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The Ginzburg-Landau model with a Chern—Simons term is shown to possess two different scaling
regimes depending on whether the mass of the scalar field is zero or not. In contrast to pure ¢*
theories, the Ginzburg-Landau model with a topologically generated mass exhibits quite different
properties in perturbation theory. Our analysis suggests that the two scalings could coincide at
a non-perturbative level. This view is supported by a 1/N-expansion in the massive scalar field

regime.
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I. INTRODUCTION

The Ginzburg-Landau (GL) model [1] with the La-
grange density

Lop = %(v x a)? +|(V —iga)d|* + r|o|* + %Ifél4 (1)

was set up more than 50 years ago to describe super-
conductivity. Since then it has been used to describe a
variety of other physical systems [2], where complex or-
der field ¢ (x) and vector potential a(x) are not related
to Cooper pairs and magnetic fields. An important ap-
plication deals with smectic liquid crystals where ¢(x)
describes the smectic order and A(x) the transverse dis-
placement of the nematic director [3]. Other fascinating
applications arise by adding a topological Chern—-Simons
(CS) term [4] for the vector potential to the GL model:

16
»CCS = Ea . (V X a). (2)

In this case one speaks of a Chern-Simons—Ginzburg—
Landau (CSGL) model. This model possesses proper-
ties found in the famous fractional quantum Hall effect,
where the coupling parameter of the CS term determines
a nontrivial phase factor for the exchange of two complex
fields and thus the statistics of Laughlin quasi-particles
[5]. Without an initial Maxwell term (V x a)?/2, this
interpretation has been advanced by Zhang [6]. All gra-
dient terms in his effective action are caused by fluctu-
ations of a vector potential with only a CS term. But
also the theory with a Maxwell term has physical signif-
icance since it emerges naturally by when constructing a
dual disorder model of CSGL model without the Maxwell
term [7]. In addition, such a model has been found when
bosonizing theories of strongly interacting fermions in
three dimensions [8,9].

Another interesting application of the CSGL model

without a Maxwell term arises in the field theoretical
approach to polymers, where the degree of entanglement
is controlled by the parameter @ [10]. Detailed results
have been obtained recently [11,12].

In this paper we shall discuss the fixed point struc-
ture of the the CSGL model with a Maxwell term. The
Lagrangian of the model is

Lcsar = Larn + Lcs. (3)

The fixed-point structure of a standard GL Lagrangian
has been investigated at various places [13,14,16]. In the
presence of a CS term, it has been discussed in Refs. [17]
and [18]. It must be emphasized that in these references
the Maxwell term is explicitly included in contrast to ear-
lier work where it was ignored [19]. This makes important
differences in the fixed-point structure since in the pres-
ence Maxwell term, the charge is no longer dimension-
less, and there is the generation of another mass called
the topological mass. An important result of Ref. [18]
was that, although the CS term is not renormalized, the
F-function of the topological coupling is not zero due to
the presence of the Maxwell term.

It was noted by Semenoff [19] that the renormalization
of the CSCL model depends on the mass of the scalar
field. Kleinert and Schakel [17] considered the CSGL
and derived scaling laws as a function of the renormal-
ized mass of the scalar field. Later, de Calan et al. [18]
considered the same model, but within renormalization
group (RG) approach at the critical point. They obtained
considerably more involved RG functions than those of
Ref. [17].

In this paper we shall improve considerably the dis-
cussions of Refs. [17] and [18] and exhibit the relation
between both scaling behaviours at the one-loop level.
The plan of the paper is the following. In Section II we
discuss an effective mean-field theory which only includes
fluctuations of the gauge field. From this we can already
observe a particular feature coming from the CS term: for
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large 6, there is no tricritical point and therefore no first-
order phase transition, in contrast to the pure GL model
[20]. This approximation, however, does not distinguish
reliably critical from tricritical behaviour. For this we
employ in Section IIT the RG to obtain information on
the phase transition. At the one-loop level we are then
able to distinguish two different scaling behaviours with
quite different physical properties. The relation between
them is illuminated in Section IV by comparing a non-
perturbative 1/N expansion in the nonzero-mass regime
with the one-loop approximation in the massless regime.
The qualitative behaviour of the non-perturbative result
shows a remarkable agreement with the one-loop approx-
imation. In Section V we obtain the exponents for the
“fermionic” fixed point, which is reached for a specific
value of the CS coupling parameter obtained from the
bosonization scheme [9,6]. A final discussion is given in
Section VI.

