MAGNETIC IMPURITIES IN THE BOROCARBIDE YNi₂B₂C

M. Willner¹, S. Manalo², H. Michor¹, M. El-Hagary¹, G. Hilscher¹

¹Institut für Experimentalphysik, Technische Universität Wien, 1040 Wien, Austria.

² Institut für Theoretische Physik, Johannes Kepler Universität Linz, 4040 Linz, Austria

(Received August 30, 2001)

Measurements of the specific heat and the magnetization on the quaternary borocarbides $R\operatorname{Ni}_2\operatorname{B}_2\operatorname{C}(R = \operatorname{Gd}, \operatorname{Er}, \operatorname{and} \operatorname{Ho})$ show that the critical temperature T_c scales roughly with the DeGennes factor $(g_J - 1)^2 J(J + 1)$. In $\operatorname{GdNi}_2\operatorname{B}_2\operatorname{C}$ superconductivity is suppressed by magnetic pair-breaking, whereas in the systems $Y_{1-x}\operatorname{Er}_x\operatorname{Ni}_2\operatorname{B}_2\operatorname{C}$ and $Y_{1-x}\operatorname{Ho}_x\operatorname{Ni}_2\operatorname{B}_2\operatorname{C}$ superconductivity and magnetism coexist within the whole range of $0 \leq x \leq 1$. For $R\operatorname{Ni}_2\operatorname{B}_2\operatorname{C}$ with $R = \operatorname{Er}$, Ho and Dy one can show that the coherence length $\xi(0)$ is larger than the lattice parameters of the system, so that the magnetic ions act on the Cooper pairs. Measurements on $(Y,R)\operatorname{Ni}_2\operatorname{B}_2\operatorname{C}$ show that the variation of the specific heat jump $\Delta C(T_c)$ vs. T_c roughly scales with the Abrikosov–Gor'kov theory for highly diluted systems [1]. Due to these features of the $(Y,R)\operatorname{Ni}_2\operatorname{B}_2\operatorname{C}$ system, and the fact that it can be very well described by the Eliashberg theory [2], calculations were done to test whether the systems with $R = \operatorname{Er}$, Ho, Dy, Gd and Yb can simply be described by $Y\operatorname{Ni}_2\operatorname{B}_2\operatorname{C}$ including magnetic impurities. The calculations show that the model works well for $x \ll 1$.

Key words: borocarbides, magnetic impurities, Eliashberg, phase transition.

PACS number(s): 74.25.Bt, 74.70.Dd, 74.62.Yb, 74.20.-z

The rare-earth nickel borocarbides RNi_2B_2C received much attention in the last years due to their very interesting superconducting and magnetic properties. The compounds with the nonmagnetic rare-earth atoms Lu or Y show conventional electon-phonon superconductivity with a relatively high superconducting transition temperature between 15 K and 16 K. These nonmagnetic borocarbides can be very well described by theoretical calculations based on Eliashberg theory [2]. With heavy rare-earth ions R like Dy, Ho, Er or Tm, coexistence of superconductivity and magnetism is observed. The interesting interplay of superconductivity and magnetism in the pseudoquaternary system $(Y,R)Ni_2B_2C$ (R = Gd, Tb, Dy, Ho, Er and Tm) was investigated by various experiments [3].

In this paper, we investigate if it is possible to describe the superconducting and thermodynamic properties of the $(Y,R)Ni_2B_2C$ system by using YNi_2B_2C as a base system and adding paramagnetic impurities instead of the heavy rare-earth ions within the scope of Elishberg theory. It was already shown that the thermodynamic and superconducting properties of LuNi₂B₂C and YNi₂B₂C can be very well described by this approach [2]. Furthermore, the values of T_c from the experiments roughly scale with the Abrikosov-Gor'kov pairbreaking theory [1] which provides a simple relation for T_c as a function of the magnetic impurity concentration $\ln(T_{c0}/T_c) = \Phi(\rho T_{c0}/(2T_c) + 1/2) + \Phi(1/2);$ where Φ is the digamma function, T_c and T_{c0} are the transition temperatures in the presence and absence of the magnetic impurities, respectively, and ρ is the pair-breaking parameter.

