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The Ginzburg{Landau model with a Chern{Simons term is shown to possess two di�erent s
aling

regimes depending on whether the mass of the s
alar �eld is zero or not. In 
ontrast to pure �

4

theories, the Ginzburg{Landau model with a topologi
ally generated mass exhibits quite di�erent

properties in perturbation theory. Our analysis suggests that the two s
alings 
ould 
oin
ide at

a non-perturbative level. This view is supported by a 1=N -expansion in the massive s
alar �eld

regime.
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I. INTRODUCTION

The Ginzburg{Landau (GL) model [1℄ with the La-

grange density

L

GL

=

1

2

(r� a)

2

+ j(r� iqa)�j

2

+ rj�j

2

+

u

2

j�j

4

(1)

was set up more than 50 years ago to des
ribe super-


ondu
tivity. Sin
e then it has been used to des
ribe a

variety of other physi
al systems [2℄, where 
omplex or-

der �eld  (x) and ve
tor potential a(x) are not related

to Cooper pairs and magneti
 �elds. An important ap-

pli
ation deals with sme
ti
 liquid 
rystals where  (x)

des
ribes the sme
ti
 order and A(x) the transverse dis-

pla
ement of the nemati
 dire
tor [3℄. Other fas
inating

appli
ations arise by adding a topologi
al Chern{Simons

(CS) term [4℄ for the ve
tor potential to the GL model:

L

CS

=

i�

2

a � (r� a): (2)

In this 
ase one speaks of a Chern{Simons{Ginzburg{

Landau (CSGL) model. This model possesses proper-

ties found in the famous fra
tional quantum Hall e�e
t,

where the 
oupling parameter of the CS term determines

a nontrivial phase fa
tor for the ex
hange of two 
omplex

�elds and thus the statisti
s of Laughlin quasi-parti
les

[5℄. Without an initial Maxwell term (r � a)

2

=2, this

interpretation has been advan
ed by Zhang [6℄. All gra-

dient terms in his e�e
tive a
tion are 
aused by 
u
tu-

ations of a ve
tor potential with only a CS term. But

also the theory with a Maxwell term has physi
al signif-

i
an
e sin
e it emerges naturally by when 
onstru
ting a

dual disorder model of CSGLmodel without the Maxwell

term [7℄. In addition, su
h a model has been found when

bosonizing theories of strongly intera
ting fermions in

three dimensions [8,9℄.

Another interesting appli
ation of the CSGL model

without a Maxwell term arises in the �eld theoreti
al

approa
h to polymers, where the degree of entanglement

is 
ontrolled by the parameter � [10℄. Detailed results

have been obtained re
ently [11,12℄.

In this paper we shall dis
uss the �xed point stru
-

ture of the the CSGL model with a Maxwell term. The

Lagrangian of the model is

L

CSGL

= L

GL

+ L

CS

: (3)

The �xed-point stru
ture of a standard GL Lagrangian

has been investigated at various pla
es [13,14,16℄. In the

presen
e of a CS term, it has been dis
ussed in Refs. [17℄

and [18℄. It must be emphasized that in these referen
es

the Maxwell term is expli
itly in
luded in 
ontrast to ear-

lier work where it was ignored [19℄. This makes important

di�eren
es in the �xed-point stru
ture sin
e in the pres-

en
e Maxwell term, the 
harge is no longer dimension-

less, and there is the generation of another mass 
alled

the topologi
al mass. An important result of Ref. [18℄

was that, although the CS term is not renormalized, the

�-fun
tion of the topologi
al 
oupling is not zero due to

the presen
e of the Maxwell term.

It was noted by Semeno� [19℄ that the renormalization

of the CSCL model depends on the mass of the s
alar

�eld. Kleinert and S
hakel [17℄ 
onsidered the CSGL

and derived s
aling laws as a fun
tion of the renormal-

ized mass of the s
alar �eld. Later, de Calan et al. [18℄


onsidered the same model, but within renormalization

group (RG) approa
h at the 
riti
al point. They obtained


onsiderably more involved RG fun
tions than those of

Ref. [17℄.

In this paper we shall improve 
onsiderably the dis-


ussions of Refs. [17℄ and [18℄ and exhibit the relation

between both s
aling behaviours at the one-loop level.