II. EFFECTIVE MEAN-FIELD THEORY

Let us integrate out the vector potential in the effec-
tive action to derive a lowest-order effective mean-field
theory for model (3), by analogy with the procedure on
the pure GL theory by Halperin et al. [21]. For a uni-
form order field ¢ = ¢o/\/2, where ¢ is a real constant,
this operation can be done exactly. The result i1s a a free
energy density

1

F =~ AIME (012 + M2 (63))%}
+ 568+ 340, (1)
where
upei =i+ S W frags o)

In (4) we dropped field-independent infinite term and
absorbed a term proportional to the ultraviolet cutoff in
r. For § = 0, our result reduces to the usual Halperin—
Lubensky-Ma (HLM) expression [21] which displays a
first-order phase transition. This remains true for suffi-
ciently small § # 0. At larger values of 8, however, the
transition is of second-order. This change of order is quite
subtle: if we expand £ & la Landau up to the power

o, we obtain for a constant order field

|6)|3 r q2|9| 2, U 4
Fr=—hrtl g~ 2 )%t g (6)

and we see that the above equation does not have the
correct # — 0 limit, being valid only for large 6. The
free energy (6) has only a second-order phase transition,
with a critical point at r. = ¢?|0|/27. Note that in con-
trast to the GL case there is no cubic term in ¢g, and
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that the ¢g-term receives no contribution from the CS
coupling — both properties would have generated a tri-
critical point in this approximation. The latter property
implies that the one-loop gauge field graph with four ex-
ternal scalar field lines vanishes if the external momenta
are set to zero, as a peculiar feature of the CSGL model
noted earlier in Ref. [17]. The same graph is, however,
non-vanishing at nonzero external momenta. This is the
origin of the two different scaling regimes in this model
which we want to dicuss in this paper.

III. RENORMALIZATION GROUP FUNCTIONS

We now calculate the RG functions of the model. As
discussed in Section II, the scaling with a finite scalar
field mass looks different from the one where such a mass
is absent, as noted by Semenoff [19]. Let us study these
scaling behaviours separately and see how the are related
to each other. Many of the results of this section have
been obtained before in Refs. [17,18]. However, a discus-
sion on the relation between the scaling behaviours of
Ref. [17] and Ref. [18] is new. This relation will require
an extension of the CSGL model (3) to N/2 complex
scalar field.

A. Massive Scaling Regime

In the scaling regime with a massive scalar field the
propagators are given by

Clp) = pZ+r

r# 0. (7)
for the scalar and

1 5 Pubv g P g
= iz 0wz Tl (8)

for the vector field in the Landau gauge. The Lagrangian
is written in terms of renormalized quantities as

DW(P)

74 0,
L=ZHV xar)’ + %ar (V% ay) 9)
2 m2 2 Z, mg 4
+Z¢|( ZQTaT)¢r| +Z |¢r| |¢r|

The renormalized fields are given by ¢, = Z;l/zq/) and

a, = Za_l/za, and we have set v, = mg to have a dimen-
sionless coupling constant g. We also have introduced a

-1
Zgr. Note
that the CS term is not renormalized [19], implying that

mass of the scalar field m by m? = Z((;)

6, = Z40. The renormalized charge 1s ¢, = Z;/zq. We in-
troduce two dimensionless gauge coupling constants by
t=40,/m and f = ¢2/m. The renormalization constants
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are fixed by imposing normalization conditions for the
one-particle irreducible two- and four-point functions:

I (0) = m?, (10)
or),
- 1 (11)
2 bl
ap p=0
F£%1)111(0a0,0a0) = 3my, (12)
r{7(0,0,0) = 1, (13)
Ly pp
v | (14)

