind of the super
ondu
ting phase transition. The

normal-to-super
ondu
ting phase transition in type I

super
ondu
tors is traditionally 
onsidered as one of

the best examples of se
ond order phase transitions de-

s
ribed well by the mean �eld approximation [3℄. How-

ever, it has been shown in Refs. [1,2℄ both by \mean-�eld-

like" and renormalization group [3℄ arguments that the

traditional notion for the se
ond order of the super
on-

du
ting phase transition is valid only within the stan-

dard mean �eld variant of the Ginzburg{Landau (GL)

theory of super
ondu
tivity. The 
onsideration of the

magneti
 
u
tuations ÆH around the zero mean value

H

0

= (H � ÆH) = 0 of the magneti
 �eld (indu
-

tion) H leads to the predi
tion [1℄ for a weakly-�rst or-

der phase transition, i. e., a �rst order phase transition

with a very small (experimentally unmeasurable) latent

heat at the phase transition point at zero magneti
 �eld

T

C0

� T

C

(H

0

= 0). Apparently this \weakly �rst order

transition" is generated by the magneti
 
u
tuations ÆH

in type I super
ondu
tors, where these 
u
tuations are

stronger than the 
u
tuations of the super
ondu
ting or-

der parameter  (x), i. e., the London penetration depth

� is mu
h smaller than the 
oheren
e length �; the GL

parameter � = (�=�) is a small number (�� 1).

Using the 
ondition � � 1 one 
an apply \a mean-

�eld-like" approximation [4℄. Within this approximation

the spatial (x)-dependen
e in the order parameter  (x)

is negle
ted. Moreover, the order parameter is substi-

tuted with its mean-�eld value:  (x) �  �  

MF

. This

leads to a simpli�ed version of the GL free energy and

gives the opportunity for an exa
t integration of the ve
-

tor potential A(x) of the magneti
 �eld from the fun
-

tional integral for the partition fun
tion | a method

used in the s
alar ele
trodynami
s [4℄ and applied to the

GL fun
tional of super
ondu
tors [1, 2℄); here A(x) de-

s
ribes magneti
 
u
tuations, namely, A(x) � ÆA(x),

ÆH = (r� ÆA). Integrating over the �eld A(x) in the

partition fun
tion and taking into a

ount the Coulomb

gauge divA = 0, one obtains an e�e
tive free energy

F

e�

( ) [1,2℄ whi
h is a fun
tion of the uniform order

parameter  �  

MF

�  (x). The e�e
tive free energy

F

e�

( ) 
ontains terms whi
h in
lude the e�e
t of the

magneti
 
u
tuations. The mathemati
al form of these

terms depends mainly on the spatial dimensionality D.

The analysis of the e�e
tive free energy F

e�

( ) leads

to the predi
tion for the above mentioned weakly �rst

order transition at spatial dimensionalities D = 3; 4;

see Refs. [1, 2℄. However, the 
on
rete thermodynami-


al properties of 3D and 4D super
ondu
tors are quite

di�erent.

In Ref. [5℄ the predi
tion for a �rst order of the su-

per
ondu
ting phase transition was extended to the 2D


ase | monoatomi
 super
ondu
ting layer. This 
ould

be true provided one has reasons to assume that the

Meissner phase in the respe
tive 2D (mono-atomi
) su-

per
ondu
ting layers is not destroyed by the strong  -


u
tuations. Therefore the predi
tion in Ref. [5℄ should

be taken with some 
aution.

In order to avoid the strong distru
tive e�e
t of the

 -
u
tuations in monoatomi
 (exa
tly 2D) layers, a re-


ent investigation [6℄ has been performed for quasi-2D

(q2D) �lms of thi
kness L

0

whi
h ex
eeds the latti
e


onstant a

0

: L

0

� a

0

. As a result of the mean-�eld-like

approximation, the authors of paper [6℄ have obtained an

interesting result that the latent heat of the 
u
tuation-

indu
ed �rst order phase transition in q2D super
ondu
t-

ing �lms is large enough for a su

essful experimental ob-

servation in 
ertain super
ondu
ting thin �lms, namely,

that we are fa
ed with a �rst order phase transition of a

usual size rather than with a weak e�e
t.

