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The formalism of Ginzburg-Landau (GL) provides a simple method to study the global prop-
erties of non-homogeneous superconducting structures. In this paper we investigate a class of
supercondicting/normal /superconducting (SNS) structures (sandwiches) with plane boundaries on
the basis of the modified Ginzburg-Landau (GL) type equations. The corresponding non-linear
boundary value problem for the amplitude of the order parameter is solved numerically. We show,
that for fixed values of the phenomenological coefficients of the SNS structure there exist various
solutions with different energies and their own phase differences. The two basic solutions with min-
imal energy in the case of an infinite sandwich are also obtained analytically. The resulted current
density-phase offset dependence is constructed. Due to the existence of different nonlinear terms in
the normal and superconducting regions, this dependence is not sinusoidal. In order to estimate the
influence of the phenomenological coefficients on the form of current density — phase offset curve
— a Fourier decomposition of this curve is also made.
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I. INTRODUCTION

The physics of Josephson junctions is based on an
usual sinusoidal supercurrent-phase difference relation

Js (A) = jesin Ag. (1)

After the discovery of the Josephson effect, it became
clear that, apart from an insulating tunnel structure, any
sufficiently short localized weak link such as a very short
constriction in the cross-section of a superconductor, a
point contact between two superconductors, as well as
two superconductors separated by a thin layer of normal
metal, could be used as a Josephson junction, obeying
the current-phase relations, usually different from (1).
This fact forced Licharev [1] and Waldram [2] to propose
a generalized definition: a weak link 1s supposed to show
a Josephson behaviour if the supercurrent-phase relation
is a single-valued and odd analytical function which can
be represented as a Fourier series

oQ

s (Ag) = Z ap sin (nA¢) . (2)

The crossover between an ideal Josephson behaviour
and an uniform superconducting flow was studied by
solving exactly the usual Ginzburg-Landau (GL) equa-
tion for a 1-D superconductor in the presence of an ef-
fective d-function potential of arbitrary strength (see,
for example [3]). Recently, a modified GL type model
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has been formulated [4]. This model could equally well
be applied to a boundary between different supercon-
ductors, superconductor-insulator, and superconductor-
normal metal. The purpose of our paper is to apply
this modified GL model for calculating the supercurrent-
phase relation and the crossover between Josephson be-
haviour and uniform superconducting flow.

We would like to mention that the SNS structures are
discussed in recent references [5-7].

II. FORMULATION OF THE PROBLEM

We focus our attention only on the current-conserving
solutions of the modified GL equations [4], in which
a nongero current across the boundary is associated
with a linearly varying asymptotic phase (see below the
necessary boundary conditions). Let us accept an one-
dimensional approximation (a dependence of all relevant
quantities is only on the coordinate x across the bound-
ary). Then the magnetic field of our uniform current den-
sity will depend at least on one of the transverse coor-
dinates and in one-dimensional approximation this field
could be neglected. Thus, the order parameter ¢ () sat-
isfies the following equations:

L b+ b2 =0 3
—Rﬂ) + asy + b |[Y|* = 0, (3)



A STUDY OF THE MODIFIED GINZBURG-LANDAU TYPE EQUATION FOR A JOSEPHSON JUNCTION

) thes a
P
for the superconducting domain z € (—oo, —d/2) U
(d/2, o0), and
h? ~ ~ ~
—5 "+ ant + bali*¥ = 0, (4)
2m,
) ihen .
o= (3 3]
my,

for the normal domain 2 € (N—J/Q, d/2). The conditions
at the N-S interfaces # = + d/2 are

m, dw] 0

m, dx

so that j; = j, = j. From now on ay, a,, bs, and b, are
given GL phenomenological coefficients, and [f] denotes
[4] a jump of the enclosed function f(x) across the points
r ==+ ci/? The quantities e; and e, are equal to the
charge of the superconducting charge carriers, and in the
following are both equal to twice the electron charge. We
are free to choose the value of one of the effective masses
ms and m,. Usually m; (the effective mass of super-
conducting electrons) is chosen to be twice the electron
mass. This leaves the mass m,, as a parameter depending
on the normal material.

