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The formalism of Ginzburg{Landau (GL) provides a simple method to study the global prop-

erties of non-homogeneous superonduting strutures. In this paper we investigate a lass of

superonditing/normal/superonduting (SNS) strutures (sandwihes) with plane boundaries on

the basis of the modi�ed Ginzburg{Landau (GL) type equations. The orresponding non-linear

boundary value problem for the amplitude of the order parameter is solved numerially. We show,

that for �xed values of the phenomenologial oeÆients of the SNS struture there exist various

solutions with di�erent energies and their own phase di�erenes. The two basi solutions with min-

imal energy in the ase of an in�nite sandwih are also obtained analytially. The resulted urrent

density-phase o�set dependene is onstruted. Due to the existene of di�erent nonlinear terms in

the normal and superonduting regions, this dependene is not sinusoidal. In order to estimate the

inuene of the phenomenologial oeÆients on the form of urrent density | phase o�set urve

| a Fourier deomposition of this urve is also made.

Key words: Modi�ed Ginzburg-Landau equation, Josephson juntion, superurrent-phase rela-

tion, nonlinear boundary value problem, bifuration, Fourier oeÆients.
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I. INTRODUCTION

The physis of Josephson juntions is based on an

usual sinusoidal superurrent-phase di�erene relation

j

s

(��) = j



sin��: (1)

After the disovery of the Josephson e�et, it beame

lear that, apart from an insulating tunnel struture, any

suÆiently short loalized weak link suh as a very short

onstrition in the ross-setion of a superondutor, a

point ontat between two superondutors, as well as

two superondutors separated by a thin layer of normal

metal, ould be used as a Josephson juntion, obeying

the urrent-phase relations, usually di�erent from (1).

This fat fored Liharev [1℄ and Waldram [2℄ to propose

a generalized de�nition: a weak link is supposed to show

a Josephson behaviour if the superurrent-phase relation

is a single-valued and odd analytial funtion whih an

be represented as a Fourier series

j

s

(��) =

1

X

n=1

a

n

sin (n��) : (2)

The rossover between an ideal Josephson behaviour

and an uniform superonduting ow was studied by

solving exatly the usual Ginzburg{Landau (GL) equa-

tion for a 1-D superondutor in the presene of an ef-

fetive Æ-funtion potential of arbitrary strength (see,

for example [3℄). Reently, a modi�ed GL type model

has been formulated [4℄. This model ould equally well

be applied to a boundary between di�erent superon-

dutors, superondutor-insulator, and superondutor-

normal metal. The purpose of our paper is to apply

this modi�ed GL model for alulating the superurrent-

phase relation and the rossover between Josephson be-

haviour and uniform superonduting ow.

We would like to mention that the SNS strutures are

disussed in reent referenes [5{7℄.

II. FORMULATION OF THE PROBLEM

We fous our attention only on the urrent-onserving

solutions of the modi�ed GL equations [4℄, in whih

a nonzero urrent aross the boundary is assoiated

with a linearly varying asymptoti phase (see below the

neessary boundary onditions). Let us aept an one-

dimensional approximation (a dependene of all relevant

quantities is only on the oordinate x aross the bound-

ary). Then the magneti �eld of our uniform urrent den-

sity will depend at least on one of the transverse oor-

dinates and in one-dimensional approximation this �eld

ould be negleted. Thus, the order parameter

e

 (x) sat-

is�es the following equations:
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e
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e

 = 0; (3)
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for the superonduting domain x 2 (�1; �

~

d=2) [

(

~

d=2; 1), and
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e
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e

 = 0; (4)
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for the normal domain x 2 (�

~

d=2;

~

d=2). The onditions

at the N-S interfaes x = �

~

d=2 are

h

e

 

i

= 0;

"

m

s

m

n

d

e

 

dx

#

= 0;

so that j

s

= j

n

= j. From now on a

s

, a

n

, b

s

, and b

n

are

given GL phenomenologial oeÆients, and [f ℄ denotes

[4℄ a jump of the enlosed funtion f(x) aross the points

x = �

~

d=2. The quantities e

s

and e

n

are equal to the

harge of the superonduting harge arriers, and in the

following are both equal to twie the eletron harge. We

are free to hoose the value of one of the e�etive masses

m

s

and m

n

. Usually m

s

(the e�etive mass of super-

onduting eletrons) is hosen to be twie the eletron

mass. This leaves the massm

n

as a parameter depending

on the normal material.

