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The formalism of Ginzburg{Landau (GL) provides a simple method to study the global prop-

erties of non-homogeneous super
ondu
ting stru
tures. In this paper we investigate a 
lass of

super
ondi
ting/normal/super
ondu
ting (SNS) stru
tures (sandwi
hes) with plane boundaries on

the basis of the modi�ed Ginzburg{Landau (GL) type equations. The 
orresponding non-linear

boundary value problem for the amplitude of the order parameter is solved numeri
ally. We show,

that for �xed values of the phenomenologi
al 
oeÆ
ients of the SNS stru
ture there exist various

solutions with di�erent energies and their own phase di�eren
es. The two basi
 solutions with min-

imal energy in the 
ase of an in�nite sandwi
h are also obtained analyti
ally. The resulted 
urrent

density-phase o�set dependen
e is 
onstru
ted. Due to the existen
e of di�erent nonlinear terms in

the normal and super
ondu
ting regions, this dependen
e is not sinusoidal. In order to estimate the

in
uen
e of the phenomenologi
al 
oeÆ
ients on the form of 
urrent density | phase o�set 
urve

| a Fourier de
omposition of this 
urve is also made.
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ation, Fourier 
oeÆ
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I. INTRODUCTION

The physi
s of Josephson jun
tions is based on an

usual sinusoidal super
urrent-phase di�eren
e relation

j

s

(��) = j




sin��: (1)

After the dis
overy of the Josephson e�e
t, it be
ame


lear that, apart from an insulating tunnel stru
ture, any

suÆ
iently short lo
alized weak link su
h as a very short


onstri
tion in the 
ross-se
tion of a super
ondu
tor, a

point 
onta
t between two super
ondu
tors, as well as

two super
ondu
tors separated by a thin layer of normal

metal, 
ould be used as a Josephson jun
tion, obeying

the 
urrent-phase relations, usually di�erent from (1).

This fa
t for
ed Li
harev [1℄ and Waldram [2℄ to propose

a generalized de�nition: a weak link is supposed to show

a Josephson behaviour if the super
urrent-phase relation

is a single-valued and odd analyti
al fun
tion whi
h 
an

be represented as a Fourier series

j

s

(��) =

1

X

n=1

a

n

sin (n��) : (2)

The 
rossover between an ideal Josephson behaviour

and an uniform super
ondu
ting 
ow was studied by

solving exa
tly the usual Ginzburg{Landau (GL) equa-

tion for a 1-D super
ondu
tor in the presen
e of an ef-

fe
tive Æ-fun
tion potential of arbitrary strength (see,

for example [3℄). Re
ently, a modi�ed GL type model

has been formulated [4℄. This model 
ould equally well

be applied to a boundary between di�erent super
on-

du
tors, super
ondu
tor-insulator, and super
ondu
tor-

normal metal. The purpose of our paper is to apply

this modi�ed GL model for 
al
ulating the super
urrent-

phase relation and the 
rossover between Josephson be-

haviour and uniform super
ondu
ting 
ow.

We would like to mention that the SNS stru
tures are

dis
ussed in re
ent referen
es [5{7℄.

II. FORMULATION OF THE PROBLEM

We fo
us our attention only on the 
urrent-
onserving

solutions of the modi�ed GL equations [4℄, in whi
h

a nonzero 
urrent a
ross the boundary is asso
iated

with a linearly varying asymptoti
 phase (see below the

ne
essary boundary 
onditions). Let us a

ept an one-

dimensional approximation (a dependen
e of all relevant

quantities is only on the 
oordinate x a
ross the bound-

ary). Then the magneti
 �eld of our uniform 
urrent den-

sity will depend at least on one of the transverse 
oor-

dinates and in one-dimensional approximation this �eld


ould be negle
ted. Thus, the order parameter

e

 (x) sat-

is�es the following equations:

�

h

2

2m

s

e

 

00

+ a

s

e

 + b

s

j

e

 j

2

e

 = 0; (3)
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j

s

= �

i~e

s

2m

s

h

e

 

�

e

 

0

�

e

 

e

 

�0

i

;

for the super
ondu
ting domain x 2 (�1; �

~

d=2) [

(

~

d=2; 1), and

�

~

2

2m

n

e

 