Let us define the RG functions:

_ 8IHZ¢
PY¢ =m am bl
~ dlnz,
Te =TT gm0
dln 7%
(2) — ¢

Within the present renormalization scheme, these func-
tions are given explicitly in the one-loop approximation

by

_ 2 _f
7T TR (Lt )2
_NJ
7a—48ﬂ_a
2 _ (N +2)yg 1
Yo T T 6r (16)

The [-functions are given by

__or
By = me = (Yo — 1) f,
ot
6t = mﬁ_m (’Ya - 1)ta
_ 0g N+8,
Pg=me =2y =g+ —5 9" (17)

Note the absence of a term proportional to f? in Eq. (17).
This generalizes the observation in the previous approx-
imation that the ¢g-term in the Landau expansion (6)
is f-independent. This is in contrast to the pure GL
model where a f2-term is present in 3, [21-23,13,14].
The present absence of the fZ-term is the reason for the
existence of a charged fixed point (which remains true for
all values of N, if the model is extended to N/2 complex

fields, in contract to the pure GL model where N > 365
is needed as pointed out by Halperin et al. [21].

The anomalous dimension of the gauge field n, = 77
has an interesting property. From Eq. (17) we see that
ne = 1, implying a fixed point also in (17) for any ¢, which
means that the critical exponents can vary continuously.
The charged fixed point is given by

f. = 487/N, (18)

_ 16m 64
TN 48 [N(1+ [t

9x 2+1

Note that 3; does not vanish identically as in the absence
of a Maxwell term. It does, however, vanish at the fixed
point where v, = 1 for all values of ¢, which has the same
effect as 5, = 0, thus allowing for arbitrary fixed-point
values ..

The critical exponent 7 1s given by the fixed point value
of the RG function vg4:

32

N (19)

7]:

Thus, although a charged fixed point exists for all val-
ues of N, the fixed points with N < 32/[(1 + |¢.|)?] are
unphysical since the inequality 7 > —1 is not fulfilled.
Thus, we still have a critical value of N, but consider-
ably smaller than the value N, = 365 of Ref. [21]. For any
fixed N < N, = 32, there are physical critical exponents
provided that

EREY (20)

s t.(N)=4
> te(v) = 4,/

In Fig. 1 we plot N7 as a function of ¢, for positive values
of ..

To b
-5
~10
N
~20
—25

-30

Fig. 1. Plot of N7, where n is given by Eq. (19), as a func-
tion of t. > 0.

The critical exponent v is obtained as the fixed-point
value of the RG function vy = 1/[2+ 'y((;) — 4], which is
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-1

N+2 N-4 32/N
N+8 N +8(1+]t])?

v=|2

(21)

This is plotted in Fig. 2 as a function of ¢, for N = 68.

1.4}
1.3
v1.2¢
1.1
1
-4 -2 0 2 4
Ty

Fig. 2. Plot of the critical exponent v as a function of ¢.
for N = 68.

B. Massless Scaling Regime

We now derive the scaling behaviour at the critical
point, where the mass of the scalar field vanishes. Then

the coupling constants must be defined at nonzero ex-
ternal momenta of the vertex functions. For ¢ we choose
the normalization condition

Fﬁ)n(Pl,Pz,Ps,PzLHSP = 3ug, (22)

where the symbol SP stands for the symmetry point [15]

|,

We shall distinguish the RG functions of the massive
from those of the massless scaling regime by adding a
tilde over the latter. The f-functions of the gauge cou-
plings have the same form as before. The anomalous di-
mension of the vector field changes, however, being now

Nf
Yo = —. 24
Fa = 55 (24)
Also the beta function g, is now different, since the one-
loop gauge field graph with four external legs is now
nonzero. This leads to an f?-term in fy:

> _ Og . N+8, 4§ ,
6g:/$£—(27¢ g+ AR (25)

where

. f[3r = 3nt? 3 3 32 1—¢2
=L |22 I - = — [ = —14+ 2 ) arctan | —— 2
Vo= —qp ety P g o aretan {5 ) | (26)
x 1 5 3 4 1 3 3 5 1 -2
f=— 4+ -2 (-2 2 tan | —— 222 ) arct . 2
w7t ( 20t +8) aretat <2|t|) + <2t4 te 2) aretat ( 2] ) (27)

In the limit ¢ — 0 we have 4, — —f/4 and § — 37/2,
corresponding to the GL limit.