We suppose that a

s

= �ja

s

j; a

n

> 0; b

s

> 0; b

n

� 0

and de�ne the oherene length � = ~=

p

2m

s

ja

s

j; as well

as the dimensionless distanes z = x=�; d =

e

d=�, the or-

der parameter  (z) =

e

 (z�)

p

b

s

=ja

s

j, and the urrent

density

J =

r

m

s

2ja

s

j

b

s

ja

s

je

s

j: (5)

In order to make a further omparison with other pa-

pers we introdue an equivalent representation of Eq.

(5) J = 2���j=�

0

, where � = m

s

=n

0

e

2

s

= �

0

�

2

L

, and

n

0

=

p

ja

s

j=b

s

is the equilibrium onentration of su-

pereletrons, �

L

is the well-known London penetration

depth, �

0

= h=2e = h=e

s

is the magneti ux quantum.

With the de�nitions given above our problem is stated

as follows

 

00

+

�

1� j j

2

�

 = 0;

(�1 < z < �d=2) [ (d=2 < z <1); (6)

J = �

i

2

[ 

�

 

0

�   

�0

℄ ;

and

m

s

m
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a

n
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s

j

 �

b

n

b

s

j j

2

 = 0; jzj < d=2; (7)

J = �

i

2

m

s
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III. ANALYTICAL SOLUTION FOR A THIN

NORMAL LAYER

Let us introdue the parameters

m =

m

n

m

s

; � =

m

n

a

n

m

s

ja

s

j

� m

a

n

ja

s

j

; � =

m

n

b

n

m

s

b

s

� m

b

n

b

s

:

The ase � = �1; � = m = 1 orresponds to an uniform

superondutor oupying the whole spae (�1;1).

In both Eqs. (6) and (7) we set  (z) = R(z) exp [i'(z)℄

and �nd

R

00

+R� R

3

�

J

2

R

3

= 0; jzj > d=2; (8)

R

00

� �R� �R

3

�m

2

J

2

R

3

= 0; jzj < d=2; (9)

R

2

'

0

=

�

J; jzj > d=2;

mJ; jzj < d=2;

(10)

Let us introdue the funtion

Æ (z; 1� ) = 1 + (1� )

�

H

�

z �

d

2

�

� H

�

z +

d

2

��

=

�

1; jzj > d=2;

; jzj < d=2;

H(z) is the Heaviside funtion. Then Eqs. (8), (9) an

be written as

R

00

+ Æ (z; 1 + �)R� Æ (z; 1� �)R

3

(11)

�Æ

�

z; 1�m

2

�

J

2

R

3

= 0:

If the thikness d ! +0, we have H (z � d=2) �

H (z + d=2) � �dÆ (z) ; so that the ase of small d an

be formulated as follows

R

00

+ [1� g

1

Æ(z)℄R� [1� g

2

Æ (z)℄R

3

(12)

� [1� g

3

Æ (z)℄

J

2

R

3

= 0:

Here we merely substitute
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g

1

� (1 + �)d = d

�

1 +m

a

n

ja

s

j

�

;

g

2

� (1� �) d = d

�

1�m

b

n

b

s

�

;

g

3

�

�

1�m

2

�

d:

It is lear, that for very thin normal layers, when

d ! +0, the parameters g

i

, (i = 1; 2; 3), saling like

d should be also small. This limiting ase orresponds

to uniform superonduting ow and to small deviations

from this state. However, if the value of d is �xed for a

relatively thin layer (for example, d = 0:2 in our numer-

ial study) the situation is quite di�erent. In this ase

the strength of the Æ-funtion potentials in Eq. (12) an

be quite large. Moreover, for normal materials with very

low eletrial ondutivity the e�etive massm

n

an take

very large values as ompared to m

s

, so that we an have

m!1. Thus, for relatively thin layer generally we have

g

1

2 [0;1); g

2

2 (�1; d℄; g

3

2 (�1; 0℄:

Under this assumption we an ahieve our goal to in-

vestigate the full rossover from the Josephson e�et to

that of bulk superonduting ow.

A lass of monotoni at z > 0 (z < 0) solutions of

Eq. (12 ) are found to be

R

2

(z) = a+ b tanh

2

[u(jzj+ z

0

)℄; (13)

where a(2 � a)

2

= 8J

2

, 0 � a � 2=3, b = 1 � 3a=2,

u =

p

b=2, b = aB

2

, and the quantity y

0

� tanh(uz

0

)

satis�es the ondition (0 � y

0

� 1)

p

2bB

2

y

0

(1� y

2

0

) = g

1

(1 +B

2

y

2

0

) (14)

�ag

2

(1 + B

2

y

2

0

)

2

�

g

3

J

2

a

2

(1 +B

2

y

2

0

)

:

If g

2

= 0 and g

3

= 0 we reover Eq. (15) from [3℄.