We suppose that a; = —|as|, an > 0, bs >0, b, > 0
and define the coherence length & = A/ /2m]as|, as well
as the dimensionless distances z = ¢ /¢, d = d/¢, the or-

der parameter ¢(z) = J(z&’)\/bs/|as|, and the current

density
ms by .
T=\ e Tarfes” 5)

In order to make a further comparison with other pa-
pers we introduce an equivalent representation of Eq.
(5) J = 2r€Aj/do, where A = mgs/nge? = g3, and
ng = +/|as|/bs is the equilibrium concentration of su-
perelectrons, Ap is the well-known London penetration
depth, ¢o = h/2e = h/e; is the magnetic flux quantum.

With the definitions given above our problem is stated
as follows

VI (L= [P) ¢ =

(—o0o <z < =d/2)U(d/2 < z < 00), (6)
Sl e,

and

M

mn 1/)// - |a5| = 0’ |Z| < d/2’ (7)
1 ms %/
T = =Gty - ).

III. ANALYTICAL SOLUTION FOR A THIN
NORMAL LAYER

Let us introduce the parameters

nbn b
,ﬁ:m =m

ms bs bs .

a
w

«
ms Mg |as

The case « = —1, § = m = 1 corresponds to an uniform
superconductor occupying the whole space (—o0, 00).

In both Eqs. (6) and (7) we set ¢(z) = R(z) exp [ip(2)]
and find

J2
R"+R— R3—ﬁ:0, |z] > d/2, (8)
R'"— aR— BR? 2J—2—0 d/2; 9
& 6 RS_ I ||< /’ ()
2 1 ‘]a |Z|>d/2a
e _{mJ,|z|<d/2; (10)

Let us introduce the function

§(zil—¢) =1+ (1—c) [H(z—g)

A\] (1, |2 > d/2,
_H<Z+§)]‘{c, 2| < d/2;

H(z) is the Heaviside function. Then Eqgs. (8), (9) can
be written as

R'+6(5;1+a)R—3(2;1-p) R? (11)
J2
—5(z;1 )RBIO'

If the thickness d — +0, we have H (z—d/2) —
H(z+d/2) = —dd (2), so that the case of small d can
be formulated as follows

R0 - g R =g (RS (12)
(1= g8 ()] g = 0.

Here we merely substitute
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n=1+a)d=d (1—|—m|an|),
as
bn,
gp=(1-p)d=d (1_mb_)’

g3 = (l—mz) d.

It is clear, that for very thin normal layers, when
d — +0, the parameters g;, ({ = 1,2,3), scaling like
d should be also small. This limiting case corresponds
to uniform superconducting flow and to small deviations
from this state. However, if the value of d is fixed for a
relatively thin layer (for example, d = 0.2 in our numer-
ical study) the situation is quite different. In this case
the strength of the J-function potentials in Eq. (12) can
be quite large. Moreover, for normal materials with very
low electrical conductivity the effective mass m,, can take
very large values as compared to my, so that we can have
m — oo. Thus, for relatively thin layer generally we have

g1 S [0,00), g2 S (—OO,d], gs S (—O0,0]

Under this assumption we can achieve our goal to in-
vestigate the full crossover from the Josephson effect to
that of bulk superconducting flow.

A class of monotonic at z > 0 (z < 0) solutions of
Eq. (12 ) are found to be

R%(z) = a4+ btanh®[u(|z]| + 20)], (13)

where a(2 —a)? = 8J2,0 < a < 2/3,b = 1 - 3a/2,
u = \/b/2, b = aB?, and the quantity yo = tanh(uzo)
satisfies the condition (0 < yo < 1)

V2bB2yo(1 — ) = g1 (1 + B*2) (14)

—aga(1 4 B —

EETE T ey )

If g2 = 0 and g3 = 0 we recover Eq. (15) from [3].

In the limit d — 40 Eq. (14) has two solutions:
yo = Aod and yo = 1 — Cod/2, where the first order
approximations for quantities Ag > 0 and Cy > 0 are
given by the following formulae

a

Ao = 07757 [1 b0 — a1 - 9y - L2

Co=(20)"Y2B~2|(1 + a)(1 4+ B?)

(1 —m?)J?

—a(l1-p)(1+ B*)” - A5

The existence of two solutions is also confirmed by our
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numerical results given in Sec. 4.

