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The crossover from a quasi-two dimensional to three dimensional thermodynamic behaviour near
the point of the superconducting phase transition in type I superconductors is discussed with the
help of a theoretical approach in which the fluctuations of the superconducting order parameter are
neglected but the magnetic fluctuations are taken into consideration.
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Under certain conditions three- and four-dimensional
(3D and 4D) type T superconductors in zero external
magnetic field undergo a “fluctuation-induced weakly-
first order phase transition” from normal to supercon-
ducting (Meissner) state [1, 2]. The interesting point
is that this result contradicts to basic concepts about
the kind of the superconducting phase transition. The
normal-to-superconducting phase transition in type I
superconductors is traditionally considered as one of
the best examples of second order phase transitions de-
scribed well by the mean field approximation [3]. How-
ever, it has been shown in Refs. [1,2] both by “mean-field-
like” and renormalization group [3] arguments that the
traditional notion for the second order of the supercon-
ducting phase transition is valid only within the stan-
dard mean field variant of the Ginzburg-Landau (GL)
theory of superconductivity. The consideration of the
magnetic fluctuations dH around the zero mean value
Hy = (H—-0H) = 0 of the magnetic field (induc-
tion) H leads to the prediction [1] for a weakly-first or-
der phase transition, 1. e., a first order phase transition
with a very small (experimentally unmeasurable) latent
heat at the phase transition point at zero magnetic field
Teo = Te(Ho = 0). Apparently this “weakly first order
transition” is generated by the magnetic fluctuations dH
in type I superconductors, where these fluctuations are
stronger than the fluctuations of the superconducting or-
der parameter 1(x), i. e., the London penetration depth
A is much smaller than the coherence length &; the GL
parameter k = (A/€) is a small number (k < 1).

Using the condition « <« 1 one can apply “a mean-
field-like” approximation [4]. Within this approximation
the spatial (x)-dependence in the order parameter ¢ (x)
is neglected. Moreover, the order parameter is substi-
tuted with its mean-field value: ¢(x) ~ ¢ = ¢mp. This
leads to a simplified version of the GL free energy and
gives the opportunity for an exact integration of the vec-
tor potential A(x) of the magnetic field from the func-
tional integral for the partition function — a method
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used in the scalar electrodynamics [4] and applied to the
GL functional of superconductors [1, 2]); here A(x) de-
scribes magnetic fluctuations, namely, A(x) = JA(x),
dH = (V x 6A). Integrating over the field A(x) in the
partition function and taking into account the Coulomb
gauge divA = 0, one obtains an effective free energy
Fege(¥) [1,2] which is a function of the uniform order
parameter ¢ = Ypmp &~ ¥(x). The effective free energy
Fer(¥) contains terms which include the effect of the
magnetic fluctuations. The mathematical form of these
terms depends mainly on the spatial dimensionality D.
The analysis of the effective free energy Feg(v) leads
to the prediction for the above mentioned weakly first
order transition at spatial dimensionalities D = 3,4;
see Refs. [1, 2]. However, the concrete thermodynami-
cal properties of 3D and 4D superconductors are quite
different.

In Ref. [5] the prediction for a first order of the su-
perconducting phase transition was extended to the 2D
case — monoatomic superconducting layer. This could
be true provided one has reasons to assume that the
Meissner phase in the respective 2D (mono-atomic) su-
perconducting layers is not destroyed by the strong -
fluctuations. Therefore the prediction in Ref. [5] should
be taken with some caution.

In order to avoid the strong distructive effect of the
¢-fluctuations in monoatomic (exactly 2D) layers, a re-
cent investigation [6] has been performed for quasi-2D
(a2D) films of thickness Ly which exceeds the lattice
constant ag: Lo 3> ag. As a result of the mean-field-like
approximation, the authors of paper [6] have obtained an
interesting result that the latent heat of the fluctuation-
induced first order phase transition in q2D superconduct-
ing films is large enough for a successful experimental ob-
servation in certain superconducting thin films, namely,
that we are faced with a first order phase transition of a
usual size rather than with a weak effect.

The effect of weakly first order phase transition in su-
perconductors has been investigated also by renormal-
ization group methods; see, e. g., the review article [7].
The same effect has been predicted for phase transitions
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in other systems such as early universe phase transi-
tions [8, 9], and the nematic-smectic A phase transition
in liquid crystals [10-12].