The first step of our analysis was to calculate T_{c0}/T_c as a function of the paramagnetic impurity content in YNi₂B₂C. The $\alpha^2(\omega)F(\omega)$ spectrum of the borocarbides, where $\alpha^2(\omega)$ is the electron-phonon coupling function and $F(\omega)$ is the phonon density of states, is shown in Fig. 1. We have used the phonon density of states of Gompf *et al.* [5] for YNi₂B₂C and weighed it with two decreasing functions of $\omega: \alpha^2(\omega) = \omega^{-s}$, with s = 1/2, 1as was done by Junod [6] with the A15 compounds. Calculations for clean YNi₂B₂C within Eliashberg theory using the spectrum with s = 1/2 showed that this spectum is sufficient for describing the thermodynamic properties and upper critical field of this compound [2]. All other characteristic parameters used in the calculations are listed in Table 1.

Fig. 1. Electon-phonon spectral functions $\alpha^2(\omega)F(\omega)$ for YNi₂B₂C obtained from neutron scattering data of Gompf *et al.* [5]. The spectrum of LuNi₂B₂C was calculated by W. Weber of Universität Dortmund [4] and is shown for comparison.

In order to compare the thermodynamic properites resulting from our analysis with the experimental data, which are functions of T_c/T_{c0} , we have to find a way to map the impurity potential t_{-} to the impurity concentration x. This is done by calculating the behaviour of T_c/T_{c0} as a function of t_{-} and using the experimental data, which are T_c/T_{c0} vs. x plots, to obtain the relation t_{-} vs. x for each compound. The numerical results for T_c/T_{c0} vs. the paramagnetic impurity potential t_{-} are shown in Fig. 2 (top). From this figure one can observe that the critical energy of the paramagnetic impurities is $t_{-,crit} = 0.4761 \text{ meV}$. To correlate these results to the experimental data obtained from specific heat and susceptibility measurements (Fig. 2, bottom left), we used the relation for the magnetic scattering potential t_{-} as a function of the concentration x:

$$t_{-}(x) = xS(S+1)N(0) \int |V(\Omega)|^{2} d\Omega , \qquad (1)$$

where S is the spin, N(0) the density of states, and the $V(\Omega)$ is the scattering potential as a function of the scattering angle Ω . If we set $I(N, V) = N(0) \int |V(\Omega)|^2 d\Omega$, then $t_-/x = S(S+1)I(N, V)$. For small x one can assume that this expression is a constant for a given element. This assumption still holds for the $Y_{1-x}R_xNi_2B_2C$ series because even for x = 1, where Y is fully replaced with a magnetic ion, only 1/6 th of the unit cell is paramagnetic. Later in this work we will show that this is only valid for small x.

T_{c0}	λ	γ	atoms	μ^*	$\left< b^2 \right>$	$\langle a^2 \rangle$
$15.445\mathrm{K}$	1.2	$0.0029~\mathrm{J/g}\mathrm{at}\mathrm{K}^2$	$9.17474 \cdot 10^{22} / \mathrm{cm}^{-3}$	0.112101	0.29	0.03

Table 1. Characteristic of parameters of YNi_2B_2C used in the calculations for this work. T_{c0} is the critical temperature, λ the electron-phonon coupling parameter, γ the Sommerfeld constant obtained from specific heat measurements, μ^* the Coulomb pseudo-potential, $\langle b^2 \rangle$ the anisotropy parameter of the Fermi velocity, and $\langle a^2 \rangle$ the electron-phonon coupling anisotropy parameter.

Fig. 2. Numerical results for T_c/T_{c0} vs. t_{-} (top) and experimental data on T_c/T_{c0} vs. x (bottom left) for $Y_{1-x}R_xNi_2B_2C$, where R is the rare-earth element as labeled. From these two diagrams the t_{-} versus x relation is obtained (bottom right).

