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The Ginzburg{Landau model with a Chern{Simons term is shown to possess two di�erent saling

regimes depending on whether the mass of the salar �eld is zero or not. In ontrast to pure �

4

theories, the Ginzburg{Landau model with a topologially generated mass exhibits quite di�erent

properties in perturbation theory. Our analysis suggests that the two salings ould oinide at

a non-perturbative level. This view is supported by a 1=N -expansion in the massive salar �eld

regime.
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I. INTRODUCTION

The Ginzburg{Landau (GL) model [1℄ with the La-

grange density

L

GL

=

1

2

(r� a)

2

+ j(r� iqa)�j

2

+ rj�j

2

+

u

2

j�j

4

(1)

was set up more than 50 years ago to desribe super-

ondutivity. Sine then it has been used to desribe a

variety of other physial systems [2℄, where omplex or-

der �eld  (x) and vetor potential a(x) are not related

to Cooper pairs and magneti �elds. An important ap-

pliation deals with smeti liquid rystals where  (x)

desribes the smeti order and A(x) the transverse dis-

plaement of the nemati diretor [3℄. Other fasinating

appliations arise by adding a topologial Chern{Simons

(CS) term [4℄ for the vetor potential to the GL model:

L

CS

=

i�

2

a � (r� a): (2)

In this ase one speaks of a Chern{Simons{Ginzburg{

Landau (CSGL) model. This model possesses proper-

ties found in the famous frational quantum Hall e�et,

where the oupling parameter of the CS term determines

a nontrivial phase fator for the exhange of two omplex

�elds and thus the statistis of Laughlin quasi-partiles

[5℄. Without an initial Maxwell term (r � a)

2

=2, this

interpretation has been advaned by Zhang [6℄. All gra-

dient terms in his e�etive ation are aused by utu-

ations of a vetor potential with only a CS term. But

also the theory with a Maxwell term has physial signif-

iane sine it emerges naturally by when onstruting a

dual disorder model of CSGLmodel without the Maxwell

term [7℄. In addition, suh a model has been found when

bosonizing theories of strongly interating fermions in

three dimensions [8,9℄.

Another interesting appliation of the CSGL model

without a Maxwell term arises in the �eld theoretial

approah to polymers, where the degree of entanglement

is ontrolled by the parameter � [10℄. Detailed results

have been obtained reently [11,12℄.

In this paper we shall disuss the �xed point stru-

ture of the the CSGL model with a Maxwell term. The

Lagrangian of the model is

L

CSGL

= L

GL

+ L

CS

: (3)

The �xed-point struture of a standard GL Lagrangian

has been investigated at various plaes [13,14,16℄. In the

presene of a CS term, it has been disussed in Refs. [17℄

and [18℄. It must be emphasized that in these referenes

the Maxwell term is expliitly inluded in ontrast to ear-

lier work where it was ignored [19℄. This makes important

di�erenes in the �xed-point struture sine in the pres-

ene Maxwell term, the harge is no longer dimension-

less, and there is the generation of another mass alled

the topologial mass. An important result of Ref. [18℄

was that, although the CS term is not renormalized, the

�-funtion of the topologial oupling is not zero due to

the presene of the Maxwell term.

It was noted by Semeno� [19℄ that the renormalization

of the CSCL model depends on the mass of the salar

�eld. Kleinert and Shakel [17℄ onsidered the CSGL

and derived saling laws as a funtion of the renormal-

ized mass of the salar �eld. Later, de Calan et al. [18℄

onsidered the same model, but within renormalization

group (RG) approah at the ritial point. They obtained

onsiderably more involved RG funtions than those of

Ref. [17℄.

In this paper we shall improve onsiderably the dis-

ussions of Refs. [17℄ and [18℄ and exhibit the relation

between both saling behaviours at the one-loop level.

The plan of the paper is the following. In Setion II we

disuss an e�etive mean-�eld theory whih only inludes

utuations of the gauge �eld. From this we an already

observe a partiular feature oming from the CS term: for
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large �, there is no triritial point and therefore no �rst-

order phase transition, in ontrast to the pure GL model

[20℄. This approximation, however, does not distinguish

reliably ritial from triritial behaviour. For this we

employ in Setion III the RG to obtain information on

the phase transition. At the one-loop level we are then

able to distinguish two di�erent saling behaviours with

quite di�erent physial properties. The relation between

them is illuminated in Setion IV by omparing a non-

perturbative 1=N expansion in the nonzero-mass regime

with the one-loop approximation in the massless regime.