00

+ a

n

e

 + b

n

j

e

 j

2

e

 = 0; (4)

j

n

= �

i~e

n

2m

n

h

e

 

�

e

 

0

�

e

 

e

 

�0

i

;

for the normal domain x 2 (�

~

d=2;

~

d=2). The 
onditions

at the N-S interfa
es x = �

~

d=2 are

h

e

 

i

= 0;

"

m

s

m

n

d

e

 

dx

#

= 0;

so that j

s

= j

n

= j. From now on a

s

, a

n

, b

s

, and b

n

are

given GL phenomenologi
al 
oeÆ
ients, and [f ℄ denotes

[4℄ a jump of the en
losed fun
tion f(x) a
ross the points

x = �

~

d=2. The quantities e

s

and e

n

are equal to the


harge of the super
ondu
ting 
harge 
arriers, and in the

following are both equal to twi
e the ele
tron 
harge. We

are free to 
hoose the value of one of the e�e
tive masses

m

s

and m

n

. Usually m

s

(the e�e
tive mass of super-


ondu
ting ele
trons) is 
hosen to be twi
e the ele
tron

mass. This leaves the massm

n

as a parameter depending

on the normal material.

We suppose that a

s

= �ja

s

j; a

n

> 0; b

s

> 0; b

n

� 0

and de�ne the 
oheren
e length � = ~=

p

2m

s

ja

s

j; as well

as the dimensionless distan
es z = x=�; d =

e

d=�, the or-

der parameter  (z) =

e

 (z�)

p

b

s

=ja

s

j, and the 
urrent

density

J =

r

m

s

2ja

s

j

b

s

ja

s

je

s

j: (5)

In order to make a further 
omparison with other pa-

pers we introdu
e an equivalent representation of Eq.

(5) J = 2���j=�

0

, where � = m

s

=n

0

e

2

s

= �

0

�

2

L

, and

n

0

=

p

ja

s

j=b

s

is the equilibrium 
on
entration of su-

perele
trons, �

L

is the well-known London penetration

depth, �

0

= h=2e = h=e

s

is the magneti
 
ux quantum.

With the de�nitions given above our problem is stated

as follows

 

00

+

�

1� j j

2

�

 = 0;

(�1 < z < �d=2) [ (d=2 < z <1); (6)

J = �

i

2

[ 

�

 

0

�   

�0

℄ ;

and

m

s

m

n

 

00

�

a

n

ja

s

j

 �

b

n

b

s

j j

2

 = 0; jzj < d=2; (7)

J = �

i

2

m

s

m

n

[ 

�

 

0

�   

�0

℄ :

III. ANALYTICAL SOLUTION FOR A THIN

NORMAL LAYER

Let us introdu
e the parameters

m =

m

n

m

s

; � =

m

n

a

n

m

s

ja

s

j

� m

a

n

ja

s

j

; � =

m

n

b

n

m

s

b

s

� m

b

n

b

s

:

The 
ase � = �1; � = m = 1 
orresponds to an uniform

super
ondu
tor o

upying the whole spa
e (�1;1).

In both Eqs. (6) and (7) we set  (z) = R(z) exp [i'(z)℄

and �nd

R

00

+R� R

3

�

J

2

R

3

= 0; jzj > d=2; (8)

R

00

� �R� �R

3

�m

2

J

2

R

3

= 0; jzj < d=2; (9)

R

2

'

0

=

�

J; jzj > d=2;

mJ; jzj < d=2;

(10)

Let us introdu
e the fun
tion

Æ (z; 1� 
) = 1 + (1� 
)

�

H

�

z �

d

2

�

� H

�

z +

d

2

��

=

�

1; jzj > d=2;


; jzj < d=2;

H(z) is the Heaviside fun
tion. Then Eqs. (8), (9) 
an

be written as

R

00

+ Æ (z; 1 + �)R� Æ (z; 1� �)R

3

(11)

�Æ

�

z; 1�m

2

�

J

2

R

3

= 0:

If the thi
kness d ! +0, we have H (z � d=2) �

H (z + d=2) � �dÆ (z) ; so that the 
ase of small d 
an

be formulated as follows

R

00

+ [1� g

1

Æ(z)℄R� [1� g

2

Æ (z)℄R

3

(12)

� [1� g

3

Æ (z)℄

J

2

R

3

= 0:

Here we merely substitute
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g

1

� (1 + �)d = d

�

1 +m

a

n

ja

s

j

�

;

g

2

� (1� �) d = d

�

1�m

b

n

b

s

�

;

g

3

�

�

1�m

2

�

d:

It is 
lear, that for very thin normal layers, when

d ! +0, the parameters g

i

, (i = 1; 2; 3), s
aling like

d should be also small. This limiting 
ase 
orresponds

to uniform super
ondu
ting 
ow and to small deviations

from this state. However, if the value of d is �xed for a

relatively thin layer (for example, d = 0:2 in our numer-

i
al study) the situation is quite di�erent. In this 
ase

the strength of the Æ-fun
tion potentials in Eq. (12) 
an

be quite large. Moreover, for normal materials with very

low ele
tri
al 
ondu
tivity the e�e
tive massm

n


an take

very large values as 
ompared to m

s

, so that we 
an have

m!1. Thus, for relatively thin layer generally we have

g

1

2 [0;1); g

2

2 (�1; d℄; g

3

2 (�1; 0℄:

Under this assumption we 
an a
hieve our goal to in-

vestigate the full 
rossover from the Josephson e�e
t to

that of bulk super
ondu
ting 
ow.

A 
lass of monotoni
 at z > 0 (z < 0) solutions of

Eq. (12 ) are found to be

R

2

(z) = a+ b tanh

2

[u(jzj+ z

0

)℄; (13)

where a(2 � a)

2

= 8J

2

, 0 � a � 2=3, b = 1 � 3a=2,

u =

p

b=2, b = aB

2

, and the quantity y

0

� tanh(uz

0

)

satis�es the 
ondition (0 � y

0

� 1)

p

2bB

2

y

0

(1� y

2

0

) = g

1

(1 +B

2

y

2

0

) (14)

�ag

2

(1 + B

2

y

2

0

)

2

�

g

3

J

2

a

2

(1 +B

2

y

2

0

)

:

If g

2

= 0 and g

3

= 0 we re
over Eq. (15) from [3℄.

In the limit d ! +0 Eq. (14) has two solutions:

y

0

= A

0

d and y

0

= 1 � C

0

d=2, where the �rst order

approximations for quantities A

0

> 0 and C

0

> 0 are

given by the following formulae

A

0

= (2b)

�1=2

B

�2

�

1 + �� a(1� �) �

(1 �m

2

)J

2

a

2

�

;

C

0

= (2b)

�1=2

B

�2

"

(1 + �)(1 + B

2

)

� a(1� �)(1 +B

2

)

2

�

(1�m

2

)J

2

a

2

(1 +B

2

)

#

:

The existen
e of two solutions is also 
on�rmed by our

numeri
al results given in Se
. 4.

Now we will introdu
e the phase o�set �'. The �rst

integral (10) 
an be rewritten as R

2

(z)'

0

(z) = Æ(z; 1 �

m) J; so that for small d we have

R

2

(z) '

0

(z) = [1� d(1�m) Æ(z)℄ J: (15)

Due to the fa
t that the boundary 
onditions for the

order parameter at z !�1 must be

R

0

(�1) = 0; '(z) =

J

R

2

1

z �

�'

2

; z !�1;

we derive from Eq. (15)

�' = �

Jd(1�m)

R

2

(0)

+ J

1

Z

�1

�

1

R

2

(z)

�

1

R

2

1

�

dz:

Here R

1

= R(�1) > 0 and R

2

(0) = a + by

2

0

=

a (1 + B

2

y

2

0

). Then, by 
al
ulating the integral in the

above equation, we �nally �nd

�' = 2far
tanB � ar
tan(By

0

)g

�

d J(1 �m)

a (1 + B

2

y

2

0

)

: (16)

If the ratio m = 1, this result formally 
oin
ides with

Eq. (16) in [3℄.

Let us 
onsider the spe
ial 
ase of small 
urrent J !