Fig. 2 (bottom right) shows the combined data from the numerical results and the experimental data in a t_{-} vs. x diagram. The dotted lines are linear fits $t_{-} = k * x$ of the given data points, which are based on the assumption that t_{-}/x is constant for small x. With the results for k and the critical impurity potential $t_{-, crit}$ one can calculate the critical concentrations $x_{\rm crit}$ for each element, and the results are shown in Table 2. These are the main results from our calculations. The $x_{\rm crit}$ values are only higher than 1 for Er and Ho, which shows that for the other compounds superconductivity breaks down before full substitution of Y by the magnetic ions. This further means that the only fully substituted compounds which can be described by Eliashberg theory with YNi₂B₂C as base compound are ErNi₂B₂C and HoNi₂B₂C. With these results we are now able to describe the thermodynamic properties as functions of T_c/T_{c0} .

	Er	Ho	Dy	Gd	Yb
t_{-}/x	0.220	0.378	0.578	1.746	9.294
$x_{ m crit}$	2.17	1.26	0.81	0.27	0.05

Table 2. Critical concentrations x_{crit} and fitted values for t_{-}/x for $Y_{1-x}R_x \text{Ni}_2\text{B}_2\text{C}$.

The thermodynamic critical field $H_c(T)$ is calculated from the free energy difference between the normal and superconducting states by using the relation

$$H_{c}(T) = \sqrt{\frac{2}{\mu_{0}} \left(F_{n}(T) - F_{s}(T)\right)}$$

where $F_n(T)$ is the free energy in the normal state and $F_s(T)$ is the corresponding one in the superconducting state. The calculations of $H_c(T)$ were done without taking the electron-phonon coupling anisotropy parameter $\langle a^2 \rangle$ into account (Fig. 3), as it was shown that the anisotropy does not play an important role in describing the thermodynamic properties of YNi_2B_2C [2]. The upper critical field $H_{c2}(T)$, however, is sensitive to changes in $\langle a^2 \rangle$ and therefore can not be described with the Werthamer equation $H_{c2}(0) \approx 0.7 T_c H'_{c2}(T_c)$ [7] because it does not take both anisotropy parameters $\langle a^2 \rangle$ and the anisotropy parameter of the Fermi velocity $\langle b^2 \rangle$, which play an important role in describing the upper critical field of YNi₂B₂C, into account. Calculations show that the upper critical field close to T_c and for $H_{c2}(0)$ can not be described without using $\langle a^2 \rangle$ and $\langle b^2 \rangle$ [2]. With the anisotropy parameters from Table 1 we get the results for $H_{c2}(T)$ as shown in Fig. 3.

Fig. 3. The thermodynamic critical field $H_c(T)$ and the upper critical field $H_{c2}(T)$ versus T_c/T_{c0} and t_{-} .

Fig. 4. Calculated jump of the specific heat ΔC and the electronic specific heat contribution C_{es} for YNi_2B_2C with paramagnetic impurities.

Fig. 5. Variation of the specific heat jump ΔC versus the normalized transition temperature T_c/T_{c0} for $Y_{1-x}R_xNi_2B_2C$, where R is the rare-earth atom as labeled. The solid line are the numerical results of this work. The straight line shows the BCS relation where γ is constant.

Fig. 6. Detailed comparision of the experimental and theoretical values for ΔC .

MAGNETIC IMPURITIES	IN	THE	BORC)CA	RDIDE	YNi ₂	B_2	C
---------------------	----	-----	------	-----	-------	------------------	-------	---

	experiment	calculated	error
	$T_c[\mathbf{K}]$	$T_c[\mathbf{K}]$	f[%]
$\mathrm{YNi}_2\mathrm{B}_2\mathrm{C}$	15.445	15.445	0
${\rm ErNi_2B_2C}$	10.8	10.5	-2.8
$\mathrm{HoNi}_{2}\mathrm{B}_{2}\mathrm{C}$	8.1	5.7	-30
	$H_c(0)[\mathrm{mT}]$	$H_c(0)[\mathrm{mT}]$	
$\mathrm{YNi}_2\mathrm{B}_2\mathrm{C}$	268	269	0.6
${\rm ErNi_2B_2C}$	180	201	12
${\rm HoNi_2B_2C}$	110	134	22
	$H_{c2}(0)$ [mT]	$H_{c2}(0)[\mathrm{mT}]$	
$\mathrm{YNi}_2\mathrm{B}_2\mathrm{C}$	7.9	8.0	1.2
${\rm ErNi_2B_2C}$	1.8	3.3	83
$\underline{\mathrm{HoNi}_{2}\mathrm{B}_{2}\mathrm{C}}$	0.85	1.0	17
	$\Delta C(T_c) [\mathrm{mJ/mol}\cdot\mathrm{K}]$	$\Delta C(T_c) [\mathrm{mJ/mol\cdot K}]$	
$\mathrm{YNi}_2\mathrm{B}_2\mathrm{C}$	572	569	-0.5
${\rm ErNi_2B_2C}$	360	249	-30
$\underline{\mathrm{HoNi}_{2}\mathrm{B}_{2}\mathrm{C}}$	140	56	-60