The qualitative behaviour of the non-perturbative result

shows a remarkable agreement with the one-loop approx-

imation. In Setion V we obtain the exponents for the

\fermioni" �xed point, whih is reahed for a spei�

value of the CS oupling parameter obtained from the

bosonization sheme [9,6℄. A �nal disussion is given in

Setion VI.

II. EFFECTIVE MEAN-FIELD THEORY

Let us integrate out the vetor potential in the e�e-

tive ation to derive a lowest-order e�etive mean-�eld

theory for model (3), by analogy with the proedure on

the pure GL theory by Halperin et al. [21℄. For a uni-

form order �eld � � �

0

=

p

2, where �

0

is a real onstant,

this operation an be done exatly. The result is a a free

energy density

F = �

1

12�

f[M

2

+

(�

2

0

)℄

3=2

+ [M

2

�

(�

2

0

)℄

3=2

g

+

r

2

�

2

0

+

u

8

�

4

0

; (4)

where

M

2

�

(�

2

0

) � q

2

�

2

0

+

�

2

2

�

j�j

2

q

�

2

+ 4q

2

�

2

0

: (5)

In (4) we dropped �eld-independent in�nite term and

absorbed a term proportional to the ultraviolet uto� in

r. For � = 0, our result redues to the usual Halperin{

Lubensky{Ma (HLM) expression [21℄ whih displays a

�rst-order phase transition. This remains true for suÆ-

iently small � 6= 0. At larger values of �, however, the

transition is of seond-order. This hange of order is quite

subtle: if we expand L

e�

�a la Landau up to the power

�

4

0

, we obtain for a onstant order �eld

F

L

' �

j�j

3

12�

+

�

r

2

�

q

2

j�j

4�

�

�

2

0

+

u

8

�

4

0

; (6)

and we see that the above equation does not have the

orret � ! 0 limit, being valid only for large �. The

free energy (6) has only a seond-order phase transition,

with a ritial point at r



= q

2

j�j=2�. Note that in on-

trast to the GL ase there is no ubi term in �

0

, and

that the �

4

0

-term reeives no ontribution from the CS

oupling | both properties would have generated a tri-

ritial point in this approximation. The latter property

implies that the one-loop gauge �eld graph with four ex-

ternal salar �eld lines vanishes if the external momenta

are set to zero, as a peuliar feature of the CSGL model

noted earlier in Ref. [17℄. The same graph is, however,

non-vanishing at nonzero external momenta. This is the

origin of the two di�erent saling regimes in this model

whih we want to diuss in this paper.

III. RENORMALIZATION GROUP FUNCTIONS

We now alulate the RG funtions of the model. As

disussed in Setion II, the saling with a �nite salar

�eld mass looks di�erent from the one where suh a mass

is absent, as noted by Semeno� [19℄. Let us study these

saling behaviours separately and see how the are related

to eah other. Many of the results of this setion have

been obtained before in Refs. [17,18℄. However, a disus-

sion on the relation between the saling behaviours of

Ref. [17℄ and Ref. [18℄ is new. This relation will require

an extension of the CSGL model (3) to N=2 omplex

salar �eld.

A. Massive Saling Regime

In the saling regime with a massive salar �eld the

propagators are given by

G(p) =

1

p

2

+ r

; r 6= 0: (7)

for the salar and

D

��

(p) =

1

p

2

+ �

2

�

Æ

��

�

p

�

p

�

p

2

� ��

���

p

�

p

2

�

(8)

for the vetor �eld in the Landau gauge. The Lagrangian

is written in terms of renormalized quantities as

L =

Z

a

2

(r� a

r

)

2

+

i�

r

2

a

r

� (r� a

r

) (9)

+ Z

�

j(r� iq

r

a

r

)�

r

j

2

+ Z

(2)

�

m

2

j�

r

j

2

+

Z

g

mg

2

j�

r

j

4

:

The renormalized �elds are given by �

r

= Z

�1=2

�

� and

a

r

= Z

�1=2

a

a, and we have set u

r

� mg to have a dimen-

sionless oupling onstant g. We also have introdued a

mass of the salar �eld m by m

2

� Z

(2)

�

�1

Z

�

r. Note

that the CS term is not renormalized [19℄, implying that

�

r

= Z

a

�. The renormalized harge is q

r

= Z

1=2

a

q. We in-

trodue two dimensionless gauge oupling onstants by

t � �

r

=m and f � q

2

r

=m. The renormalization onstants
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are �xed by imposing normalization onditions for the

one-partile irreduible two- and four-point funtions:

�

(2)

r;11

(0) = m

2

; (10)

��

(2)

r;11

�p

2

�

�

�

�

�

p=0

= 1; (11)

�

(4)

r;1111

(0; 0; 0; 0) = 3mg; (12)

�

(1;2)

r;11

(0; 0; 0) = 1; (13)

�

r;��

�p

2

�

�

�

�

p=0

= 2: (14)

Let us de�ne the RG funtions:



�

� m

� lnZ

�

�m

;



a

� m

� lnZ

a

�m

;



(2)

�

� m

� lnZ

(2)

�

�m

: (15)

Within the present renormalization sheme, these fun-

tions are given expliitly in the one-loop approximation

by



�

= �

2

3�

f

(1 + jtj)

2

;



a

=

Nf

48�

;



(2)

�

= �

(N + 2)g

16�

: (16)

The �-funtions are given by

�

f

� m

�f

�m

= (

a

� 1)f;

�

t

� m

�t

�m

= (

a

� 1)t;

�

g

� m

�g

�m

= (2

�

� 1)g +

N + 8

16�

g

2

: (17)

Note the absene of a term proportional to f

2

in Eq. (17).

This generalizes the observation in the previous approx-

imation that the �

4

0

-term in the Landau expansion (6)

is �-independent. This is in ontrast to the pure GL

model where a f

2

-term is present in �

g

[21{23,13,14℄.

The present absene of the f

2

-term is the reason for the

existene of a harged �xed point (whih remains true for

all values of N , if the model is extended to N=2 omplex

�elds, in ontrat to the pure GL model where N > 365

is needed as pointed out by Halperin et al. [21℄.

The anomalous dimension of the gauge �eld �

a

� 

�

a

has an interesting property. From Eq. (17) we see that

�

a

= 1, implyinga �xed point also in (17) for any t, whih

means that the ritial exponents an vary ontinuously.

The harged �xed point is given by

f

�

= 48�=N; (18)

g

�

=

16�

N + 8

�

64

N (1 + jt

�

j)

2

+ 1

�

:

Note that �

t

does not vanish identially as in the absene

of a Maxwell term. It does, however, vanish at the �xed

point where 

a

= 1 for all values of t, whih has the same

e�et as �

t

� 0, thus allowing for arbitrary �xed-point

values t

�

.

The ritial exponent � is given by the �xed point value

of the RG funtion 

�

:

� = �

32

N (1 + jt

�

j)

2

: (19)

Thus, although a harged �xed point exists for all val-

ues of N , the �xed points with N � 32=[(1 + jt

�

j)

2

℄ are

unphysial sine the inequality � > �1 is not ful�lled.

Thus, we still have a ritial value of N , but onsider-

ably smaller than the value N



= 365 of Ref. [21℄. For any

�xed N � N



= 32, there are physial ritial exponents

provided that

jt

�

j > t



(N ) = 4

r

2

N

� 1: (20)

In Fig. 1 we plot N� as a funtion of t

�

for positive values

of t

�

.

Fig. 1. Plot of N�, where � is given by Eq. (19), as a fun-

tion of t

�

> 0.

The ritial exponent � is obtained as the �xed-point

value of the RG funtion �

�

= 1=[2 + 

(2)

�

� 

�

℄;whih is
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� =

�

2�

N + 2

N + 8

�

N � 4

N + 8

32=N

(1 + jt

�

j)

2

�

�1

: (21)

This is plotted in Fig. 2 as a funtion of t

�

for N = 68.

Fig. 2. Plot of the ritial exponent � as a funtion of t

�

for N = 68.

B. Massless Saling Regime

We now derive the saling behaviour at the ritial

point, where the mass of the salar �eld vanishes. Then

the oupling onstants must be de�ned at nonzero ex-

ternal momenta of the vertex funtions. For g we hoose

the normalization ondition

�

(4)

1111

(p

1

;p

2

;p

3

;p

4

)j

SP

= 3�g; (22)

where the symbol SP stands for the symmetry point [15℄

p

i

� p

j

=

�

2

4

(4Æ

ij

� 1): (23)

We shall distinguish the RG funtions of the massive

from those of the massless saling regime by adding a

tilde over the latter. The �-funtions of the gauge ou-

plings have the same form as before. The anomalous di-

mension of the vetor �eld hanges, however, being now

~

a

=

Nf

32

: (24)

Also the beta funtion �

g

is now di�erent, sine the one-

loop gauge �eld graph with four external legs is now

nonzero. This leads to an f

2

-term in �

g

:

~

�

g

� �

�g

��

= (2~

�

� 1)g +

N + 8

16

g

2

+

Æ

4�

f

2

; (25)

where

~

�

= �

f

4�

�

3�

4t

2

+

�

2

�

3�t

2

4

+ 3jtj �

3

jtj

�

�

3

2t

2

� 1 +

3t

2

2

�

artan

�

1� t

2

2jtj

��

; (26)

Æ =

�

2t

2

+

1

jtj

�

5�

4

+

�

�

3

2t

4

�

4

t

2

+ 8

�

artan

�

1

2jtj

�

+

�

3

2t

4

+

3

t

2

�

5

2

�

artan

�

1� t

2

2jtj

�

: (27)

In the limit t ! 0 we have ~

�

! �f=4 and Æ ! 3�=2,

orresponding to the GL limit.

In ontrast with the massive saling regime, the

present equations yield a harged �xed point only for

a limited range of N . The beta funtions vanish at

f

�

= 32=N;

g

�

�

=

8

N+8

"

1�2~� �

r

(1�2~�)

2

�

160Æ

�

�

#

; (28)

where ~� � ~

�

(f

�

; t

�

) is the anomalous dimension of the

omplex �eld in the massless saling regime. Remark-

ably, there we �nd a triritial �xed point g

�

�

, whih

is absent in the massive regime. The two regimes are

similar for Æ

�

= 0, in whih ase there will be no tri-

ritial �xed point in both regimes. This happens for

t

�

= t

0

' 0:802693. For t

�

> t

0

we �nd Æ

�

< 0, in whih

ase the triritial point beomes unstable, sine it or-

responds to g

�

�

< 0. In Fig. 3 we plot Æ as a funtion of

t.

The harged �xed points are aessible only if t

�

�

~

t



(N ), where

~

t



(N ) is the value of t

�

that vanishes the

disriminant in Eq. (28). For example, if N = 10 we

have

~

t



(10) ' 0:752751. From Eq. (20) we �nd t



(10) '

0:788854, and therefore

~

t



(10) < t



(10).

In order to alulate the ~�-exponent, we need the RG

funtion ~

(2)

�

. This funtion is muh more ompliate in

the massless saling regime and is given expliitly by
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~

(2)

�

= �

(N + 2)g

16

�

f

4�

�

�

4t

2

� 3

4

p

3t

2

+

4t

2

+ 3

2

p

3t

2

artan

�

3� 4t

2

4

p

3jtj

�

(29)

+

(3� 4t

2

)(3 + 4t

2

)

8jtj�

"

1 +

jtj

p

�

artan

 

p

�

jtj

!#)

;

where

� � t

4

+

t

2

2

+

9

16

: (30)

In Fig. 4 we plot ~� as a funtion of t

�

� t



(10). The urve

has a maximum for t

�

' 1:631, where ~�

max

= 1:7.

Fig. 3. Plot of Æ as a funtion of t.

Fig. 4. Plot of the ritial exponent ~� as a funtion of t

�

for N = 10.

IV. SIGN OF ANOMALOUS DIMENSION � AND

LARGE-N LIMIT

A muh debated topi in the GL theory is the physi-

al meaning of a negative sign of the �-exponent found

in analyti alulations [24,25,16℄ and omputer simula-

tions [26℄. In early disussions of the subjet it had been

argued that a negative � would be unphysial sine it

would violate the K�allen{Lehmann spetral representa-

tion [24,27℄. However, it is now being understood that

a negative sign of � in the GL model makes sense. In

fat, there are several physial systems where negative

�s have been found before, most prominently magneti

systems, whih show strong momentum spae instabili-

ties [28℄. These an produe a non-uniform phase with a

modulated order parameter. The point where the modu-

lated phase sets in is alled a Lifshitz point [29℄. Physial

systems with a Lifshitz point have a negative �-exponent.

It has reently been argued by us [25,16℄ that suh mo-

mentum spae instabilities our also in superondu-

tors, implying the existene of a Lifshitz point in the

phase diagram, and thus explaining the negative sign of

�. A di�erent explanation has been given reently in Ref.

[30℄ fousing on the geometri properties of the ritial

utuations. There the anomalous dimension is related

to the Hausdor� dimensions of the ritial utuations.

The CS term in the GL model is expeted to a�et

this piture, sine for in�nite t

�

, the gauge �eld deouples

from the salar �eld. In this limit, the ritial exponents

are those of a pure salar �eld theory whih has � > 0.

