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The rossover from a quasi-two dimensional to three dimensional thermodynami behaviour near

the point of the superonduting phase transition in type I superondutors is disussed with the

help of a theoretial approah in whih the utuations of the superonduting order parameter are

negleted but the magneti utuations are taken into onsideration.
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I.

Under ertain onditions three- and four-dimensional

(3D and 4D) type I superondutors in zero external

magneti �eld undergo a \utuation-indued weakly-

�rst order phase transition" from normal to superon-

duting (Meissner) state [1, 2℄. The interesting point

is that this result ontradits to basi onepts about

the kind of the superonduting phase transition. The

normal-to-superonduting phase transition in type I

superondutors is traditionally onsidered as one of

the best examples of seond order phase transitions de-

sribed well by the mean �eld approximation [3℄. How-

ever, it has been shown in Refs. [1,2℄ both by \mean-�eld-

like" and renormalization group [3℄ arguments that the

traditional notion for the seond order of the superon-

duting phase transition is valid only within the stan-

dard mean �eld variant of the Ginzburg{Landau (GL)

theory of superondutivity. The onsideration of the

magneti utuations ÆH around the zero mean value

H

0

= (H � ÆH) = 0 of the magneti �eld (indu-

tion) H leads to the predition [1℄ for a weakly-�rst or-

der phase transition, i. e., a �rst order phase transition

with a very small (experimentally unmeasurable) latent

heat at the phase transition point at zero magneti �eld

T

C0

� T

C

(H

0

= 0). Apparently this \weakly �rst order

transition" is generated by the magneti utuations ÆH

in type I superondutors, where these utuations are

stronger than the utuations of the superonduting or-

der parameter  (x), i. e., the London penetration depth

� is muh smaller than the oherene length �; the GL

parameter � = (�=�) is a small number (�� 1).

Using the ondition � � 1 one an apply \a mean-

�eld-like" approximation [4℄. Within this approximation

the spatial (x)-dependene in the order parameter  (x)

is negleted. Moreover, the order parameter is substi-

tuted with its mean-�eld value:  (x) �  �  

MF

. This

leads to a simpli�ed version of the GL free energy and

gives the opportunity for an exat integration of the ve-

tor potential A(x) of the magneti �eld from the fun-

tional integral for the partition funtion | a method

used in the salar eletrodynamis [4℄ and applied to the

GL funtional of superondutors [1, 2℄); here A(x) de-

sribes magneti utuations, namely, A(x) � ÆA(x),

ÆH = (r� ÆA). Integrating over the �eld A(x) in the

partition funtion and taking into aount the Coulomb

gauge divA = 0, one obtains an e�etive free energy

F

e�

( ) [1,2℄ whih is a funtion of the uniform order

parameter  �  

MF

�  (x). The e�etive free energy

F

e�

( ) ontains terms whih inlude the e�et of the

magneti utuations. The mathematial form of these

terms depends mainly on the spatial dimensionality D.

The analysis of the e�etive free energy F

e�

( ) leads

to the predition for the above mentioned weakly �rst

order transition at spatial dimensionalities D = 3; 4;

see Refs. [1, 2℄. However, the onrete thermodynami-

al properties of 3D and 4D superondutors are quite

di�erent.

In Ref. [5℄ the predition for a �rst order of the su-

peronduting phase transition was extended to the 2D

ase | monoatomi superonduting layer. This ould

be true provided one has reasons to assume that the

Meissner phase in the respetive 2D (mono-atomi) su-

peronduting layers is not destroyed by the strong  -

utuations. Therefore the predition in Ref. [5℄ should

be taken with some aution.

In order to avoid the strong distrutive e�et of the

 -utuations in monoatomi (exatly 2D) layers, a re-

ent investigation [6℄ has been performed for quasi-2D

(q2D) �lms of thikness L

0

whih exeeds the lattie

onstant a

0

: L

0

� a

0

. As a result of the mean-�eld-like

approximation, the authors of paper [6℄ have obtained an

interesting result that the latent heat of the utuation-

indued �rst order phase transition in q2D superondut-

ing �lms is large enough for a suessful experimental ob-

servation in ertain superonduting thin �lms, namely,

that we are faed with a �rst order phase transition of a

usual size rather than with a weak e�et.

The e�et of weakly �rst order phase transition in su-

perondutors has been investigated also by renormal-

ization group methods; see, e. g., the review artile [7℄.

The same e�et has been predited for phase transitions
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in other systems suh as early universe phase transi-

tions [8, 9℄, and the nemati-smeti A phase transition

in liquid rystals [10{12℄.

II.