The plan of the paper is the following. In Se
tion II we

dis
uss an e�e
tive mean-�eld theory whi
h only in
ludes


u
tuations of the gauge �eld. From this we 
an already

observe a parti
ular feature 
oming from the CS term: for
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large �, there is no tri
riti
al point and therefore no �rst-

order phase transition, in 
ontrast to the pure GL model

[20℄. This approximation, however, does not distinguish

reliably 
riti
al from tri
riti
al behaviour. For this we

employ in Se
tion III the RG to obtain information on

the phase transition. At the one-loop level we are then

able to distinguish two di�erent s
aling behaviours with

quite di�erent physi
al properties. The relation between

them is illuminated in Se
tion IV by 
omparing a non-

perturbative 1=N expansion in the nonzero-mass regime

with the one-loop approximation in the massless regime.

The qualitative behaviour of the non-perturbative result

shows a remarkable agreement with the one-loop approx-

imation. In Se
tion V we obtain the exponents for the

\fermioni
" �xed point, whi
h is rea
hed for a spe
i�


value of the CS 
oupling parameter obtained from the

bosonization s
heme [9,6℄. A �nal dis
ussion is given in

Se
tion VI.

II. EFFECTIVE MEAN-FIELD THEORY

Let us integrate out the ve
tor potential in the e�e
-

tive a
tion to derive a lowest-order e�e
tive mean-�eld

theory for model (3), by analogy with the pro
edure on

the pure GL theory by Halperin et al. [21℄. For a uni-

form order �eld � � �

0

=

p

2, where �

0

is a real 
onstant,

this operation 
an be done exa
tly. The result is a a free

energy density

F = �

1

12�

f[M

2

+

(�

2

0

)℄

3=2

+ [M

2

�

(�

2

0

)℄

3=2

g

+

r

2

�

2

0

+

u

8

�

4

0

; (4)

where

M

2

�

(�

2

0

) � q

2

�

2

0

+

�

2

2

�

j�j

2

q

�

2

+ 4q

2

�

2

0

: (5)

In (4) we dropped �eld-independent in�nite term and

absorbed a term proportional to the ultraviolet 
uto� in

r. For � = 0, our result redu
es to the usual Halperin{

Lubensky{Ma (HLM) expression [21℄ whi
h displays a

�rst-order phase transition. This remains true for suÆ-


iently small � 6= 0. At larger values of �, however, the

transition is of se
ond-order. This 
hange of order is quite

subtle: if we expand L

e�

�a la Landau up to the power

�

4

0

, we obtain for a 
onstant order �eld

F

L

' �

j�j

3

12�

+

�

r

2

�

q

2

j�j

4�

�

�

2

0

+

u

8

�

4

0

; (6)

and we see that the above equation does not have the


orre
t � ! 0 limit, being valid only for large �. The

free energy (6) has only a se
ond-order phase transition,

with a 
riti
al point at r




= q

2

j�j=2�. Note that in 
on-

trast to the GL 
ase there is no 
ubi
 term in �

0

, and

that the �

4

0

-term re
eives no 
ontribution from the CS


oupling | both properties would have generated a tri-


riti
al point in this approximation. The latter property

implies that the one-loop gauge �eld graph with four ex-

ternal s
alar �eld lines vanishes if the external momenta

are set to zero, as a pe
uliar feature of the CSGL model

noted earlier in Ref. [17℄. The same graph is, however,

non-vanishing at nonzero external momenta. This is the

origin of the two di�erent s
aling regimes in this model

whi
h we want to di
uss in this paper.

III. RENORMALIZATION GROUP FUNCTIONS

We now 
al
ulate the RG fun
tions of the model. As

dis
ussed in Se
tion II, the s
aling with a �nite s
alar

�eld mass looks di�erent from the one where su
h a mass

is absent, as noted by Semeno� [19℄. Let us study these

s
aling behaviours separately and see how the are related

to ea
h other. Many of the results of this se
tion have

been obtained before in Refs. [17,18℄. However, a dis
us-

sion on the relation between the s
aling behaviours of

Ref. [17℄ and Ref. [18℄ is new. This relation will require

an extension of the CSGL model (3) to N=2 
omplex

s
alar �eld.