I1I.

In this note we outline a relatively simple scheme of
treatment of the q2D-3D dimensional crossover within
the framework of the mean-field-like approximation. We
shall consider a superconducting slab with a finite thick-
ness Ly along one of the spatial directions (for example,
the z-direction) and infinite sizes along the other (D —1)
directions of the D-dimensional space. At a certain stage
of our investigation we shall use the practicaly important
value D = 3.

Varying the film thickness Ly from relatively small val-
ues ap € Lg € A to values exceeding the coherence
length & one may ensure the q2D-3D crossover in real
superconducting films. In order to avoid certain math-
ematical difficulties related with the finite-size scaling
theory [13] we neglect the effect of the crystal structure
by allowing variations of the wave vector k outside the
first Brillouihn zone up to infinity (—oco < k < o) [14].
In a close vicinity of the phase transition point only the
modes A(k) with small wave vectors (k ~ 0) are impor-
tant for the thermodynamic behaviour and this is the
reason to assume that the above mentioned approxima-
tion will not affect our main results. For this reason we
follow the method introduced in Ref. [14].

We derive the effective free energy for a general value
of the dimensionality 1D, and then we focus our attention
to the concrete problems of the q2D—-3D crossover. More-
over, we present for the first time a graphical picture of
the original results [1] for 3D superconductors and point
out a minor error in Refs. [1, 2].

III.

For a spatially uniform order parameter 1, the
Ginzburg-Landau (GL) free energy takes the form [6]

b
Far =V (asﬁz + 5804) (1)
| 2
+ten > /le‘[?p(so)%A? + (0145 = 0;A4:)7),
i,7=1

where (i,7) = 1,...,D, V = (L1...Lp) is the volume of
the D-dimensional superconductor, o = aco(T — Teo),
p = pow? with pg = 8me? /m.c?, and ¢ = |v|. The critical
temperature T as well as the GL parameters a¢g and
b are known from BCS theory [15]. Finally, A; denotes
the components of the vector potential A.

We consider well established type I superconductors
with GL parameter & ~ 107" =1072. On the other hand,

t = (T — Tco)/Teo must be also much less than unity,
t~ 1072 =10~*, in order to ensure a validity of the GL
theory of type I superconductors [15]. A good example
of a superconductor obeying the above requirements is
Al

Let us introduce the usual notations of the Lon-
don penetration depth A(T) = Xo/[t|'/? and the
coherence length E’ST) = &/[t|?, where Ay =
(mec?b/8me?agTeo)t/? and & = (h2/4mea0Tco)1/2 are
the zero-temperature penetration depth and the zero-
temperature coherence length, respectively. In order to
ensure validity of our consideration we assume the fol-
lowing relation between the characteristic lengths: char-
acteristic lengths A(T) 3> &(T) > &y [6]. The irrelevance
of the large values of the wave number k = |k| allows for
the choice A ~ 1/&y for the upper cutoff A: k < A. We
use this cutofl for the wave vector component k; along
the large (“infinite”) slab dimensions whereas we expand
the cutoff to infinity for the wave vector component k|
along the small size Lo; k = (kj +k1).

Following Refs. [4-6] we calculate the effective free en-
ergy fer(¢) = Feor(v)/V with the help of the expression
Fog = —kpT'InZ, where Z is a partition function given
by the functional integral

Z(p) = / DA (x)d [divA (x)] exp {—Far [¢, A(x)]} . (2)

The integral for Z can be exactly solved by an ex-
pansion in power series of p(y). The result is an infinite
logarithmic series that 1s summed up completely to give
the result

fefi() = ap® + by* (3)

T %M?nu T p(e) /K]

For thin films the continuum limit (3. — ) in
Eq. (3) can be taken only for the longitudinal wave vec-
tor components (k). The summation over the transverse
wave vector component (—oo < k; < 00) should be per-
formed in the form given by Eq. (3).

For D = 3, we obtain the effective free energy density
in the form

b kT
2 4
= + —p" + 4
femi(p) = ap 280 97 Lo (4)

x /OA kyln [smh (% pe) + kﬁ)] dhy .