In this note we outline a relatively simple sheme of

treatment of the q2D{3D dimensional rossover within

the framework of the mean-�eld-like approximation. We

shall onsider a superonduting slab with a �nite thik-

ness L

0

along one of the spatial diretions (for example,

the z-diretion) and in�nite sizes along the other (D�1)

diretions of the D-dimensional spae. At a ertain stage

of our investigation we shall use the pratialy important

value D = 3.

Varying the �lm thikness L

0

from relatively small val-

ues a

0

� L

0

� � to values exeeding the oherene

length � one may ensure the q2D{3D rossover in real

superonduting �lms. In order to avoid ertain math-

ematial diÆulties related with the �nite-size saling

theory [13℄ we neglet the e�et of the rystal struture

by allowing variations of the wave vetor k outside the

�rst Brillouihn zone up to in�nity (�1 < k < 1) [14℄.

In a lose viinity of the phase transition point only the

modes A(k) with small wave vetors (k � 0) are impor-

tant for the thermodynami behaviour and this is the

reason to assume that the above mentioned approxima-

tion will not a�et our main results. For this reason we

follow the method introdued in Ref. [14℄.

We derive the e�etive free energy for a general value

of the dimensionalityD, and then we fous our attention

to the onrete problems of the q2D{3D rossover. More-

over, we present for the �rst time a graphial piture of

the original results [1℄ for 3D superondutors and point

out a minor error in Refs. [1, 2℄.

III.

For a spatially uniform order parameter  , the

Ginzburg{Landau (GL) free energy takes the form [6℄

F

GL

= V

�

a'

2

+

b

2

'

4

�

(1)

+

1

16�

D

X

i;j=1

Z

d

D

x[2�(')Æ

ij

A

2

j

+ (�

i

A

j

� �

j

A

i

)

2

℄;

where (i; j) = 1; : : : ; D, V = (L

1

:::L

D

) is the volume of

the D-dimensional superondutor, � = �

C0

(T � T

C0

),

� = �

0

'

2

with �

0

= 8�e

2

=m

e



2

, and ' = j j. The ritial

temperature T

C0

as well as the GL parameters �

C0

and

b are known from BCS theory [15℄. Finally, A

i

denotes

the omponents of the vetor potential A.

We onsider well established type I superondutors

with GL parameter � � 10

�1

�10

�2

. On the other hand,

t = (T � T

C0

)=T

C0

must be also muh less than unity,

t � 10

�2

� 10

�4

, in order to ensure a validity of the GL

theory of type I superondutors [15℄. A good example

of a superondutor obeying the above requirements is

Al.

Let us introdue the usual notations of the Lon-

don penetration depth �(T ) = �

0

=jtj

1=2

and the

oherene length �(T ) = �

0

=jtj

1=2

, where �

0

=

(m

e



2

b=8�e

2

�

0

T

C0

)

1=2

and �

0

= (~

2

=4m

e

�

0

T

C0

)

1=2

are

the zero-temperature penetration depth and the zero-

temperature oherene length, respetively. In order to

ensure validity of our onsideration we assume the fol-

lowing relation between the harateristi lengths: har-

ateristi lengths �(T )� �(T )� �

0

[6℄. The irrelevane

of the large values of the wave number k = jkj allows for

the hoie � � 1=�

0

for the upper uto� �: k < �. We

use this uto� for the wave vetor omponent k

k

along

the large (\in�nite") slab dimensions whereas we expand

the uto� to in�nity for the wave vetor omponent k

?

along the small size L

0

; k = (k

k

+ k

?

).

Following Refs. [4{6℄ we alulate the e�etive free en-

ergy f

e�

( ) = F

e�

( )=V with the help of the expression

F

e�

= �k

B

T lnZ, where Z is a partition funtion given

by the funtional integral

Z(') =

Z

DA(x)Æ [divA(x)℄ exp f�F

GL

[ ;A(x)℄g : (2)

The integral for Z an be exatly solved by an ex-

pansion in power series of �('). The result is an in�nite

logarithmi series that is summed up ompletely to give

the result

f

e�

(') = a'

2

+ b'

4

(3)

+

(D � 1)

2V

k

B

T

X

k

ln[1 + �(')=k

2

℄ :

For thin �lms the ontinuum limit (

P

�!

R

) in

Eq. (3) an be taken only for the longitudinal wave ve-

tor omponents (k

k

). The summation over the transverse

wave vetor omponent (�1 < k

?

<1) should be per-

formed in the form given by Eq. (3).

For D = 3, we obtain the e�etive free energy density

in the form

f

e�

(') = a'

2

+

b

2

'

4

+

k

B

T

2�L

0

(4)

�

Z

�

0

k

k

ln

�

sinh

�

L

0

2

q

�(') + k

2

k

��

dk

k

:

The term assoiated with utuations depends on the

thikness L

0

whih means that this parameter will play

some role in the thermodynami properties. As we shall

see the �lm thikness L

0

is the parameter that deter-

mines essential phase transition properties.
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The integration in the free energy (4) an not be per-

formed analytially. Beause of this reason and for test-

ing the validity of our model two limiting ases are on-

sidered:

(i) L

0

� �

0

(q2D ase, very thin �lm), and

(ii) L

0

� �

0

(3D ase, thik �lm).