Now we will introduce the phase offset Ay. The first
integral (10) can be rewritten as R*(2)¢’(2) = 6(z;1 —
m) J, so that for small d we have

R()¢/(z) = L—d(1-m)6(z)] . (15)

Due to the fact that the boundary conditions for the
order parameter at z — oo must be

J A
p(z) = —z:l:—gp, z — £o0,

/ —
R'(xo0) =0, =Tz 5

we derive from Eq. (15)

Jd(1 —m)

ST TTR

o | ()

— 00

Here Ro, = R(£oo) > 0 and R*(0) = a + by2 =
a (1 + B?y2). Then, by calculating the integral in the
above equation, we finally find

Ap = 2{arctan B — arctan(Byg)}

dJ(1—m)
IR 1o

If the ratio m = 1, this result formally coincides with
Eq. (16) in [3].

Let us consider the special case of small current J —
40. Then, from the usual sinusoidal Josephson relation
(1) in a linear approximation we get

Ap = arcsin(J/jo) ~ J/je. (17)

Eq. (14) is simplified considerably if J = 0 and reduces
to the following equation

V2(1 = Y7) = 1Yo — 92Y5, (18)
where Yy = yo(J = 0). For small J we have b ~ 1,q =

2J2, B=1/(v/2J), 1> B~! and the right-hand-side of
Eq. (16) can be replaced by a term proportional to J:

A@IQJ[\/i(YLO—l)—d(IQT_O;n)]. (19)

By coupling Eqgs. (17) and (19) we derive an approxi-
mate estimation for the critical current

i:zﬁ(i—l)—d(lyi}m), (20)

where Yy is the smallest root of Eq. (18). In the special
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case g3 = 0,m = 1(gs = 0), g1 > V2, Yo = V2/q1 < 1,

we recover the result from [3]:

Yo 1

Je= W2 291

IV. NUMERICAL MODELLING

We note that Eqs. (8)-(10), the boundary conditions
at the boundaries z = L, as well as the Weierstrass

1 R/2+R2¢/2—R2+lR4
— _ 2 ’
ﬁ_g{%(R’z—l—Rzgo’z—l—aRz—l—%R‘l), s

The Generalized Continuous Analogue of Newton’s
Method (see the survey by Puzynin et al. [8]) for solving
the nonlinear differential equations (8) and (9) on the fi-
nite interval z € (—L, L) with zero Neumann conditions
at the boundaries z = &L and appropriate conditions at
z = +d/2, is applied. At each iteration the correspond-
ing linear boundary value problem is solved numerically
using the finite elements method on a nonuniform grid,
condensed to the boundaries z = +d/2 of the layer. Then
the corresponding phase difference ¢(z) is calculated by
means of the integral (10).

Case: g =1,=0,g=0J=01

1
—
N 084
=
Q2
o
B067
iy s
5 043 R
1
-1 -8 __ 0 & 1€
02 i . F)lstance z
-16 -8 8 16

0
Distance z
Fig. 1. The basic two solutions for J =0.1,g1 = 1,92 =0
and gs = 0.

All numerical results from now on were obtained for
L = 16 and width of the layer d = 0.2. The main
two solutions R(z,J) we found numerically are demon-
strated in Fig. 1 (in this case J = 0.1, g1 = 1, g2 =
0, gs = 0). The first solution (marked by A, full energy
F ~ —2.46) exists in the interval J € [—j, j.], whereas
for the second one (marked by v, F' & —2.39) we have

conditions at the points z = 4d/2, can be interpreted
as a necessary extremum conditions for the free energy
functional

L

F[R,¢] = /E(J:,R, R, ¢")dx (21)
a3

+ Jlp(=L) —(L)] .

Here, the energy density £ is given by

NI
MI&\I/

2 ¢ (-5,
(

[}
S—’

J € (0,—jc] U [je, 0). The first solution originates from
the “uniform” solution R(z) = 1, ¢(z) = 0, existing in
the case when g1 = 0, g2 = 0, g3 = 0, and J = 0. The
process of generation of the order parameter’s amplitude
R(z), when g1 increases, is shown in Fig. 2.

It is necessary to note, that except the above men-
tioned basic solutions there exist a number of high-
energy solutions, some of which are demonstrated in
Fig. 3. These solutions can be considered as a chain of
N > 1 solitons and the corresponding energy increase
when the number N increases. As can be seen, the so-
lutions of such a kind can be interpreted as a nonlinear
interaction between one of the basic solitons, localized at
the point z = 0, and even number symmetrically situated
solitons on its left and right.