Thus we may wonder at whih �nite value of t

�

the sign

hange of � ours.

In Fig. 5 we plot N ~� as a funtion of t

�

. We see that

at one-loop order, ~� is always negative and approahes

zero for t

�

!1. It would be desirable to know the two-

loop orretions in the massless saling regime and hek

if there exists a �nite value of t

�

where the sign of ~�

hanges. We have not yet done this alulation due to its

omplexity for arbitrary t. We an, however, easily write

down � in the limit of large N for all oupling strengths

in the massive saling regime. Then the CSGL model

is in the same universality lass as the CP

N=2�1

model

with a CS term, and here the ritial exponents have

been omputed by Rajeev and Ferretti [31℄. The result

for � is

� = �

40

�

2

N

�

1�

16

15

�

t

2

1 +

�

t

2

�

; (31)

where

�

t = 4t=�. In the limit

�

t!1 this redues orretly

to � of the O(N )-symmetri salar model [15,32℄ to order

1=N .

From Eq. (31) we see that � hanges sign at

�

t =

p

15.

In Fig. 6 we plot N� as given in Eq. (31) as a funtion of

t. Interestingly, Figs. 5 and 6 look very similar for low t,

up to a fator of two in the vertial sale, although the

two urves ome from two ompletely di�erent approxi-

mations. In addition, the omparison teahes us that the

sign of � may easily hange in perturbation theory by

inluding higher-order orretions.

It is also interesting to onsider the ritial exponent

� to the leading order in 1=N . We have

� = 1�

96

�

2

N

�

1�

8

9

�

t

2

(

�

t

2

+ 4)

(1 +

�

t

2

)

2

�

: (32)
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We have plotted the �-exponent given above in Fig. 7

for N = 10, for the sake of omparison with the one-loop

result for the massless saling regime. There is again a re-

markable similarity between this urve and the one for ~�

in Fig. 4. This striking resemblane between the massive

saling regime at the order 1=N and the massless saling

regime at one-loop seems to indiate that perturbation

theory within the massive saling regime is worse than

perturbation theory within the massless saling regime,

and that the exat urves in the two regimes may ulti-

mately oinide.

Fig. 5. Plot of N ~� as a funtion of t

�

.

Fig. 6. Plot of N�, where � is given by Eq. (31), as a fun-

tion of t.

Fig. 7. Plot of �, where � is given by Eq. (32) with N = 10,

as a funtion of t.

V. THE \FERMIONIC" FIXED POINT

Let us see what we an learn from our saling study

about strongly interating fermions. General arguments

involving bosonization [9℄ and duality transformations [7℄

indiate that the �xed points orresponding to fermions

lie, in the massless saling regime, at t

�

= 1=2� and

f

�

= 32=N . Then there are no �xed points g

�

�

for the

physial ase N = 2. We know, however, from duality

arguments applied to the GL model [2,20,33℄ that this

one-loop result is not trustworthy for N = 2. Within the

massless saling regime it is possible to obtain a harged

�xed point for all values of N at the one-loop level by in-

troduing a new arbitrary parameter  whih orresponds

to the ratio between the two renormalization sales de�n-

ing the gauge and salar ouplings, respetively [14℄. This

proedure was also applied to the CSGL model in Ref.

[18℄. A harged �xed point is found for N = 2 if  is

hosen large enough. This happens sine 

a

is modi�ed

to



a

=

Nf

32

: (33)

Sine 

a

= 1 at the �xed point, a large  makes f

�

suf-

�iently small to reah the �xed point for N = 2. The

main drawbak of this tehnique is the fat that  is not

determined by the formalism. In Ref. [14℄ it was hosen

to reprodue the triritial point determined in Ref. [20℄

by a disorder �eld theory of the GL model.

Reently, we have sueeded in obtaining a harged

�xed point at N = 2 by de�ning a new RG approah

in the ordered phase [16℄, where the two length sales of

the GL model are well de�ned by the orrelation length

� and the penetration depth �. This makes the param-

eter  in Refs. [14℄ and [18℄ superuous. The applia-

tion of Sothis alulation proedure to the Lagrangian

(3) is ompliated due to the CS term. This reates a

gauge �eld propagator in the ordered phase with two

di�erent masses, the CS mass and another one gener-

ated by the Higgs mehanism. To avoid this omplia-

tion we shall restrit ourselves here to the -approah.