In contrast with the massive scaling regime, the
present equations yield a charged fixed point only for
a limited range of N. The beta functions vanish at

f. = 32/N,

8 1604,
* =2 |1=25+4/(1=27)2 — 28
94 T3 7 w 7) ] (28)

where 7 = %4(f«,t+) is the anomalous dimension of the
complex field in the massless scaling regime. Remark-
ably, there we find a tricritical fixed point ¢, which
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is absent in the massive regime. The two regimes are
similar for d, = 0, in which case there will be no tri-
critical fixed point in both regimes. This happens for
t. =ty ~ 0.802693. For ¢, > ty we find §, < 0, in which
case the tricritical point becomes unstable, since it cor-
responds to ¢* < 0. In Fig. 3 we plot ¢ as a function of
t.

The charged fixed points are accessible only if ¢, >
tNC(N), where fc(N) is the value of ¢, that vanishes the
discriminant in Eq. (28). For example, if N = 10 we
have 56(10) ~ 0.752751. From Eq. (20) we find #,(10) ~
0.788854, and therefore #.(10) < ¢.(10).

In order to calculate the r-exponent, we need the RG

function 'Ny(z). This function is much more complicate in
the massless scaling regime and is given explicitly by
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S2) _ _(N+2)g
76 16
f{ @2 -3 42+3 (3—4152)
- = + tan [ ——— ) (29
i " sz T avse o \ )
442 2
(3 4 )(3+4t) 1—|—ﬂarctan @ ,
8¢|A VA [t]
where
29
= 4 JR— R
A=ttt S+ (30)

In Fig. 4 we plot 7 as a function of ¢, > t.(10). The curve
has a maximum for t, ~ 1.631, where Dax = 1.7.

t

Fig. 3. Plot of § as a function of ¢.

0 2 4 6 8 10
by

Fig. 4. Plot of the critical exponent o as a function of ¢.
for N =10.

IV. SIGN OF ANOMALOUS DIMENSION n AND
LARGE-N LIMIT

A much debated topic in the GL theory 1s the physi-
cal meaning of a negative sign of the n-exponent found
in analytic calculations [24,25,16] and computer simula-

tions [26]. In early discussions of the subject it had been
argued that a negative n would be unphysical since it
would violate the Kallen—-Lehmann spectral representa-
tion [24,27]. However, it is now being understood that
a negative sign of 5 in the GL model makes sense. In
fact, there are several physical systems where negative
ns have been found before, most prominently magnetic
systems, which show strong momentum space instabili-
ties [28]. These can produce a non-uniform phase with a
modulated order parameter. The point where the modu-
lated phase sets in is called a Lifshitz point [29]. Physical
systems with a Lifshitz point have a negative n-exponent.
It has recently been argued by us [25,16] that such mo-
mentum space instabilities occur also in superconduc-
tors, implying the existence of a Lifshitz point in the
phase diagram, and thus explaining the negative sign of
7. A different explanation has been given recently in Ref.
[30] focusing on the geometric properties of the critical
fluctuations. There the anomalous dimension is related
to the Hausdorff dimensions of the critical fluctuations.

The CS term in the GL model is expected to affect
this picture, since for infinite £, the gauge field decouples
from the scalar field. In this limit, the critical exponents
are those of a pure scalar field theory which has n > 0.
Thus we may wonder at which finite value of ¢, the sign
change of 1 occurs.