In the limit d ! +0 Eq. (14) has two solutions:

y

0

= A

0

d and y

0

= 1 � C

0

d=2, where the �rst order

approximations for quantities A

0

> 0 and C

0

> 0 are

given by the following formulae

A

0

= (2b)

�1=2

B

�2

�

1 + �� a(1� �) �

(1 �m

2

)J

2

a

2

�

;

C

0

= (2b)

�1=2

B

�2

"

(1 + �)(1 + B

2

)

� a(1� �)(1 +B

2

)

2

�

(1�m

2

)J

2

a

2

(1 +B

2

)

#

:

The existene of two solutions is also on�rmed by our

numerial results given in Se. 4.

Now we will introdue the phase o�set �'. The �rst

integral (10) an be rewritten as R

2

(z)'

0

(z) = Æ(z; 1 �

m) J; so that for small d we have

R

2

(z) '

0

(z) = [1� d(1�m) Æ(z)℄ J: (15)

Due to the fat that the boundary onditions for the

order parameter at z !�1 must be

R

0

(�1) = 0; '(z) =

J

R

2

1

z �

�'

2

; z !�1;

we derive from Eq. (15)

�' = �

Jd(1�m)

R

2

(0)

+ J

1

Z

�1

�

1

R

2

(z)

�

1

R

2

1

�

dz:

Here R

1

= R(�1) > 0 and R

2

(0) = a + by

2

0

=

a (1 + B

2

y

2

0

). Then, by alulating the integral in the

above equation, we �nally �nd

�' = 2fartanB � artan(By

0

)g

�

d J(1 �m)

a (1 + B

2

y

2

0

)

: (16)

If the ratio m = 1, this result formally oinides with

Eq. (16) in [3℄.

Let us onsider the speial ase of small urrent J !

+0. Then, from the usual sinusoidal Josephson relation

(1) in a linear approximation we get

�' = arsin(J=j



) ' J=j



: (17)

Eq. (14) is simpli�ed onsiderably if J = 0 and redues

to the following equation

p

2(1� Y

2

0

) = g

1

Y

0

� g

2

Y

3

0

; (18)

where Y

0

= y

0

(J = 0). For small J we have b ' 1; q =

2J

2

; B = 1=(

p

2 J); 1� B

�1

and the right-hand-side of

Eq. (16) an be replaed by a term proportional to J :

�' = 2J

�

p

2

�

1

Y

0

� 1

�

�

d(1�m)

2Y

2

0

�

: (19)

By oupling Eqs. (17) and (19) we derive an approxi-

mate estimation for the ritial urrent

1

j



= 2

p

2

�

1

Y

0

� 1

�

�

d(1�m)

Y

2

0

; (20)

where Y

0

is the smallest root of Eq. (18). In the speial
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ase g

2

= 0;m = 1(g

3

= 0), g

1

�

p

2, Y

0

=

p

2=g

1

� 1,

we reover the result from [3℄:

j



=

Y

0

2

p

2

=

1

2g

1

:

IV. NUMERICAL MODELLING

We note that Eqs. (8){(10), the boundary onditions

at the boundaries z = �L, as well as the Weierstrass

onditions at the points z = �d=2, an be interpreted

as a neessary extremum onditions for the free energy

funtional

F [R;'℄ =

L

Z

�L

L(x;R;R

0

; '

0

)dx (21)

+ J ['(�L) � '(L)℄ :

Here, the energy density L is given by

L =

1

2

(

R

02

+ R

2

'

02

�R

2

+

1

2

R

4

; z =2

�

�

d

2

;

d

2

�

;

1

m

�

R

02

+ R

2

'

02

+ �R

2

+

�

2

R

4

�

; z 2

�

�

d

2

;

d

2

�

:

The Generalized Continuous Analogue of Newton's

Method (see the survey by Puzynin et al. [8℄) for solving

the nonlinear di�erential equations (8) and (9) on the �-

nite interval z 2 (�L;L) with zero Neumann onditions

at the boundaries z = �L and appropriate onditions at

z = �d=2, is applied. At eah iteration the orrespond-

ing linear boundary value problem is solved numerially

using the �nite elements method on a nonuniform grid,

ondensed to the boundaries z = �d=2 of the layer. Then

the orresponding phase di�erene '(z) is alulated by

means of the integral (10).