The onstant  will be �xed by demanding that in the

� = 0-model the ritial exponent � has a XY value,

as found in the duality approah [34℄. For the XY value

� ' 0:67, this �xes  ' 82:7. In Ref. [18℄, a smaller value

of  was used by approximating the RG funtion ~�

�

by

~�

�

' (1� ~

(2)

�

=2+~

�

=2)=2. However, this approximation

gives ~� = 0:6 for f

�

= t

�

= 0, while if we do not use suh

an approximation we obtain a muh better value in this

limit, ~� = 0:625, whih is just the one-loop value for the

O(2)-symmetri �

4

theory [15℄.

Therefore we obtain, with  = 82:7 and t

�

= 1=2=�:

~� ' �0:05; (34)

~� ' 0:66: (35)

We see that the \fermioni" �xed point is not muh dif-
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ferent from the GL �xed point for the value of  under

onsideration.

VI. CONCLUSION

We have studied and ompared two saling regimes in

the CSGL model. In the massive saling regime, harged

�xed points exist for all values of N . However, not all

of them lead to physial values of the ritial exponents

whih restrit the range of allowed values of N . By re-

striting the values of t

�

we have been able to obtain

physial exponents to allN in the massive saling regime.

The interval of admissible t

�

is obtained from inequality

(20).

In the massless saling regime we �nd a similar restri-

tion through a more involved inequality, sine ~� has a far

more ompliated expression.

The disussion in the massive saling regime yields no

triritial point, a result onsistent with the Landau ex-

pansion of the mean-�eld free energy in Eq. (6). How-

ever, from the non-expanded mean-�eld free energy (4)

it is seen that for suÆiently small � we obtain a �rst-

order phase transition. In partiular, we reover the usual

HLM result for � = 0, in ontrast to Eq. (6) whih does

not have the orret � ! 0-limit.

The behaviour in the massless saling regime is more

onsistent with Eq. (4) sine it exhibits a triritial �xed

point for t

�

< t

0

. In the region t

�

� t

0

, the two sal-

ing regimes look quite similar, at least qualitatively. The

1=N -expansion applied to the massive saling regime

makes this similarity even greater and suggests that per-

turbation theory applied in the massless saling regime

is better behaved than in the massive regime.

An interesting point with respet to the 1=N -

expansion in the massive saling regime is the sign

hange in � for

�

t =

p

15. This never happens for a GL

model [16,25,26℄. Inspired by our reent work suggesting

that the sign of � is related to momentum spae insta-

bilities [16,25℄, we may onjeture that when an external

magneti �eld is inluded in the CSGL model, vortex

latties should not exist above a ertain ritial value of

the topologial mass.

We have disussed briey what we alled \fermion-

i" �xed point, that is, the �xed point where the CSGL

model orresponds to bosonized three-dimensional inter-

ating fermions. At this �xed point t

�

= 1=2�. Unfor-

tunately, g

�

�

is not real in this ase if N = 2. In order

to reah a harged �xed point for N = 2 we introdued

an arbitrary parameter  orresponding to the ratio be-

tween the renormalization points of the gauge ouplings

and salar oupling. The value of  has been �xed in the

t = 0 model. As t is turned on to t

�

= 1=2� the values of

the ritial exponents do not show an appreiable hange

with respet to the t = 0 ase.
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DVA R�ZN� SKE�L�N�OV� RE�IMI V MODEL� ��NZBUR�A{LANDAU

Z DODANKOM QERNA{SA�MONSA

G. Kl��nert, F. No�ue�ra

�nstitut teoretiqnoÝ f�ziki. V�l~ni� un�versitet u Berl�n�

vul. Arn�male 14, D{14195, Berl�n, N�meqqina

kleinert�physik.fu-berlin.de; URL: http://www.physik.fu-berlin.de/kleinert/

nogueira�physik.fu-berlin.de

Pokazano, wo model~ ��nzbur�a{Landau z dodankom Qerna{Sa�monsa ma dva ske�l�n�ovih re�imi,

�k� zale�at~ v�d togo, qi masa skal�rnogo pol� r�vna nul�, qi n�. U teor�Ý zburen~ model~ ��nzburga{

Landau z topolog�qno� maso� demonstru dosit~ v�dm�nn� vlastivost� v�d qistoÝ teor�Ý �

4

. Nax anal�z

dozvol� pripustiti, wo dva ske�l�n�ov� re�imi mo�ut~ zb�gatis� na nezburenomu r�vn�. C� toqka zoru

p�dtverd�ut~s� 1=N -rozkladom u me�ah masivnogo skal�rnogo pol�.
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