The term associated with fluctuations depends on the
thickness Ly which means that this parameter will play
some role in the thermodynamic properties. As we shall
see the film thickness Lo is the parameter that deter-
mines essential phase transition properties.
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The integration in the free energy (4) can not be per-
formed analytically. Because of this reason and for test-
ing the validity of our model two limiting cases are con-
sidered:

(1) Lo < Ap (92D case, very thin film), and
(i1) Lo > Ao (3D case, thick film).
For the q2D film we obtain

Jett(p) = s09” + %@4 — poy’In [poA—fz] ) (5)
where
so =a+ kpTpo/4r Ly, (6)
w = b+ kpTpi/AnLoA?, (7)
and
po = kpTpo/4rLy. (8)

Thus we have received a GL energy (5)—(8) with a log-
arithmic term which is typical for q2D systems [6]. This
energy and its parameters are exactly the ones associated
with the q2D system considered in Ref. [6]. Within this
limiting case of extremely small thickness the k-sum in
Eq. (3) is taken only for wave vector components parallel
to the film surface, whereas the axial one, the wave num-
bers k. # 0, are ignored because they give a small con-
tribution. Of course, the same result (5)—(8) is obtained
also by the approximation In(sinhz) = z in Eq. (4), which
corresponds to z < 1, 1. e., to the case (i): Ly < Ag.

Using the parameters

5= [0~ pln(po/A%)] Ju (9)

and p = po/w, the free energy fog(p)/w = forr takes the
form:

1
foit = 59 + 5304 — pp°In(e?). (10)

The shape of the free energy (10) is shown in Fig. 1 for
several values of the parameters s and p. Fig. 1 shows a
well established first order phase transition for a certain
range of temperatures. When overheating, the supercon-
ducting phase (¢ > 0) becomes metastable in a narrow
temperature interval above the equilibrium phase tran-
sition point. If the overheating continues the supercon-
ductor state disappears. The phases and their stability
properties can be found [6] as solutions of the equation
of state: (0f.q/0¢ = 0). The normal phase (o = 0) ap-
pears as a minimum of energy at any temperature. The
equilibrium order parameter ¢ > 0 of the superconduct-
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ing phase is obtained from the equation

(5= p)+ 5 — plngg = 0. (11)
The solution of the Eq. (11) is shown in Fig. 2 for val-
ues of the parameters s and p corresponding to the size
of the first order transition. The order parameter val-
ues belonging to stable superconduting states are shown
together with their extension to metastable states. The
jump of the order parameter to zero at the phase transi-
tion point 1s well established. These results confirm the
predictions made in Ref. [6].

8Es
1)
;.E Bl {2)
& s )
g 4
3 - {4)
=,
E {5
Pow
N
S o)
ABE

R
Order parameter @
Fig. 1. Thin films free energy for p = 8.7 -107°. Curve (1)
corresponds to s = —8.3-107* curve (2) — to s = —8.5-107%,

(3) — s = —87-107% (4) — s = —-9.107% (5) —
s=-9.3-107"
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Fig. 2. Thin films order parameter profile for p = 8.7-107°.
The crosses indicate stable superconducting states while the

squares indicate metastable states above the equilibrium
transition point.
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The second limiting case, that is the thick (3D) film
(Lo > A), is considered in a similar way. Taking the
continuum limit in Eq. (3) we obtain

u
Feii(p) = rog” — co” + S (12)
with parameters
ro=a+ kgTApy/8, (13)
u="b+kgTp2/87A, (14)
and
co = (kpT/127)p " (15)

Egs. (12)—(15) correspond to the result in Ref. [1] with
the only difference that in our case we have taken into ac-
count the p?-contribution to the parameter u. In Ref. [1]
this contribution has been neglected. In Ref. [2] this fact
was explained with the supposition that the respective
term is very small. While the term neglected in Refs. [1,2]
1s irrelevant for the consideratiions made in the respec-
tive papers, the same term may be relevant for other
calculations [16]. The results (12)-(15) can be obtained
also from Eq. (4) by the approximation of the function
In(sinhz) for z > 1, which corresponds to the limiting
case (ii).

Using the parameters r = ry/u and ¢ = ¢g/u the free
energy fugr = fol)/u becornes

1
Jeft = 10" — cp® + 5304 : (16)

This free energy is drawn in Fig. 3. Fig. 3 shows the
typical local minimum corresponding to metastable su-
perconducting states and, hence, describes a first order
transition. Fig. 4 presents the profile of the equilibrium
order parameter obtained by the equation

3
7°+803—56800=0 (17)

for the equilibrium order parameter of the superconduct-
ing phase g > 0. There 1s only a quantitative difference
between Figs. 1 and 4 as well as between Figs. 2 and 4.