+0. Then, from the usual sinusoidal Josephson relation

(1) in a linear approximation we get

�' = ar
sin(J=j




) ' J=j




: (17)

Eq. (14) is simpli�ed 
onsiderably if J = 0 and redu
es

to the following equation

p

2(1� Y

2

0

) = g

1

Y

0

� g

2

Y

3

0

; (18)

where Y

0

= y

0

(J = 0). For small J we have b ' 1; q =

2J

2

; B = 1=(

p

2 J); 1� B

�1

and the right-hand-side of

Eq. (16) 
an be repla
ed by a term proportional to J :

�' = 2J

�

p

2

�

1

Y

0

� 1

�

�

d(1�m)

2Y

2

0

�

: (19)

By 
oupling Eqs. (17) and (19) we derive an approxi-

mate estimation for the 
riti
al 
urrent

1

j




= 2

p

2

�

1

Y

0

� 1

�

�

d(1�m)

Y

2

0

; (20)

where Y

0

is the smallest root of Eq. (18). In the spe
ial
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ase g

2

= 0;m = 1(g

3

= 0), g

1

�

p

2, Y

0

=

p

2=g

1

� 1,

we re
over the result from [3℄:

j




=

Y

0

2

p

2

=

1

2g

1

:

IV. NUMERICAL MODELLING

We note that Eqs. (8){(10), the boundary 
onditions

at the boundaries z = �L, as well as the Weierstrass


onditions at the points z = �d=2, 
an be interpreted

as a ne
essary extremum 
onditions for the free energy

fun
tional

F [R;'℄ =

L

Z

�L

L(x;R;R

0

; '

0

)dx (21)

+ J ['(�L) � '(L)℄ :

Here, the energy density L is given by

L =

1

2

(

R

02

+ R

2

'

02

�R

2

+

1

2

R

4

; z =2

�

�

d

2

;

d

2

�

;

1

m

�

R

02

+ R

2

'

02

+ �R

2

+

�

2

R

4

�

; z 2

�

�

d

2

;

d

2

�

:

The Generalized Continuous Analogue of Newton's

Method (see the survey by Puzynin et al. [8℄) for solving

the nonlinear di�erential equations (8) and (9) on the �-

nite interval z 2 (�L;L) with zero Neumann 
onditions

at the boundaries z = �L and appropriate 
onditions at

z = �d=2, is applied. At ea
h iteration the 
orrespond-

ing linear boundary value problem is solved numeri
ally

using the �nite elements method on a nonuniform grid,


ondensed to the boundaries z = �d=2 of the layer. Then

the 
orresponding phase di�eren
e '(z) is 
al
ulated by

means of the integral (10).

Fig. 1. The basi
 two solutions for J = 0:1; g

1

= 1; g

2

= 0

and g

3

= 0.

All numeri
al results from now on were obtained for

L = 16 and width of the layer d = 0:2. The main

two solutions R(z; J) we found numeri
ally are demon-

strated in Fig. 1 (in this 
ase J = 0:1; g

1

= 1; g

2

=

0; g

3

= 0). The �rst solution (marked by 4, full energy

F � �2:46) exists in the interval J 2 [�j




; j




℄, whereas

for the se
ond one (marked by O, F � �2:39) we have

J 2 (0;�j




℄ [ [j




; 0). The �rst solution originates from

the \uniform" solution R(z) = 1, '(z) = 0, existing in

the 
ase when g

1

= 0, g

2

= 0, g

3

= 0, and J = 0. The

pro
ess of generation of the order parameter's amplitude

R(z), when g

1

in
reases, is shown in Fig. 2.

It is ne
essary to note, that ex
ept the above men-

tioned basi
 solutions there exist a number of high-

energy solutions, some of whi
h are demonstrated in

Fig. 3. These solutions 
an be 
onsidered as a 
hain of

N > 1 solitons and the 
orresponding energy in
rease

when the number N in
reases. As 
an be seen, the so-

lutions of su
h a kind 
an be interpreted as a nonlinear

intera
tion between one of the basi
 solitons, lo
alized at

the point z = 0, and even number symmetri
ally situated

solitons on its left and right.