For the q2D �lm we obtain

f

e�

(') = s

0

'

2

+

w

2

'

4

� p

0

'

2

ln

�

�

0

'

2

�

2

�

; (5)

where

s

0

= a+ k

B

T�

0

=4�L

0

; (6)

w = b+ k

B

T�

2

0

=4�L

0

�

2

; (7)

and

p

0

= k

B

T�

0

=4�L

0

: (8)

Thus we have reeived a GL energy (5){(8) with a log-

arithmi term whih is typial for q2D systems [6℄. This

energy and its parameters are exatly the ones assoiated

with the q2D system onsidered in Ref. [6℄. Within this

limiting ase of extremely small thikness the k-sum in

Eq. (3) is taken only for wave vetor omponents parallel

to the �lm surfae, whereas the axial one, the wave num-

bers k

?

6= 0, are ignored beause they give a small on-

tribution. Of ourse, the same result (5){(8) is obtained

also by the approximation ln(sinhz) � z in Eq. (4), whih

orresponds to z � 1, i. e., to the ase (i): L

0

� �

0

.

Using the parameters

s =

�

s

0

� p ln(�

0

=�

2

)

�

=w (9)

and p = p

0

=w, the free energy f

e�

(')=w � f

e�

takes the

form:

f

e�

= s'

2

+

1

2

'

4

� p'

2

ln('

2

): (10)

The shape of the free energy (10) is shown in Fig. 1 for

several values of the parameters s and p. Fig. 1 shows a

well established �rst order phase transition for a ertain

range of temperatures. When overheating, the superon-

duting phase (' > 0) beomes metastable in a narrow

temperature interval above the equilibrium phase tran-

sition point. If the overheating ontinues the superon-

dutor state disappears. The phases and their stability

properties an be found [6℄ as solutions of the equation

of state: (�f

e�

=�' = 0). The normal phase ('

0

= 0) ap-

pears as a minimum of energy at any temperature. The

equilibrium order parameter '

0

> 0 of the superondut-

ing phase is obtained from the equation

(s � p) + '

2

0

� pln'

2

0

= 0 : (11)

The solution of the Eq. (11) is shown in Fig. 2 for val-

ues of the parameters s and p orresponding to the size

of the �rst order transition. The order parameter val-

ues belonging to stable superonduting states are shown

together with their extension to metastable states. The

jump of the order parameter to zero at the phase transi-

tion point is well established. These results on�rm the

preditions made in Ref. [6℄.

Fig. 1. Thin �lms free energy for p = 8:7 � 10

�5

. Curve (1)

orresponds to s = �8:3�10

�4

, urve (2) | to s = �8:5�10

�4

,

(3) | s = �8:7 � 10

�4

, (4) | s = �9 � 10

�4

, (5) |

s = �9:3 � 10

�4

.

Fig. 2. Thin �lms order parameter pro�le for p = 8:7�10

�5

.

The rosses indiate stable superonduting states while the

squares indiate metastable states above the equilibrium

transition point.
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The seond limiting ase, that is the thik (3D) �lm

(L

0

� �), is onsidered in a similar way. Taking the

ontinuum limit in Eq. (3) we obtain

f

e�

(') = r

0

'

2

� 

0

'

3

+

u

2

'

4

; (12)

with parameters

r

0

= a+ k

B

T��

0

=8�; (13)

u = b+ k

B

T�

2

0

=8��; (14)

and



0

= (k

B

T=12�)�

3=2

0

: (15)

Eqs. (12){(15) orrespond to the result in Ref. [1℄ with

the only di�erene that in our ase we have taken into a-

ount the �

2

-ontribution to the parameter u. In Ref. [1℄

this ontribution has been negleted. In Ref. [2℄ this fat

was explained with the supposition that the respetive

term is very small.While the term negleted in Refs. [1,2℄

is irrelevant for the onsideratiions made in the respe-

tive papers, the same term may be relevant for other

alulations [16℄. The results (12){(15) an be obtained

also from Eq. (4) by the approximation of the funtion

ln(sinhz) for z � 1, whih orresponds to the limiting

ase (ii).

Using the parameters r = r

0

=u and  = 

0

=u the free

energy f

e�

= f

e�

(')=u beomes

f

e�

= r'

2

� '

3

+

1

2

'

4

: (16)

This free energy is drawn in Fig. 3. Fig. 3 shows the

typial loal minimum orresponding to metastable su-

peronduting states and, hene, desribes a �rst order

transition. Fig. 4 presents the pro�le of the equilibrium

order parameter obtained by the equation

r + '

2

0

�

3

2

'

0

= 0 (17)

for the equilibrium order parameter of the superondut-

ing phase '

0

> 0. There is only a quantitative di�erene

between Figs. 1 and 4 as well as between Figs. 2 and 4.