The crossover between the two limiting cases, (i) and
(ii), can be described with the help of Eq. (4). We have
already demonstrated that Eq. (4) describes the limiting
cases (1) and (ii).

The numerical analysis of the free energy (4) for var-

ious values of the thickness Ly is supposed to give the
interpolation between the q2D and 3D thermodynami-
cal behaviour. Tt has been recently noted [16] that al-
though Eq. (4) can hardly be treated analytically, the in-
tegral over k) in the respective general equation of state,
[0f(¢)/0¢] = 0, can be solved exactly for D = 3 and,
therefore, some analytical predictions about the thermo-
dynamic behaviour of the system can be made. Following
this 1dea we obtain the equation for the superconducting
order parameter (g > 0):

el =
(1) {2
B3 {3)
{4}

1458
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Fig. 3. Thick films free energy for ¢ = 1.5- 1072, Curve (1)
corresponds to r = 1.05 - 10—4, (2) stands for r = 107*%, (3)
—r=095-10"%(4) —r=9-107°,(5) —r =8.5-107°,
(6) —r=8-10"°5.
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Fig. 4. Thick films order parameter profile for
¢ = 1.5-1072. The crosses indicate the stable superconducting
states and the squares stand for metastable states.
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kT sinh (LgA\/l—i—pogog/Az)
a+ bps + poln - =0. (18)
4w Ly sinh (Lo@o+/p/2)

Using the condition for a stability of the phases, [32f(g0)/3g02] > 0, and applying this condition to the equilibrium

superconducting order parameter (pg) we have

knT 2,42
4[)@%_1_ B1 Pp¥o

cth (%\/W) cth (Lo\/ﬁSDO/Q)

The results (18) and (19) can be further analyzed nu-
merically to demonstrate precisely the dependence of the
thermodynamic behaviour on the thickness Ly. One may
expect that the first order transition will take place for
any thickness Lo within the scope of validity of our con-
sideration [6]. Besides, the numerical treatment of the
results (4), (18), and (19) can be used to describe the
gradual enhancement of the first order transition effect
with the decrease of the length Ly from values Lo > A
corresponding to 3D films to values Ly <« A correspond-
ing to 2D films.

IV.

Note that our approach allows for a treatment of other
relevant quantities such as the specific heat capacity, the
latent heat, and the temperature size of this fluctuation
induced first order phase transition [1, 6]. Certainly, the
analysis of these quantities will reveal the enhancement
of the effects corresponding to a first order transition
when the thickness Ly of the superconducting films is

A VAZ + pod

- N >0. (19)

lowered.

Finally, an experimental work could be performed to
measure the size of the first order transition in thin su-
perconducting films of various thicknesses and to com-
pare the results with our theoretical predictions. As
noted in Ref. [6] the size of the first order transition in
thin superconducting films of thickness Lo ~ 10~ um is
large enough to be observed experimentally. Therefore,
our consideration may be used in interpretations of ex-
perimental results intended to observe the effect of the
thickness variation on the properties of the fluctuation-
induced first order phase transition in thin films.
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®A30BI IIEPEXOIN ITEFPIIIOIO POOY, CIIPUYNHEHI MATHETHHUMMNA
OJIVKTYANIAMHN I KPOCOBEP 3A BUMIPHICTIO B
HAOITPOBIOHUX IIJIIBKAX

1. K. Parosa
Jabopamopia CPCM, Incmumym disuxu meepdozo miaa im. I. Hadncarosa
Boneapcora axademisa nayx, Coditicoxuti ynisepcumem, BG-1784, Codia, Boreapia

YV Mexkax TeopeTHUHOTO IMIXOAy, Y AKOMY HeXTYIOThCs (PJIIOKTYyallll HaIBIPOBIIHUKOBOTO MapaMeTpa IIo-
PAOKY, aje IpUAMalTbcA OO0 yBaru MarHeTHi ¢dhJIyKTyaril, obroBopeHo KpocoBep i3 KBa3iABOBUMIPHOI 10 TPUBH-
MIpHOI TEPMOIMHAMIYHOI MOBEIIHKK MTOOIN3Y TOYKHU (Ppa30BOro Mepexody B HaOIPOBIIHUI CTaH y HAIBIPOBIIHE-
Kax | pomy.
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