The graphics displayed in Fig. 4 correspond to the
J(A¢p) curves for four different values of g1 (g1 = 0,91 =
1,91 =5, and g; = 10) at g2 = 0 and g3 = 0.

If the quantity g1 = 0 (the corresponding curve is
marked by 0O) the maximum is achieved at joop =
2/3V/3 ~ 0.385 (the depairing current density in an uni-
form superconductor). For large values of g1 we found
results close to the ideal Josephson relation (1), which
will be analyzed more strictly below. We note that the
numerical results displayed in Fig. 4 are in a good agree-
ment with Fig. 2 in [3]. For each curve in this figure we
denote j. = max J(Ap) when Ap/m € (—1,1).

The dependence of the free energy F(J) on the current
density J for these two solutions is represented graphi-
cally in Fig. 5 for different values of g;. This is a typical
bifurcation diagram: at the points B where J = j., the
two branches, which correspond to the solutions with
different energies, coalesce and acquire a common cusp.

For completeness the dependence of full energy
F(Ap/m) on normalized phase difference is demon-
strated in Fig. 6 for different values of g1, g2 = 0, and
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g3 = 0. The minima B of these curves correspond to the
critical current density +j. (see Fig. 4).

Figs. 7 and 8 represent the influence of the parameters
g2 and g3, respectively, on the J(Ay) curve. A compari-
son between Fig. 7 and Fig. 4 at g1 = 1 clearly indicates
the influence of the parameter g» on the current density J
— with the enlargement of |g2| we have more pronounced
Josephson behaviour of the curve J(Agp).

Case:J=0,g,=0,g,=0

Amplitude R(z)
s = 2
= [=2% [#.a] —

=
)
)

0 T T
-4 2 0
Distance z

Fig. 2. The amplitude R(z) increase along with the param-
eter g1.

Case:.J=0.16

Amplitude R(z)
o o

=
=
.

]
]
!
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A
]
!
!
!
)

<
)

-16 -8

Fig. 3. Chains of high-energy solutions:
A—-N=3Fn~—-068V—N=5F~~—007

Caserg,=0,g,—0

0.43

|

] |

E |
0.2E I
3 |

|

Current Density J
[}

:  g=0
A g=1
—021 |
02 - | S &=3
—Je | =z =10
-04 T T T
-1 -05 0 0.5 1

Phase Difference Ag/n

Fig. 4. Some typical curves J(Ayp) for g = 0 and g3 = 0.
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Current J

Fig. 5. The critical current j. corresponds to a bifurcation
of basic solutions.

ta

3]

)
L

Full Energy F
1

-2.75 ]

Phase Difference Ag/n

Fig. 6. The critical current j. corresponds to the minimum
of full energy.

Caserg,=1,g,=0

0.3
= ]
B 0154
= ]
b= bl
o ]
a 0 1
- 1
= ]
o
E 0151 &=
QO A g =-1
1 = &=
-03 1 T T T
-1 —0.5 0 05 1

Phase Difference Ap/n

Fig. 7. The influence of the parameter g».

A comparison between Fig. 8 and Fig. 4 also for g; =1
shows that the variation of the parameter g3 between 0
and —3.5 leads to a significant reduction of the maximum
current density (approximately twofold).

These quantitative conclusions can be coupled with
the Fourier decomposition of J(Ayp) curves as given by
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Eq. (2). We restrict ourselves only to the analysis of the
ratio as/ay of the first two Fourier coefficients. When
as/a; < 1 we have approximately a pronounced Joseph-
son behaviour J >~ j.sin Ap since js & ay.

Case: g =1,g,=0

=
(8]

Current Density J
=]
= o

S

|
o
w

1 05 0 05 1
Phagse Difference Ag/'n

Fig. 8 The influence of the parameter gs.

- 2=0g=0
_V_ gzz'lagazo
=0,g,=-35

Parameter g,

Fig. 9. The ratio a2 /a1 of the first two Fourier coeflicients
as a function of parameter g;.

The ratio as/a; as a function of the parameter g1 is
shown in Fig. 9. It is seen that for large enough values
of the parameter g1 (g1 > 8, see [3]) when the parame-
ter g3 = 0, the coefficient a5 is less than 5% of a;. On
the contrary, for small values of g; we have a substantial
weight of higher harmonics (for example, if g1 = 1 then
the ratio as/a; ~ 0.23).