The graphi
s displayed in Fig. 4 
orrespond to the

J(�') 
urves for four di�erent values of g

1

(g

1

= 0; g

1

=

1; g

1

= 5, and g

1

= 10) at g

2

= 0 and g

3

= 0.

If the quantity g

1

= 0 (the 
orresponding 
urve is

marked by �) the maximum is a
hieved at j

dep

=

2=3

p

3 � 0:385 (the depairing 
urrent density in an uni-

form super
ondu
tor). For large values of g

1

we found

results 
lose to the ideal Josephson relation (1), whi
h

will be analyzed more stri
tly below. We note that the

numeri
al results displayed in Fig. 4 are in a good agree-

ment with Fig. 2 in [3℄. For ea
h 
urve in this �gure we

denote j




= maxJ(�') when �'=� 2 (�1; 1).

The dependen
e of the free energy F (J) on the 
urrent

density J for these two solutions is represented graphi-


ally in Fig. 5 for di�erent values of g

1

. This is a typi
al

bifur
ation diagram: at the points B where J = j




, the

two bran
hes, whi
h 
orrespond to the solutions with

di�erent energies, 
oales
e and a
quire a 
ommon 
usp.

For 
ompleteness the dependen
e of full energy

F (�'=�) on normalized phase di�eren
e is demon-

strated in Fig. 6 for di�erent values of g

1

, g

2

= 0, and
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g

3

= 0. The minima B of these 
urves 
orrespond to the


riti
al 
urrent density �j




(see Fig. 4).

Figs. 7 and 8 represent the in
uen
e of the parameters

g

2

and g

3

, respe
tively, on the J(�') 
urve. A 
ompari-

son between Fig. 7 and Fig. 4 at g

1

= 1 
learly indi
ates

the in
uen
e of the parameter g

2

on the 
urrent density J

|with the enlargement of jg

2

jwe have more pronoun
ed

Josephson behaviour of the 
urve J(�').

Fig. 2. The amplitude R(z) in
rease along with the param-

eter g

1

.

Fig. 3. Chains of high-energy solutions:

M �N = 3; F � �0:68; O�N = 5; F � �0:07

Fig. 4. Some typi
al 
urves J(�') for g

2

= 0 and g

3

= 0.

Fig. 5. The 
riti
al 
urrent j





orresponds to a bifur
ation

of basi
 solutions.

Fig. 6. The 
riti
al 
urrent j





orresponds to the minimum

of full energy.

Fig. 7. The in
uen
e of the parameter g

2

.

A 
omparison between Fig. 8 and Fig. 4 also for g

1

= 1

shows that the variation of the parameter g

3

between 0

and �3:5 leads to a signi�
ant redu
tion of the maximum


urrent density (approximately twofold).

These quantitative 
on
lusions 
an be 
oupled with

the Fourier de
omposition of J(�') 
urves as given by
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Eq. (2). We restri
t ourselves only to the analysis of the

ratio a

2

=a

1

of the �rst two Fourier 
oeÆ
ients. When

a

2

=a

1

� 1 we have approximately a pronoun
ed Joseph-

son behaviour J ' j




sin�' sin
e j

s

� a

1

.

Fig. 8. The in
uen
e of the parameter g

3

.

Fig. 9. The ratio a

2

=a

1

of the �rst two Fourier 
oeÆ
ients

as a fun
tion of parameter g

1

.

The ratio a

2

=a

1

as a fun
tion of the parameter g

1

is

shown in Fig. 9. It is seen that for large enough values

of the parameter g

1

(g

1

> 8, see [3℄) when the parame-

ter g

3

= 0, the 
oeÆ
ient a

2

is less than 5% of a

1

. On

the 
ontrary, for small values of g

1

we have a substantial

weight of higher harmoni
s (for example, if g

1

= 1 then

the ratio a

2

=a

1

� 0:23).

As 
an be expe
ted (see the 
urve marked by O), the

in
uen
e of the 
hange of the parameter g

2

on the Fourier


oeÆ
ients is essential for small enough values only of

the parameter g

1

(for example, if g

1

= 1, g

2

= �1, and

g

3

= 0, then a

2

=a

1

� 0:17). On the other hand, taking

into a

ount the 
oeÆ
ient g

3

< 0 (the ratio m > 1)

leads to a signi�
ant in
rease of the se
ond term in Eq.