Fig. 1. The basi two solutions for J = 0:1; g

1

= 1; g

2

= 0

and g

3

= 0.

All numerial results from now on were obtained for

L = 16 and width of the layer d = 0:2. The main

two solutions R(z; J) we found numerially are demon-

strated in Fig. 1 (in this ase J = 0:1; g

1

= 1; g

2

=

0; g

3

= 0). The �rst solution (marked by 4, full energy

F � �2:46) exists in the interval J 2 [�j



; j



℄, whereas

for the seond one (marked by O, F � �2:39) we have

J 2 (0;�j



℄ [ [j



; 0). The �rst solution originates from

the \uniform" solution R(z) = 1, '(z) = 0, existing in

the ase when g

1

= 0, g

2

= 0, g

3

= 0, and J = 0. The

proess of generation of the order parameter's amplitude

R(z), when g

1

inreases, is shown in Fig. 2.

It is neessary to note, that exept the above men-

tioned basi solutions there exist a number of high-

energy solutions, some of whih are demonstrated in

Fig. 3. These solutions an be onsidered as a hain of

N > 1 solitons and the orresponding energy inrease

when the number N inreases. As an be seen, the so-

lutions of suh a kind an be interpreted as a nonlinear

interation between one of the basi solitons, loalized at

the point z = 0, and even number symmetrially situated

solitons on its left and right.

The graphis displayed in Fig. 4 orrespond to the

J(�') urves for four di�erent values of g

1

(g

1

= 0; g

1

=

1; g

1

= 5, and g

1

= 10) at g

2

= 0 and g

3

= 0.

If the quantity g

1

= 0 (the orresponding urve is

marked by �) the maximum is ahieved at j

dep

=

2=3

p

3 � 0:385 (the depairing urrent density in an uni-

form superondutor). For large values of g

1

we found

results lose to the ideal Josephson relation (1), whih

will be analyzed more stritly below. We note that the

numerial results displayed in Fig. 4 are in a good agree-

ment with Fig. 2 in [3℄. For eah urve in this �gure we

denote j



= maxJ(�') when �'=� 2 (�1; 1).

The dependene of the free energy F (J) on the urrent

density J for these two solutions is represented graphi-

ally in Fig. 5 for di�erent values of g

1

. This is a typial

bifuration diagram: at the points B where J = j



, the

two branhes, whih orrespond to the solutions with

di�erent energies, oalese and aquire a ommon usp.

For ompleteness the dependene of full energy

F (�'=�) on normalized phase di�erene is demon-

strated in Fig. 6 for di�erent values of g

1

, g

2

= 0, and
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g

3

= 0. The minima B of these urves orrespond to the

ritial urrent density �j



(see Fig. 4).

Figs. 7 and 8 represent the inuene of the parameters

g

2

and g

3

, respetively, on the J(�') urve. A ompari-

son between Fig. 7 and Fig. 4 at g

1

= 1 learly indiates

the inuene of the parameter g

2

on the urrent density J

|with the enlargement of jg

2

jwe have more pronouned

Josephson behaviour of the urve J(�').

Fig. 2. The amplitude R(z) inrease along with the param-

eter g

1

.

Fig. 3. Chains of high-energy solutions:

M �N = 3; F � �0:68; O�N = 5; F � �0:07

Fig. 4. Some typial urves J(�') for g

2

= 0 and g

3

= 0.

Fig. 5. The ritial urrent j



orresponds to a bifuration

of basi solutions.

Fig. 6. The ritial urrent j



orresponds to the minimum

of full energy.

Fig. 7. The inuene of the parameter g

2

.

A omparison between Fig. 8 and Fig. 4 also for g

1

= 1

shows that the variation of the parameter g

3

between 0

and �3:5 leads to a signi�ant redution of the maximum

urrent density (approximately twofold).

These quantitative onlusions an be oupled with

the Fourier deomposition of J(�') urves as given by
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Eq. (2). We restrit ourselves only to the analysis of the

ratio a

2

=a

1

of the �rst two Fourier oeÆients. When

a

2

=a

1

� 1 we have approximately a pronouned Joseph-

son behaviour J ' j



sin�' sine j

s

� a

1

.

Fig. 8. The inuene of the parameter g

3

.

Fig. 9. The ratio a

2

=a

1

of the �rst two Fourier oeÆients

as a funtion of parameter g

1

.