In Fig. 5 we plot N7 as a function of 7,. We see that
at one-loop order, 7 is always negative and approaches
zero for t. — oco. It would be desirable to know the two-
loop corrections in the massless scaling regime and check
if there exists a finite value of ¢. where the sign of 75
changes. We have not yet done this calculation due to its
complexity for arbitrary ¢. We can, however, easily write
down 7 in the limit of large N for all coupling strengths
in the massive scaling regime. Then the CSGL model
is in the same universality class as the CPV/2=1 model
with a CS term, and here the critical exponents have
been computed by Rajeev and Ferretti [31]. The result
for 1 1s

40 16 £
S T L 1
7 Mv( 151—|—t2)’ (81)

where ¢ = 4t /7. In the limit ¢ — oo this reduces correctly
to n of the O(N)-symmetric scalar model [15,32] to order
1/N.

From Eq. (31) we see that 5 changes sign at £ = \/15.
In Fig. 6 we plot Nn as given in Eq. (31) as a function of
t. Interestingly, Figs. 5 and 6 look very similar for low ¢,
up to a factor of two in the vertical scale, although the
two curves come from two completely different approxi-
mations. In addition, the comparison teaches us that the
sign of  may easily change in perturbation theory by
including higher-order corrections.

It is also interesting to consider the critical exponent
v to the leading order in 1/N. We have

I/Il—m - (32)

o -5
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We have plotted the v-exponent given above in Fig. 7
for N = 10, for the sake of comparison with the one-loop
result for the massless scaling regime. There is again a re-
markable similarity between this curve and the one for v
in Fig. 4. This striking resemblance between the massive
scaling regime at the order 1/N and the massless scaling
regime at one-loop seems to indicate that perturbation
theory within the massive scaling regime is worse than
perturbation theory within the massless scaling regime,
and that the exact curves in the two regimes may ulti-
mately coincide.

Nij
-4

Fig. 5. Plot of N7 as a function of t..

-4

Fig. 6. Plot of N1, where n is given by Eq. (31), as a func-
tion of ¢.

o O o o O
~]

0 2 4 6 8 10
t

Fig. 7. Plot of v, where v is given by Eq. (32) with N = 10,
as a function of ¢.
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V. THE “FERMIONIC” FIXED POINT

Let us see what we can learn from our scaling study
about strongly interacting fermions. General arguments
involving bosonization [9] and duality transformations [7]
indicate that the fixed points corresponding to fermions
lie, in the massless scaling regime, at ¢, = 1/27 and
f« = 32/N. Then there are no fixed points g} for the
physical case N = 2. We know, however, from duality
arguments applied to the GL model [2,20,33] that this
one-loop result is not trustworthy for N = 2. Within the
massless scaling regime it is possible to obtain a charged
fixed point for all values of N at the one-loop level by in-
troducing a new arbitrary parameter ¢ which corresponds
to the ratio between the two renormalization scales defin-
ing the gauge and scalar couplings, respectively [14]. This
procedure was also applied to the CSGL model in Ref.
[18]. A charged fixed point is found for N = 2 if ¢ is
chosen large enough. This happens since 7, is modified
to

_eNf
Ta = T3y (33)

Since 7, = 1 at the fixed point, a large ¢ makes f, suf-
ficiently small to reach the fixed point for N = 2. The
main drawback of this technique is the fact that ¢ is not
determined by the formalism. In Ref. [14] it was chosen
to reproduce the tricritical point determined in Ref. [20]
by a disorder field theory of the GL model.

Recently, we have succeeded in obtaining a charged
fixed point at N = 2 by defining a new RG approach
in the ordered phase [16], where the two length scales of
the GL model are well defined by the correlation length
¢ and the penetration depth A. This makes the param-
eter ¢ in Refs. [14] and [18] superfluous. The applica-
tion of Sothis calculation procedure to the Lagrangian
(3) is complicated due to the CS term. This creates a
gauge field propagator in the ordered phase with two
different masses, the CS mass and another one gener-
ated by the Higgs mechanism. To avoid this complica-
tion we shall restrict ourselves here to the c-approach.
The constant ¢ will be fixed by demanding that in the
f = 0-model the critical exponent v has a XY value,
as found in the duality approach [34]. For the XY value
v ~ 0.67, this fixes ¢ ~ 82.7. In Ref. [18], a smaller value
of ¢ was used by approximating the RG function 74 by

s~ (1 —'7(;2)/2—1—'7(1,/2)/2. However, this approximation
gives v = 0.6 for f, = £, = 0, while if we do not use such
an approximation we obtain a much better value in this
limit, 7 = 0.625, which 1is just the one-loop value for the
O(2)-symmetric ¢* theory [15].
Therefore we obtain, with ¢ = 82.7 and ¢, = 1/2/m:

i~ —0.05, (34)