A. Massive S
aling Regime

In the s
aling regime with a massive s
alar �eld the

propagators are given by

G(p) =

1

p

2

+ r

; r 6= 0: (7)

for the s
alar and

D

��

(p) =

1

p

2

+ �

2

�

Æ

��

�

p

�

p

�

p

2

� ��

���

p

�

p

2

�

(8)

for the ve
tor �eld in the Landau gauge. The Lagrangian

is written in terms of renormalized quantities as

L =

Z

a

2

(r� a

r

)

2

+

i�

r

2

a

r

� (r� a

r

) (9)

+ Z

�

j(r� iq

r

a

r

)�

r

j

2

+ Z

(2)

�

m

2

j�

r

j

2

+

Z

g

mg

2

j�

r

j

4

:

The renormalized �elds are given by �

r

= Z

�1=2

�

� and

a

r

= Z

�1=2

a

a, and we have set u

r

� mg to have a dimen-

sionless 
oupling 
onstant g. We also have introdu
ed a

mass of the s
alar �eld m by m

2

� Z

(2)

�

�1

Z

�

r. Note

that the CS term is not renormalized [19℄, implying that

�

r

= Z

a

�. The renormalized 
harge is q

r

= Z

1=2

a

q. We in-

trodu
e two dimensionless gauge 
oupling 
onstants by

t � �

r

=m and f � q

2

r

=m. The renormalization 
onstants
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are �xed by imposing normalization 
onditions for the

one-parti
le irredu
ible two- and four-point fun
tions:

�

(2)

r;11

(0) = m

2

; (10)

��

(2)

r;11

�p

2

�

�

�

�

�

p=0

= 1; (11)

�

(4)

r;1111

(0; 0; 0; 0) = 3mg; (12)

�

(1;2)

r;11

(0; 0; 0) = 1; (13)

�

r;��

�p

2

�

�

�

�

p=0

= 2: (14)

Let us de�ne the RG fun
tions:




�

� m

� lnZ

�

�m

;




a

� m

� lnZ

a

�m

;




(2)

�

� m

� lnZ

(2)

�

�m

: (15)

Within the present renormalization s
heme, these fun
-

tions are given expli
itly in the one-loop approximation

by




�

= �

2

3�

f

(1 + jtj)

2

;




a

=

Nf

48�

;




(2)

�

= �

(N + 2)g

16�

: (16)

The �-fun
tions are given by

�

f

� m

�f

�m

= (


a

� 1)f;

�

t

� m

�t

�m

= (


a

� 1)t;

�

g

� m

�g

�m

= (2


�

� 1)g +

N + 8

16�

g

2

: (17)

Note the absen
e of a term proportional to f

2

in Eq. (17).

This generalizes the observation in the previous approx-

imation that the �

4

0

-term in the Landau expansion (6)

is �-independent. This is in 
ontrast to the pure GL

model where a f

2

-term is present in �

g

[21{23,13,14℄.

The present absen
e of the f

2

-term is the reason for the

existen
e of a 
harged �xed point (whi
h remains true for

all values of N , if the model is extended to N=2 
omplex

�elds, in 
ontra
t to the pure GL model where N > 365

is needed as pointed out by Halperin et al. [21℄.

The anomalous dimension of the gauge �eld �

a

� 


�

a

has an interesting property. From Eq. (17) we see that

�

a

= 1, implyinga �xed point also in (17) for any t, whi
h

means that the 
riti
al exponents 
an vary 
ontinuously.

The 
harged �xed point is given by

f

�

= 48�=N; (18)

g

�

=

16�

N + 8

�

64

N (1 + jt

�

j)

2

+ 1

�

:

Note that �

t

does not vanish identi
ally as in the absen
e

of a Maxwell term. It does, however, vanish at the �xed

point where 


a

= 1 for all values of t, whi
h has the same

e�e
t as �

t

� 0, thus allowing for arbitrary �xed-point

values t

�

.

The 
riti
al exponent � is given by the �xed point value

of the RG fun
tion 


�

:

� = �

32

N (1 + jt

�

j)

2

: (19)

Thus, although a 
harged �xed point exists for all val-

ues of N , the �xed points with N � 32=[(1 + jt

�

j)

2

℄ are

unphysi
al sin
e the inequality � > �1 is not ful�lled.