The ratio a

2

=a

1

as a funtion of the parameter g

1

is

shown in Fig. 9. It is seen that for large enough values

of the parameter g

1

(g

1

> 8, see [3℄) when the parame-

ter g

3

= 0, the oeÆient a

2

is less than 5% of a

1

. On

the ontrary, for small values of g

1

we have a substantial

weight of higher harmonis (for example, if g

1

= 1 then

the ratio a

2

=a

1

� 0:23).

As an be expeted (see the urve marked by O), the

inuene of the hange of the parameter g

2

on the Fourier

oeÆients is essential for small enough values only of

the parameter g

1

(for example, if g

1

= 1, g

2

= �1, and

g

3

= 0, then a

2

=a

1

� 0:17). On the other hand, taking

into aount the oeÆient g

3

< 0 (the ratio m > 1)

leads to a signi�ant inrease of the seond term in Eq.

(2) even at great values of the parameter g

1

(the orre-

sponding urve a

2

=a

1

is marked by 4). This fat an be

onsidered as an argument for applying the double SG

equation [9℄ to some SNS strutures.

Fig. 10 shows the omparison between numerially

obtained and theoretially alulated urves j



(g

1

) by

means of formula (20) for g

2

= 0 and g

3

= 0. We empha-

size the agreement between the theoretial and numeri-

ally obtained relations.

Fig. 10. The ritial urrent j



as a funtion of the param-

eter g

1

.

CONCLUDING REMARKS

In the present paper we show that by taking into a-

ount di�erent nonlinear terms in the normal and su-

peronduting regions in SNS sandwih, many harmon-

is exist and the dependene J(�') of the urrent as a

funtion of the phase o�set is not sinusoidal. The usu-

ally aepted sinusoidal dependene J = j



sin(��) is

justi�ed only for a restrited domain of values of the pa-

rameters d;m

n

=m

s

; a

n

=ja

s

j, and b

n

=b

s

.

We prove numerially that the essential deviation from

sinusoidal relation is aused by the possible anisotropy of

masses (m

n

=m

s

6= 1). The numerial investigation indi-

ates nontrivial spei� modi�ations of the J(�') urve

by the introdued new parameters g

2

and g

3

. When the

anisotropy of masses is absent (m

n

=m

s

= 1), b

n

= b

s

and the thikness d is very small, we reover the results

given in [3℄.
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DOSL�D�ENN� MODIF�KOVANOGO R�VN�NN� ��NZBUR�A{LANDAU

DL� D�OZEFSON�VS^KOGO KONTAKTU

T. L. Bo�d�ev

1

, Z. D. �enqev

2

1

Fakul~tet matematiki � komp'�ternih nauk,

Un�versitet Sof�Ý \Sv. Kl. O�r�dsk�",

BG{1164, Sof��, Bolgar��

E-mail: todorlb�fmi.uni-so�a.bg

2

�nstitut elektron�ki, Bolgars~ka akadem�� nauk,

BG{1784, Sof��, Bolgar��

E-mail: zgenhev�ie.bas.bg

Formal�zm ��nzbur�a{Landau (�L) da prosti� metod dl� dosl�d�enn� �lobal~nih vlastivoste� neod-

nor�dnih nadprov�dnih struktur. U �� robot� dosl�d�eno klas struktur nadprov�dna zviqa�na nadprov�dna

(NZN) (sendv�q�) z ploskimi grani�mi na osnov� r�vn�n~ tipu modif�kovanogo r�vn�nn� ��nzbur�a{Landau

(�L). V�dpov�dnu nel�n��nu zadaqu graniqnogo znaqenn� ampl�tudi parametra por�dku rozv'�zano qisel~no.

Pokazano, wo dl� f�ksovanih znaqen~ fenomenolog�qnih koef��nt�v NZN strukturi �snu�t~ r�zn� roz-

v'�zki z r�znimi ener���mi � vlasno� r�znie� faz. Tako� anal�tiqno otrimano dva osnovn� rozv'�zki z

m�n�mal~no� ener��� dl� nesk�nqennogo sendv�qa. Otrimano zale�n�st~ gustini strumu v�d zsuvu fazi.

Zavd�ki �snuvann� r�znih nel�n��nih dodank�v u zviqa�n�� ta nadprov�dn�� d�l�nkah � zale�nost� ne 

sinusoÝdal~nimi. Tako� zrobleno fur'-rozklad krivoÝ zale�nosti gustini strumu v�d zsuvu fazi dl�

togo, wob o�niti vpliv fenomenolog�qnih koef��nt�v na formu �Ý krivoÝ.
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