The e�e
t of weakly �rst order phase transition in su-

per
ondu
tors has been investigated also by renormal-

ization group methods; see, e. g., the review arti
le [7℄.

The same e�e
t has been predi
ted for phase transitions
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in other systems su
h as early universe phase transi-

tions [8, 9℄, and the nemati
-sme
ti
 A phase transition

in liquid 
rystals [10{12℄.

II.

In this note we outline a relatively simple s
heme of

treatment of the q2D{3D dimensional 
rossover within

the framework of the mean-�eld-like approximation. We

shall 
onsider a super
ondu
ting slab with a �nite thi
k-

ness L

0

along one of the spatial dire
tions (for example,

the z-dire
tion) and in�nite sizes along the other (D�1)

dire
tions of the D-dimensional spa
e. At a 
ertain stage

of our investigation we shall use the pra
ti
aly important

value D = 3.

Varying the �lm thi
kness L

0

from relatively small val-

ues a

0

� L

0

� � to values ex
eeding the 
oheren
e

length � one may ensure the q2D{3D 
rossover in real

super
ondu
ting �lms. In order to avoid 
ertain math-

emati
al diÆ
ulties related with the �nite-size s
aling

theory [13℄ we negle
t the e�e
t of the 
rystal stru
ture

by allowing variations of the wave ve
tor k outside the

�rst Brillouihn zone up to in�nity (�1 < k < 1) [14℄.

In a 
lose vi
inity of the phase transition point only the

modes A(k) with small wave ve
tors (k � 0) are impor-

tant for the thermodynami
 behaviour and this is the

reason to assume that the above mentioned approxima-

tion will not a�e
t our main results. For this reason we

follow the method introdu
ed in Ref. [14℄.

We derive the e�e
tive free energy for a general value

of the dimensionalityD, and then we fo
us our attention

to the 
on
rete problems of the q2D{3D 
rossover. More-

over, we present for the �rst time a graphi
al pi
ture of

the original results [1℄ for 3D super
ondu
tors and point

out a minor error in Refs. [1, 2℄.

III.

For a spatially uniform order parameter  , the

Ginzburg{Landau (GL) free energy takes the form [6℄

F

GL

= V

�

a'

2

+

b

2

'

4

�

(1)

+

1

16�

D

X

i;j=1

Z

d

D

x[2�(')Æ

ij

A

2

j

+ (�

i

A

j

� �

j

A

i

)

2

℄;

where (i; j) = 1; : : : ; D, V = (L

1

:::L

D

) is the volume of

the D-dimensional super
ondu
tor, � = �

C0

(T � T

C0

),

� = �

0

'

2

with �

0

= 8�e

2

=m

e




2

, and ' = j j. The 
riti
al

temperature T

C0

as well as the GL parameters �

C0

and

b are known from BCS theory [15℄. Finally, A

i

denotes

the 
omponents of the ve
tor potential A.

We 
onsider well established type I super
ondu
tors

with GL parameter � � 10

�1

�10

�2

. On the other hand,

t = (T � T

C0

)=T

C0

must be also mu
h less than unity,

t � 10

�2

� 10

�4

, in order to ensure a validity of the GL

theory of type I super
ondu
tors [15℄. A good example

of a super
ondu
tor obeying the above requirements is

Al.

Let us introdu
e the usual notations of the Lon-

don penetration depth �(T ) = �

0

=jtj

1=2

and the


oheren
e length �(T ) = �

0

=jtj

1=2

, where �

0

=

(m

e




2

b=8�e

2

�

0

T

C0

)

1=2

and �

0

= (~

2

=4m

e

�

0

T

C0

)

1=2

are

the zero-temperature penetration depth and the zero-

temperature 
oheren
e length, respe
tively. In order to

ensure validity of our 
onsideration we assume the fol-

lowing relation between the 
hara
teristi
 lengths: 
har-

a
teristi
 lengths �(T )� �(T )� �

0

[6℄. The irrelevan
e

of the large values of the wave number k = jkj allows for

the 
hoi
e � � 1=�

0

for the upper 
uto� �: k < �. We

use this 
uto� for the wave ve
tor 
omponent k

k

along

the large (\in�nite") slab dimensions whereas we expand

the 
uto� to in�nity for the wave ve
tor 
omponent k

?

along the small size L

0

; k = (k

k

+ k

?