The rossover between the two limiting ases, (i) and

(ii), an be desribed with the help of Eq. (4). We have

already demonstrated that Eq. (4) desribes the limiting

ases (i) and (ii).

The numerial analysis of the free energy (4) for var-

ious values of the thikness L

0

is supposed to give the

interpolation between the q2D and 3D thermodynami-

al behaviour. It has been reently noted [16℄ that al-

though Eq. (4) an hardly be treated analytially, the in-

tegral over k

k

in the respetive general equation of state,

[�f(')=�'℄ = 0, an be solved exatly for D = 3 and,

therefore, some analytial preditions about the thermo-

dynami behaviour of the system an be made. Following

this idea we obtain the equation for the superonduting

order parameter ('

0

> 0):

Fig. 3. Thik �lms free energy for  = 1:5 � 10

�2

. Curve (1)

orresponds to r = 1:05 � 10�4, (2) stands for r = 10

�4

, (3)

| r = 9:5 � 10

�5

, (4) | r = 9 � 10

�5

, (5) | r = 8:5 � 10

�5

,

(6) | r = 8 � 10

�5

.

Fig. 4. Thik �lms order parameter pro�le for

 = 1:5�10

�2

. The rosses indiate the stable superonduting

states and the squares stand for metastable states.
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a+ b'

2

0

+

k

B

T

4�L

0

�

0

ln

2

4

sinh

�

L

0

�

2

p

1 + �

0

'

2

0

=�

2

�

sinh

�

L

0

'

0

p

�=2

�

3

5

= 0 : (18)

Using the ondition for a stability of the phases,

�

�

2

f(')=�'

2

�

> 0, and applying this ondition to the equilibrium

superonduting order parameter ('

0

) we have

4b'

2

0

+

k

B

T�

2

0

'

2

0

4�

2

4

th

�

L

0

2

p

�

2

+ �

0

'

2

0

�

p

�

2

+ �

0

'

2

0

�

th

�

L

0

p

�'

0

=2

�

p

�

0

'

0

3

5

> 0 : (19)

The results (18) and (19) an be further analyzed nu-

merially to demonstrate preisely the dependene of the

thermodynami behaviour on the thikness L

0

. One may

expet that the �rst order transition will take plae for

any thikness L

0

within the sope of validity of our on-

sideration [6℄. Besides, the numerial treatment of the

results (4), (18), and (19) an be used to desribe the

gradual enhanement of the �rst order transition e�et

with the derease of the length L

0

from values L

0

� �

orresponding to 3D �lms to values L

0

� � orrespond-

ing to q2D �lms.

IV.

Note that our approah allows for a treatment of other

relevant quantities suh as the spei� heat apaity, the

latent heat, and the temperature size of this utuation

indued �rst order phase transition [1, 6℄. Certainly, the

analysis of these quantities will reveal the enhanement

of the e�ets orresponding to a �rst order transition

when the thikness L

0

of the superonduting �lms is

lowered.

Finally, an experimental work ould be performed to

measure the size of the �rst order transition in thin su-

peronduting �lms of various thiknesses and to om-

pare the results with our theoretial preditions. As

noted in Ref. [6℄ the size of the �rst order transition in

thin superonduting �lms of thikness L

0

� 10

�1

�m is

large enough to be observed experimentally. Therefore,

our onsideration may be used in interpretations of ex-

perimental results intended to observe the e�et of the

thikness variation on the properties of the utuation-

indued �rst order phase transition in thin �lms.
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FAZOV� PEREHODI PERXOGO RODU, SPRIQINEN� MAGNETNIMI

FLUKTUAC��MI � KROSOVER ZA VIM�RN�ST� V

NADPROV�DNIH PL�VKAH

�. K. Ragola

Laborator�� SRSM, �nstitut f�ziki tverdogo t�la �m. �. Nad�akova

Bolgars~ka akadem�� nauk, Sof��s~ki� un�versitet, BG{1784, Sof��, Bolgar��

U me�ah teoretiqnogo p�dhodu, u �komu nehtu�t~s� fl�ktua�Ý nap�vprov�dnikovogo parametra po-

r�dku, ale pri�ma�t~s� do uvagi magnetn� fluktua�Ý, obgovoreno krosover �z kvaz�dvovim�rnoÝ do trivi-

m�rnoÝ termodinam�qnoÝ poved�nki poblizu toqki fazovogo perehodu v nadprov�dni� stan u nap�vprov�dni-

kah I rodu.
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