Thus, we still have a 
riti
al value of N , but 
onsider-

ably smaller than the value N




= 365 of Ref. [21℄. For any

�xed N � N




= 32, there are physi
al 
riti
al exponents

provided that

jt

�

j > t




(N ) = 4

r

2

N

� 1: (20)

In Fig. 1 we plot N� as a fun
tion of t

�

for positive values

of t

�

.

Fig. 1. Plot of N�, where � is given by Eq. (19), as a fun
-

tion of t

�

> 0.

The 
riti
al exponent � is obtained as the �xed-point

value of the RG fun
tion �

�

= 1=[2 + 


(2)

�

� 


�

℄;whi
h is
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� =

�

2�

N + 2

N + 8

�

N � 4

N + 8

32=N

(1 + jt

�

j)

2

�

�1

: (21)

This is plotted in Fig. 2 as a fun
tion of t

�

for N = 68.

Fig. 2. Plot of the 
riti
al exponent � as a fun
tion of t

�

for N = 68.

B. Massless S
aling Regime

We now derive the s
aling behaviour at the 
riti
al

point, where the mass of the s
alar �eld vanishes. Then

the 
oupling 
onstants must be de�ned at nonzero ex-

ternal momenta of the vertex fun
tions. For g we 
hoose

the normalization 
ondition

�

(4)

1111

(p

1

;p

2

;p

3

;p

4

)j

SP

= 3�g; (22)

where the symbol SP stands for the symmetry point [15℄

p

i

� p

j

=

�

2

4

(4Æ

ij

� 1): (23)

We shall distinguish the RG fun
tions of the massive

from those of the massless s
aling regime by adding a

tilde over the latter. The �-fun
tions of the gauge 
ou-

plings have the same form as before. The anomalous di-

mension of the ve
tor �eld 
hanges, however, being now

~


a

=

Nf

32

: (24)

Also the beta fun
tion �

g

is now di�erent, sin
e the one-

loop gauge �eld graph with four external legs is now

nonzero. This leads to an f

2

-term in �

g

:

~

�

g

� �

�g

��

= (2~


�

� 1)g +

N + 8

16

g

2

+

Æ

4�

f

2

; (25)

where

~


�

= �

f

4�

�

3�

4t

2

+

�

2

�

3�t

2

4

+ 3jtj �

3

jtj

�

�

3

2t

2

� 1 +

3t

2

2

�

ar
tan

�

1� t

2

2jtj

��

; (26)

Æ =

�

2t

2

+

1

jtj

�

5�

4

+

�

�

3

2t

4

�

4

t

2

+ 8

�

ar
tan

�

1

2jtj

�

+

�

3

2t

4

+

3

t

2

�

5

2

�

ar
tan

�

1� t

2

2jtj

�

: (27)

In the limit t ! 0 we have ~


�

! �f=4 and Æ ! 3�=2,


orresponding to the GL limit.

In 
ontrast with the massive s
aling regime, the

present equations yield a 
harged �xed point only for

a limited range of N . The beta fun
tions vanish at

f

�

= 32=N;

g

�

�

=

8

N+8

"

1�2~� �

r

(1�2~�)

2

�

160Æ

�

�

#

; (28)

where ~� � ~


�

(f

�

; t

�

) is the anomalous dimension of the


omplex �eld in the massless s
aling regime. Remark-

ably, there we �nd a tri
riti
al �xed point g

�

�

, whi
h

is absent in the massive regime. The two regimes are

similar for Æ

�

= 0, in whi
h 
ase there will be no tri-


riti
al �xed point in both regimes. This happens for

t

�

= t

0

' 0:802693. For t

�

> t

0

we �nd Æ

�

< 0, in whi
h


ase the tri
riti
al point be
omes unstable, sin
e it 
or-

responds to g

�

�

< 0. In Fig. 3 we plot Æ as a fun
tion of

t.

The 
harged �xed points are a

essible only if t

�

�

~

t




(N ), where

~

t




(N ) is the value of t

�

that vanishes the

dis
riminant in Eq. (28). For example, if N = 10 we

have

~

t




(10) ' 0:752751. From Eq. (20) we �nd t




(10) '

0:788854, and therefore

~

t




(10) < t




(10).