).

Following Refs. [4{6℄ we 
al
ulate the e�e
tive free en-

ergy f

e�

( ) = F

e�

( )=V with the help of the expression

F

e�

= �k

B

T lnZ, where Z is a partition fun
tion given

by the fun
tional integral

Z(') =

Z

DA(x)Æ [divA(x)℄ exp f�F

GL

[ ;A(x)℄g : (2)

The integral for Z 
an be exa
tly solved by an ex-

pansion in power series of �('). The result is an in�nite

logarithmi
 series that is summed up 
ompletely to give

the result

f

e�

(') = a'

2

+ b'

4

(3)

+

(D � 1)

2V

k

B

T

X

k

ln[1 + �(')=k

2

℄ :

For thin �lms the 
ontinuum limit (

P

�!

R

) in

Eq. (3) 
an be taken only for the longitudinal wave ve
-

tor 
omponents (k

k

). The summation over the transverse

wave ve
tor 
omponent (�1 < k

?

<1) should be per-

formed in the form given by Eq. (3).

For D = 3, we obtain the e�e
tive free energy density

in the form

f

e�

(') = a'

2

+

b

2

'

4

+

k

B

T

2�L

0

(4)

�

Z

�

0

k

k

ln

�

sinh

�

L

0

2

q

�(') + k

2

k

��

dk

k

:

The term asso
iated with 
u
tuations depends on the

thi
kness L

0

whi
h means that this parameter will play

some role in the thermodynami
 properties. As we shall

see the �lm thi
kness L

0

is the parameter that deter-

mines essential phase transition properties.
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The integration in the free energy (4) 
an not be per-

formed analyti
ally. Be
ause of this reason and for test-

ing the validity of our model two limiting 
ases are 
on-

sidered:

(i) L

0

� �

0

(q2D 
ase, very thin �lm), and

(ii) L

0

� �

0

(3D 
ase, thi
k �lm).

For the q2D �lm we obtain

f

e�

(') = s

0

'

2

+

w

2

'

4

� p

0

'

2

ln

�

�

0

'

2

�

2

�

; (5)

where

s

0

= a+ k

B

T�

0

=4�L

0

; (6)

w = b+ k

B

T�

2

0

=4�L

0

�

2

; (7)

and

p

0

= k

B

T�

0

=4�L

0

: (8)

Thus we have re
eived a GL energy (5){(8) with a log-

arithmi
 term whi
h is typi
al for q2D systems [6℄. This

energy and its parameters are exa
tly the ones asso
iated

with the q2D system 
onsidered in Ref. [6℄. Within this

limiting 
ase of extremely small thi
kness the k-sum in

Eq. (3) is taken only for wave ve
tor 
omponents parallel

to the �lm surfa
e, whereas the axial one, the wave num-

bers k

?

6= 0, are ignored be
ause they give a small 
on-

tribution. Of 
ourse, the same result (5){(8) is obtained

also by the approximation ln(sinhz) � z in Eq. (4), whi
h


orresponds to z � 1, i. e., to the 
ase (i): L

0

� �

0

.

Using the parameters

s =

�

s

0

� p ln(�

0

=�

2

)

�

=w (9)

and p = p

0

=w, the free energy f

e�

(')=w � f

e�

takes the

form:

f

e�

= s'

2

+

1

2

'

4

� p'

2

ln('

2

): (10)

The shape of the free energy (10) is shown in Fig. 1 for

several values of the parameters s and p. Fig. 1 shows a

well established �rst order phase transition for a 
ertain

range of temperatures. When overheating, the super
on-

du
ting phase (' > 0) be
omes metastable in a narrow

temperature interval above the equilibrium phase tran-

sition point. If the overheating 
ontinues the super
on-

du
tor state disappears. The phases and their stability

properties 
an be found [6℄ as solutions of the equation

of state: (�f

e�

=�' = 0). The normal phase ('