(2) even at great values of the parameter g

1

(the 
orre-

sponding 
urve a

2

=a

1

is marked by 4). This fa
t 
an be


onsidered as an argument for applying the double SG

equation [9℄ to some SNS stru
tures.

Fig. 10 shows the 
omparison between numeri
ally

obtained and theoreti
ally 
al
ulated 
urves j




(g

1

) by

means of formula (20) for g

2

= 0 and g

3

= 0. We empha-

size the agreement between the theoreti
al and numeri-


ally obtained relations.

Fig. 10. The 
riti
al 
urrent j




as a fun
tion of the param-

eter g

1

.

CONCLUDING REMARKS

In the present paper we show that by taking into a
-


ount di�erent nonlinear terms in the normal and su-

per
ondu
ting regions in SNS sandwi
h, many harmon-

i
s exist and the dependen
e J(�') of the 
urrent as a

fun
tion of the phase o�set is not sinusoidal. The usu-

ally a

epted sinusoidal dependen
e J = j




sin(��) is

justi�ed only for a restri
ted domain of values of the pa-

rameters d;m

n

=m

s

; a

n

=ja

s

j, and b

n

=b

s

.

We prove numeri
ally that the essential deviation from

sinusoidal relation is 
aused by the possible anisotropy of

masses (m

n

=m

s

6= 1). The numeri
al investigation indi-


ates nontrivial spe
i�
 modi�
ations of the J(�') 
urve

by the introdu
ed new parameters g

2

and g

3

. When the

anisotropy of masses is absent (m

n

=m

s

= 1), b

n

= b

s

and the thi
kness d is very small, we re
over the results

given in [3℄.
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DOSL�D�ENN� MODIF�KOVANOGO R�VN�NN� ��NZBUR�A{LANDAU

DL� D�OZEFSON�VS^KOGO KONTAKTU

T. L. Bo�d�ev

1

, Z. D. �enqev

2

1

Fakul~tet matematiki � komp'�ternih nauk,

Un�versitet Sof�Ý \Sv. Kl. O�r�dsk�",

BG{1164, Sof��, Bolgar��

E-mail: todorlb�fmi.uni-so�a.bg

2

�nstitut elektron�ki, Bolgars~ka akadem�� nauk,

BG{1784, Sof��, Bolgar��

E-mail: zgen
hev�ie.bas.bg

Formal�zm ��nzbur�a{Landau (�L) da
 prosti� metod dl� dosl�d�enn� �lobal~nih vlastivoste� neod-

nor�dnih nadprov�dnih struktur. U 
�� robot� dosl�d�eno klas struktur nadprov�dna zviqa�na nadprov�dna

(NZN) (sendv�q�) z ploskimi grani
�mi na osnov� r�vn�n~ tipu modif�kovanogo r�vn�nn� ��nzbur�a{Landau

(�L). V�dpov�dnu nel�n��nu zadaqu graniqnogo znaqenn� ampl�tudi parametra por�dku rozv'�zano qisel~no.

Pokazano, wo dl� f�ksovanih znaqen~ fenomenolog�qnih koef�
�
nt�v NZN strukturi �snu�t~ r�zn� roz-

v'�zki z r�znimi ener���mi � vlasno� r�zni
e� faz. Tako� anal�tiqno otrimano dva osnovn� rozv'�zki z

m�n�mal~no� ener��
� dl� nesk�nqennogo sendv�qa. Otrimano zale�n�st~ gustini strumu v�d zsuvu fazi.

Zavd�ki �snuvann� r�znih nel�n��nih dodank�v u zviqa�n�� ta nadprov�dn�� d�l�nkah 
� zale�nost� ne 


sinusoÝdal~nimi. Tako� zrobleno fur'
-rozklad krivoÝ zale�nosti gustini strumu v�d zsuvu fazi dl�

togo, wob o
�niti vpliv fenomenolog�qnih koef�
�
nt�v na formu 
�
Ý krivoÝ.
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