A
12

0.66. (35)

We see that the “fermionic” fixed point is not much dif-
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ferent from the GL fixed point for the value of ¢ under
consideration.

VI. CONCLUSION

We have studied and compared two scaling regimes in
the CSGL model. In the massive scaling regime, charged
fixed points exist for all values of N. However, not all
of them lead to physical values of the critical exponents
which restrict the range of allowed values of N. By re-
stricting the values of {, we have been able to obtain
physical exponents to all NV in the massive scaling regime.
The interval of admissible t, is obtained from inequality
(20).

In the massless scaling regime we find a similar restric-
tion through a more involved inequality, since 7 has a far
more complicated expression.

The discussion in the massive scaling regime yields no
tricritical point, a result consistent with the Landau ex-
pansion of the mean-field free energy in Eq. (6). How-
ever, from the non-expanded mean-field free energy (4)
it 1s seen that for sufficiently small # we obtain a first-
order phase transition. In particular, we recover the usual
HLM result for # = 0, in contrast to Eq. (6) which does
not have the correct § — 0-limit.

The behaviour in the massless scaling regime is more
consistent with Eq. (4) since it exhibits a tricritical fixed
point for ¢, < tp. In the region ¢, > {g, the two scal-
ing regimes look quite similar, at least qualitatively. The
1/N-expansion applied to the massive scaling regime

malkes this similarity even greater and suggests that per-
turbation theory applied in the massless scaling regime
is better behaved than in the massive regime.

An interesting point with respect to the 1/N-
expansion in the massive scaling regime is the sign
change in 7 for { = \/15. This never happens for a GL
model [16,25,26]. Inspired by our recent work suggesting
that the sign of 5 is related to momentum space insta-
bilities [16,25], we may conjecture that when an external
magnetic field is included in the CSGL model, vortex
lattices should not exist above a certain critical value of
the topological mass.

We have discussed briefly what we called “fermion-
ic” fixed point, that is, the fixed point where the CSGL
model corresponds to bosonized three-dimensional inter-
acting fermions. At this fixed point ¢, = 1/2x. Unfor-
tunately, g% is not real in this case if N = 2. In order
to reach a charged fixed point for N = 2 we introduced
an arbitrary parameter ¢ corresponding to the ratio be-
tween the renormalization points of the gauge couplings
and scalar coupling. The value of ¢ has been fixed in the
t = 0 model. As ¢ is turned on to ¢, = 1/27 the values of
the critical exponents do not show an appreciable change
with respect to the { = 0 case.
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[Mokasano, mwo Momess linsbypra—Jlammay 3 momamkom Yepra—CafiMoHca Mae OBa CKeHJIHI'OBHX PeXHMH,

AKi 3ajleXxaTb BiI TOTO, UM Maca CKaJIsIPHOIO IOJA piBHA HyJo, 4d Hi. Y Teopil 36ypeHs Momenb | iHsGypra—

ﬂaH,D;ay 3 TOIIOJIOTTYHOIO MacCOI IEMOHCTPY€ OJOCHUTH BILOMIHHI BJACTHUBOCTI Bl YHMCTOl TEOPIl ¢ . Hamr anasmis

J03BOJIAE MPUITYCTUTH, IO OBAa CKEMJIIHIOBI peXMMH MOXKYTh 30iratucda Ha He30ypeHomy pibHi. Lz Touka 30py

marBepmKyeThca 1/N-po3kiiamom y MeKax MacCHBHOTO CKAaJIAPHOTO TOJIH.
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