In order to 
al
ulate the ~�-exponent, we need the RG

fun
tion ~


(2)

�

. This fun
tion is mu
h more 
ompli
ate in

the massless s
aling regime and is given expli
itly by
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~


(2)

�

= �

(N + 2)g

16

�

f

4�

�

�

4t

2

� 3

4

p

3t

2

+

4t

2

+ 3

2

p

3t

2

ar
tan

�

3� 4t

2

4

p

3jtj

�

(29)

+

(3� 4t

2

)(3 + 4t

2

)

8jtj�

"

1 +

jtj

p

�

ar
tan

 

p

�

jtj

!#)

;

where

� � t

4

+

t

2

2

+

9

16

: (30)

In Fig. 4 we plot ~� as a fun
tion of t

�

� t




(10). The 
urve

has a maximum for t

�

' 1:631, where ~�

max

= 1:7.

Fig. 3. Plot of Æ as a fun
tion of t.

Fig. 4. Plot of the 
riti
al exponent ~� as a fun
tion of t

�

for N = 10.

IV. SIGN OF ANOMALOUS DIMENSION � AND

LARGE-N LIMIT

A mu
h debated topi
 in the GL theory is the physi-


al meaning of a negative sign of the �-exponent found

in analyti
 
al
ulations [24,25,16℄ and 
omputer simula-

tions [26℄. In early dis
ussions of the subje
t it had been

argued that a negative � would be unphysi
al sin
e it

would violate the K�allen{Lehmann spe
tral representa-

tion [24,27℄. However, it is now being understood that

a negative sign of � in the GL model makes sense. In

fa
t, there are several physi
al systems where negative

�s have been found before, most prominently magneti


systems, whi
h show strong momentum spa
e instabili-

ties [28℄. These 
an produ
e a non-uniform phase with a

modulated order parameter. The point where the modu-

lated phase sets in is 
alled a Lifshitz point [29℄. Physi
al

systems with a Lifshitz point have a negative �-exponent.

It has re
ently been argued by us [25,16℄ that su
h mo-

mentum spa
e instabilities o

ur also in super
ondu
-

tors, implying the existen
e of a Lifshitz point in the

phase diagram, and thus explaining the negative sign of

�. A di�erent explanation has been given re
ently in Ref.

[30℄ fo
using on the geometri
 properties of the 
riti
al


u
tuations. There the anomalous dimension is related

to the Hausdor� dimensions of the 
riti
al 
u
tuations.

The CS term in the GL model is expe
ted to a�e
t

this pi
ture, sin
e for in�nite t

�

, the gauge �eld de
ouples

from the s
alar �eld. In this limit, the 
riti
al exponents

are those of a pure s
alar �eld theory whi
h has � > 0.

Thus we may wonder at whi
h �nite value of t

�

the sign


hange of � o

urs.

In Fig. 5 we plot N ~� as a fun
tion of t

�

. We see that

at one-loop order, ~� is always negative and approa
hes

zero for t

�

!1. It would be desirable to know the two-

loop 
orre
tions in the massless s
aling regime and 
he
k

if there exists a �nite value of t

�

where the sign of ~�


hanges. We have not yet done this 
al
ulation due to its


omplexity for arbitrary t. We 
an, however, easily write

down � in the limit of large N for all 
oupling strengths

in the massive s
aling regime. Then the CSGL model

is in the same universality 
lass as the CP

N=2�1

model

with a CS term, and here the 
riti
al exponents have

been 
omputed by Rajeev and Ferretti [31℄. The result

for � is

� = �

40

�

2

N

�

1�

16

15

�

t

2

1 +

�

t

2

�

; (31)

where

�

t = 4t=�. In the limit

�

t!1 this redu
es 
orre
tly

to � of the O(N )-symmetri
 s
alar model [15,32℄ to order

1=N .

From Eq. (31) we see that � 
hanges sign at

�

t =

p

15.

In Fig. 6 we plot N� as given in Eq. (31) as a fun
tion of

t. Interestingly, Figs. 5 and 6 look very similar for low t,

up to a fa
tor of two in the verti
al s
ale, although the

two 
urves 
ome from two 
ompletely di�erent approxi-

mations. In addition, the 
omparison tea
hes us that the

sign of � may easily 
hange in perturbation theory by

in
luding higher-order 
orre
tions.