0

= 0) ap-

pears as a minimum of energy at any temperature. The

equilibrium order parameter '

0

> 0 of the super
ondu
t-

ing phase is obtained from the equation

(s � p) + '

2

0

� pln'

2

0

= 0 : (11)

The solution of the Eq. (11) is shown in Fig. 2 for val-

ues of the parameters s and p 
orresponding to the size

of the �rst order transition. The order parameter val-

ues belonging to stable super
onduting states are shown

together with their extension to metastable states. The

jump of the order parameter to zero at the phase transi-

tion point is well established. These results 
on�rm the

predi
tions made in Ref. [6℄.

Fig. 1. Thin �lms free energy for p = 8:7 � 10

�5

. Curve (1)


orresponds to s = �8:3�10

�4

, 
urve (2) | to s = �8:5�10

�4

,

(3) | s = �8:7 � 10

�4

, (4) | s = �9 � 10

�4

, (5) |

s = �9:3 � 10

�4

.

Fig. 2. Thin �lms order parameter pro�le for p = 8:7�10

�5

.

The 
rosses indi
ate stable super
ondu
ting states while the

squares indi
ate metastable states above the equilibrium

transition point.
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The se
ond limiting 
ase, that is the thi
k (3D) �lm

(L

0

� �), is 
onsidered in a similar way. Taking the


ontinuum limit in Eq. (3) we obtain

f

e�

(') = r

0

'

2

� 


0

'

3

+

u

2

'

4

; (12)

with parameters

r

0

= a+ k

B

T��

0

=8�; (13)

u = b+ k

B

T�

2

0

=8��; (14)

and




0

= (k

B

T=12�)�

3=2

0

: (15)

Eqs. (12){(15) 
orrespond to the result in Ref. [1℄ with

the only di�eren
e that in our 
ase we have taken into a
-


ount the �

2

-
ontribution to the parameter u. In Ref. [1℄

this 
ontribution has been negle
ted. In Ref. [2℄ this fa
t

was explained with the supposition that the respe
tive

term is very small.While the term negle
ted in Refs. [1,2℄

is irrelevant for the 
onsideratiions made in the respe
-

tive papers, the same term may be relevant for other


al
ulations [16℄. The results (12){(15) 
an be obtained

also from Eq. (4) by the approximation of the fun
tion

ln(sinhz) for z � 1, whi
h 
orresponds to the limiting


ase (ii).

Using the parameters r = r

0

=u and 
 = 


0

=u the free

energy f

e�

= f

e�

(')=u be
omes

f

e�

= r'

2

� 
'

3

+

1

2

'

4

: (16)

This free energy is drawn in Fig. 3. Fig. 3 shows the

typi
al lo
al minimum 
orresponding to metastable su-

per
ondu
ting states and, hen
e, des
ribes a �rst order

transition. Fig. 4 presents the pro�le of the equilibrium

order parameter obtained by the equation

r + '

2

0

�

3

2


'

0

= 0 (17)

for the equilibrium order parameter of the super
ondu
t-

ing phase '

0

> 0. There is only a quantitative di�eren
e

between Figs. 1 and 4 as well as between Figs. 2 and 4.

The 
rossover between the two limiting 
ases, (i) and

(ii), 
an be des
ribed with the help of Eq. (4). We have

already demonstrated that Eq. (4) des
ribes the limiting


ases (i) and (ii).

The numeri
al analysis of the free energy (4) for var-

ious values of the thi
kness L

0

is supposed to give the

interpolation between the q2D and 3D thermodynami-


al behaviour. It has been re
ently noted [16℄ that al-

though Eq. (4) 
an hardly be treated analyti
ally, the in-

tegral over k

k

in the respe
tive general equation of state,

[�f(')=�'℄ = 0, 
an be solved exa
tly for D = 3 and,

therefore, some analyti
al predi
tions about the thermo-

dynami
 behaviour of the system 
an be made. Following

this idea we obtain the equation for the super
ondu
ting

order parameter ('

0

> 0):

Fig. 3. Thi
k �lms free energy for 
 = 1:5 � 10

�2

. Curve (1)


orresponds to r = 1:05 � 10�4, (2) stands for r = 10

�4

, (3)

| r = 9:5 � 10

�5

, (4) | r = 9 � 10

�5

, (5) | r = 8:5 � 10

�5

,

(6) | r = 8 � 10

�5

.