As can be expected (see the curve marked by V), the
influence of the change of the parameter g» on the Fourier
coefficients is essential for small enough values only of

the parameter gy (for example, if g1 = 1, g2 = —1, and
g3 = 0, then as/a; &~ 0.17). On the other hand, taking
into account the coefficient g3 < 0 (the ratio m > 1)
leads to a significant increase of the second term in Eq.
(2) even at great values of the parameter g; (the corre-
sponding curve as/a; is marked by A). This fact can be
considered as an argument for applying the double SG
equation [9] to some SNS structures.

Fig. 10 shows the comparison between numerically
obtained and theoretically calculated curves j.(g1) by
means of formula (20) for g2 = 0 and g3 = 0. We empha-
size the agreement between the theoretical and numeri-
cally obtained relations.

04
s
NOB_ - g=0,g=0
% ’ —&- Theoretical Curve
&
0 0.2
i
.2
T 0.1
@]
0 -------- TTTITTTTeT TTTITrTTrTT TTTTrrTrTT TTTTIrrrTT
0 2 4 6 g 10

Parameter g,

Fig. 10. The critical current j. as a function of the param-
eter g1.

CONCLUDING REMARKS

In the present paper we show that by taking into ac-
count different nonlinear terms in the normal and su-
perconducting regions in SNS sandwich, many harmon-
ics exist and the dependence J(Agp) of the current as a
function of the phase offset is not sinusoidal. The usu-
ally accepted sinusoidal dependence J = j.sin(Ag¢) is
justified only for a restricted domain of values of the pa-
rameters d, m, /ms, a,/|as|, and b, /bs.

We prove numerically that the essential deviation from
sinusoidal relation is caused by the possible anisotropy of
masses (my/m; # 1). The numerical investigation indi-
cates nontrivial specific modifications of the J(Ay) curve
by the introduced new parameters g, and gs. When the
anisotropy of masses is absent (m,/m; = 1), b, = b;
and the thickness d is very small, we recover the results
given in [3].
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Gopmasiism fiH36yprafﬂaHzLay (fﬂ) Ja€ MpOoCTUil MeTod, IJId JOCTIIKeHHA 100a/IbHAX BJIaCTUBOCTE Heom-
HOPIIHUX HAIMPOBIAHUX CTPYKTYP. ¥ Iiii poboTi JOC/IIIKEHO KJIac CTPYKTY P HAIIIPOBIIHA 3BUYaiiHa HaIIIPOBIIHA
(H3H) (cenmpivl) 3 nockuMu rpaHUIEMHI Ha OCHOBI piBHAHB THILy MoAUdhIKOBAHOIO DIBHAHHIA [in36ypra—/lanmay
(fﬂ). BigmosinHay HemiHiliHYy 3agady IpaHIYHOTO 3HAYEHHA aMILIITYIM HapaMeTpa HOPAIKY PO3B’A3aHO UMCETBHO.
Ilokasano, mo oia dpikcoBaHUx 3HadYeHBb peHOMeHOosoTIUHNX KoedimentisB H3H crpykTypnm icHyroTh pisHi pos-
B’A3KHM 3 PISHUMH €HepriAMHU 1 BJacHOIO pisHuiero ¢das. Takok aHaJIITUIHO OTPUMAHO OBAa OCHOBHI PO3B’A3KH 3
MIHIMAJIbHOIO €HEPri€lo JId HeCKIHYeHHOro ceHmplua. OTpuUMaHO 3a/1eKHICTH TYCTUHHM CTPYMY Bid 3CyBY dasm.
3aBOgKM ICHYBAHHIO PI3HUX HeJIHIRHUX [TOJAHKIB y 3BHYaiHIil Ta HAINMPOBIAHINA DUIAHKAX Il 3aJIe?KHOCTI He €
cuHycolmabHuMA. Takoxk 3pobsieHo dyp’e-po3Kaas KpUBOl 3adeKHOCTH TYCTHHE CTPYMY Bim 3cyBY dasu s
TOTO, MO0 OIHUTH BILIUB (peHOMEHOJIOTIYHIX KoedilIleHTIB Ha ¢dhopMy IIi€l KpUBOI.
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