It is also interesting to 
onsider the 
riti
al exponent

� to the leading order in 1=N . We have

� = 1�

96

�

2

N

�

1�

8

9

�

t

2

(

�

t

2

+ 4)

(1 +

�

t

2

)

2

�

: (32)
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We have plotted the �-exponent given above in Fig. 7

for N = 10, for the sake of 
omparison with the one-loop

result for the massless s
aling regime. There is again a re-

markable similarity between this 
urve and the one for ~�

in Fig. 4. This striking resemblan
e between the massive

s
aling regime at the order 1=N and the massless s
aling

regime at one-loop seems to indi
ate that perturbation

theory within the massive s
aling regime is worse than

perturbation theory within the massless s
aling regime,

and that the exa
t 
urves in the two regimes may ulti-

mately 
oin
ide.

Fig. 5. Plot of N ~� as a fun
tion of t

�

.

Fig. 6. Plot of N�, where � is given by Eq. (31), as a fun
-

tion of t.

Fig. 7. Plot of �, where � is given by Eq. (32) with N = 10,

as a fun
tion of t.

V. THE \FERMIONIC" FIXED POINT

Let us see what we 
an learn from our s
aling study

about strongly intera
ting fermions. General arguments

involving bosonization [9℄ and duality transformations [7℄

indi
ate that the �xed points 
orresponding to fermions

lie, in the massless s
aling regime, at t

�

= 1=2� and

f

�

= 32=N . Then there are no �xed points g

�

�

for the

physi
al 
ase N = 2. We know, however, from duality

arguments applied to the GL model [2,20,33℄ that this

one-loop result is not trustworthy for N = 2. Within the

massless s
aling regime it is possible to obtain a 
harged

�xed point for all values of N at the one-loop level by in-

trodu
ing a new arbitrary parameter 
 whi
h 
orresponds

to the ratio between the two renormalization s
ales de�n-

ing the gauge and s
alar 
ouplings, respe
tively [14℄. This

pro
edure was also applied to the CSGL model in Ref.

[18℄. A 
harged �xed point is found for N = 2 if 
 is


hosen large enough. This happens sin
e 


a

is modi�ed

to




a

=


Nf

32

: (33)

Sin
e 


a

= 1 at the �xed point, a large 
 makes f

�

suf-

�
iently small to rea
h the �xed point for N = 2. The

main drawba
k of this te
hnique is the fa
t that 
 is not

determined by the formalism. In Ref. [14℄ it was 
hosen

to reprodu
e the tri
riti
al point determined in Ref. [20℄

by a disorder �eld theory of the GL model.

Re
ently, we have su

eeded in obtaining a 
harged

�xed point at N = 2 by de�ning a new RG approa
h

in the ordered phase [16℄, where the two length s
ales of

the GL model are well de�ned by the 
orrelation length

� and the penetration depth �. This makes the param-

eter 
 in Refs. [14℄ and [18℄ super
uous. The appli
a-

tion of Sothis 
al
ulation pro
edure to the Lagrangian

(3) is 
ompli
ated due to the CS term. This 
reates a

gauge �eld propagator in the ordered phase with two

di�erent masses, the CS mass and another one gener-

ated by the Higgs me
hanism. To avoid this 
ompli
a-

tion we shall restri
t ourselves here to the 
-approa
h.

The 
onstant 
 will be �xed by demanding that in the

� = 0-model the 
riti
al exponent � has a XY value,

as found in the duality approa
h [34℄. For the XY value

� ' 0:67, this �xes 
 ' 82:7. In Ref. [18℄, a smaller value

of 
 was used by approximating the RG fun
tion ~�

�

by

~�

�

' (1� ~


(2)

�

=2+~


�

=2)=2. However, this approximation

gives ~� = 0:6 for f

�

= t

�

= 0, while if we do not use su
h

an approximation we obtain a mu
h better value in this

limit, ~� = 0:625, whi
h is just the one-loop value for the

O(2)-symmetri
 �

4

theory [15℄.