Fig. 4. Thi
k �lms order parameter pro�le for


 = 1:5�10

�2

. The 
rosses indi
ate the stable super
ondu
ting

states and the squares stand for metastable states.
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a+ b'

2

0

+

k

B

T

4�L

0

�

0

ln

2

4

sinh

�

L

0

�

2

p

1 + �

0

'

2

0

=�

2

�

sinh

�

L

0

'

0

p

�=2

�

3

5

= 0 : (18)

Using the 
ondition for a stability of the phases,

�

�

2

f(')=�'

2

�

> 0, and applying this 
ondition to the equilibrium

super
ondu
ting order parameter ('

0

) we have

4b'

2

0

+

k

B

T�

2

0

'

2

0

4�

2

4


th

�

L

0

2

p

�

2

+ �

0

'

2

0

�

p

�

2

+ �

0

'

2

0

�


th

�

L

0

p

�'

0

=2

�

p

�

0

'

0

3

5

> 0 : (19)

The results (18) and (19) 
an be further analyzed nu-

meri
ally to demonstrate pre
isely the dependen
e of the

thermodynami
 behaviour on the thi
kness L

0

. One may

expe
t that the �rst order transition will take pla
e for

any thi
kness L

0

within the s
ope of validity of our 
on-

sideration [6℄. Besides, the numeri
al treatment of the

results (4), (18), and (19) 
an be used to des
ribe the

gradual enhan
ement of the �rst order transition e�e
t

with the de
rease of the length L

0

from values L

0

� �


orresponding to 3D �lms to values L

0

� � 
orrespond-

ing to q2D �lms.

IV.

Note that our approa
h allows for a treatment of other

relevant quantities su
h as the spe
i�
 heat 
apa
ity, the

latent heat, and the temperature size of this 
u
tuation

indu
ed �rst order phase transition [1, 6℄. Certainly, the

analysis of these quantities will reveal the enhan
ement

of the e�e
ts 
orresponding to a �rst order transition

when the thi
kness L

0

of the super
ondu
ting �lms is

lowered.

Finally, an experimental work 
ould be performed to

measure the size of the �rst order transition in thin su-

per
ondu
ting �lms of various thi
knesses and to 
om-

pare the results with our theoreti
al predi
tions. As

noted in Ref. [6℄ the size of the �rst order transition in

thin super
ondu
ting �lms of thi
kness L

0

� 10

�1

�m is

large enough to be observed experimentally. Therefore,

our 
onsideration may be used in interpretations of ex-

perimental results intended to observe the e�e
t of the

thi
kness variation on the properties of the 
u
tuation-

indu
ed �rst order phase transition in thin �lms.
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FIRST ORDER PHASE TRANSITIONS INDUCED BY MAGNETIC FLUCTUATIONS : : :

FAZOV� PEREHODI PERXOGO RODU, SPRIQINEN� MAGNETNIMI

FLUKTUAC��MI � KROSOVER ZA VIM�RN�ST� V

NADPROV�DNIH PL�VKAH

�. K. Ragola

Laborator�� SRSM, �nstitut f�ziki tverdogo t�la �m. �. Nad�akova

Bolgars~ka akadem�� nauk, Sof��s~ki� un�versitet, BG{1784, Sof��, Bolgar��

U me�ah teoretiqnogo p�dhodu, u �komu nehtu�t~s� fl�ktua
�Ý nap�vprov�dnikovogo parametra po-

r�dku, ale pri�ma�t~s� do uvagi magnetn� fluktua
�Ý, obgovoreno krosover �z kvaz�dvovim�rnoÝ do trivi-

m�rnoÝ termodinam�qnoÝ poved�nki poblizu toqki fazovogo perehodu v nadprov�dni� stan u nap�vprov�dni-

kah I rodu.
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