Therefore we obtain, with 
 = 82:7 and t

�

= 1=2=�:

~� ' �0:05; (34)

~� ' 0:66: (35)

We see that the \fermioni
" �xed point is not mu
h dif-
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ferent from the GL �xed point for the value of 
 under


onsideration.

VI. CONCLUSION

We have studied and 
ompared two s
aling regimes in

the CSGL model. In the massive s
aling regime, 
harged

�xed points exist for all values of N . However, not all

of them lead to physi
al values of the 
riti
al exponents

whi
h restri
t the range of allowed values of N . By re-

stri
ting the values of t

�

we have been able to obtain

physi
al exponents to allN in the massive s
aling regime.

The interval of admissible t

�

is obtained from inequality

(20).

In the massless s
aling regime we �nd a similar restri
-

tion through a more involved inequality, sin
e ~� has a far

more 
ompli
ated expression.

The dis
ussion in the massive s
aling regime yields no

tri
riti
al point, a result 
onsistent with the Landau ex-

pansion of the mean-�eld free energy in Eq. (6). How-

ever, from the non-expanded mean-�eld free energy (4)

it is seen that for suÆ
iently small � we obtain a �rst-

order phase transition. In parti
ular, we re
over the usual

HLM result for � = 0, in 
ontrast to Eq. (6) whi
h does

not have the 
orre
t � ! 0-limit.

The behaviour in the massless s
aling regime is more


onsistent with Eq. (4) sin
e it exhibits a tri
riti
al �xed

point for t

�

< t

0

. In the region t

�

� t

0

, the two s
al-

ing regimes look quite similar, at least qualitatively. The

1=N -expansion applied to the massive s
aling regime

makes this similarity even greater and suggests that per-

turbation theory applied in the massless s
aling regime

is better behaved than in the massive regime.

An interesting point with respe
t to the 1=N -

expansion in the massive s
aling regime is the sign


hange in � for

�

t =

p

15. This never happens for a GL

model [16,25,26℄. Inspired by our re
ent work suggesting

that the sign of � is related to momentum spa
e insta-

bilities [16,25℄, we may 
onje
ture that when an external

magneti
 �eld is in
luded in the CSGL model, vortex

latti
es should not exist above a 
ertain 
riti
al value of

the topologi
al mass.

We have dis
ussed brie
y what we 
alled \fermion-

i
" �xed point, that is, the �xed point where the CSGL

model 
orresponds to bosonized three-dimensional inter-

a
ting fermions. At this �xed point t

�

= 1=2�. Unfor-

tunately, g

�

�

is not real in this 
ase if N = 2. In order

to rea
h a 
harged �xed point for N = 2 we introdu
ed

an arbitrary parameter 
 
orresponding to the ratio be-

tween the renormalization points of the gauge 
ouplings

and s
alar 
oupling. The value of 
 has been �xed in the

t = 0 model. As t is turned on to t

�

= 1=2� the values of

the 
riti
al exponents do not show an appre
iable 
hange

with respe
t to the t = 0 
ase.
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DVA R�ZN� SKE�L�N�OV� RE�IMI V MODEL� ��NZBUR�A{LANDAU

Z DODANKOM QERNA{SA�MONSA

G. Kl��nert, F. No�ue�ra

�nstitut teoretiqnoÝ f�ziki. V�l~ni� un�versitet u Berl�n�

vul. Arn�male 14, D{14195, Berl�n, N�meqqina

kleinert�physik.fu-berlin.de; URL: http://www.physik.fu-berlin.de/kleinert/

nogueira�physik.fu-berlin.de

Pokazano, wo model~ ��nzbur�a{Landau z dodankom Qerna{Sa�monsa ma
 dva ske�l�n�ovih re�imi,

�k� zale�at~ v�d togo, qi masa skal�rnogo pol� r�vna nul�, qi n�. U teor�Ý zburen~ model~ ��nzburga{

Landau z topolog�qno� maso� demonstru
 dosit~ v�dm�nn� vlastivost� v�d qistoÝ teor�Ý �

4

. Nax anal�z

dozvol�
 pripustiti, wo dva ske�l�n�ov� re�imi mo�ut~ zb�gatis� na nezburenomu r�vn�. C� toqka zoru

p�dtverd�u
t~s� 1=N -rozkladom u me�ah masivnogo skal�rnogo pol�.
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