Table 3. Comparison of various experimental and calculated critical values of RNi₂B₂C.

In our further analysis we calculated the numerical results for the specific heat, the thermodynamic critical field $H_c(T)$ and the upper critical field $H_{c2}(T)$ of YNi_2B_2C with paramagnetic impurities t_- . Fig. 4 shows the electronic specific heat $C_{es}(T_c)$ and the specific heat jump $\Delta C(T_c)/\Delta C_0(T_c)$ versus t_- and T_c/T_{c0} . In Fig. 5 the numerical results are compared to the experimental data. One can see that the numerical results fit the experimental data quite well for 1 < x < 0.7. The data for YbNi₂B₂C and DyNi₂B₂C do not agree with our calculations due to the fact that the critical concentration with x = 1 cannot be reached with our model as was discussed above (see Table 2). In Table 3 the experimental and numerical data are shown together with the relative error, which shows the deviation between the numerical and experimental results in %. For YNi₂B₂C the results are very good as expected. The numerical values for H_c , H_{c2} and ΔC for Er and Ho compounds deviate drastically from

the experimental results. This means that even though the agreement between the experimental data and numerical results in Fig. 5 is very good, we can not simply describe ErNi₂B₂C and HoNi₂B₂C in the scope of Eliashberg theory using YNi₂B₂C as base compound and adding paramagnetic impurities corresponding to x = 1. To clarify the situation the experimental and theoretical values for ΔC are compared to each in Fig. 6. It shows that, for small amounts of $x (T_c/T_{c0} \gg 0.8, x = 0.2$ for Er, and x = 0.025 for Gd) in $Y_{1-x}R_xNi_2B_2C$, the experimental and theoretical values agree very well. For these values of x the impurity concentration is below 3%. As a conclusion one can say that it is possible to describe the properties of $Y_{1-x}R_xNi_2B_2C$ with R = Er, Ho, Dy, Gd and Yb for small values of x by using YNi_2B_2C as base compound with paramagnetic impurities within Eliashberg theory.

- M. El-Hagary, H. Michor, G. Hilscher, Phys. Rev. B 61, 11695 (2000).
- S. Manalo, Diploma Thesis, Technische Universität Wien (1999) (unpublished).S. Manalo, H. Michor, M. El-Hagary, G. Hilscher, E. Schachinger, Phys. Rev. B 63, 104508 (2001).
- [3] G. Hilscher, H. Michor, Studies of High Temperature Superconductors Vol.28 p.241.
- [4] W. Weber, Universität Dortmund, Inst. für Theoretische Physik II, Otto-Hahn-Str. 4, D-44221 Dortmund (unpublished).
- [5] F. Gompf, W. Reichardt, H. Schober, B. Renker,

M. Buchgeister, Phys. Rev. B 55, 9058 (1997).
[6] A. Junod, T. Jarlborg, J. Muller, Phys. Rev. B 27, 1568 (1983).

[7] N. R. Werthhamer, E. Helfand, P. C. Hohenberg, Phys. Rev. 147, 295 (1966).

МАГНЕТНІ ДОМІШКИ В БОРОКАРБІДІ УNі₂В₂С

М. Вільнер¹, Ш. Манало², Г. Міхор¹, М. Ель-Гаґарі¹, Ґ. Гільшер¹ ¹Інститут експериментальної фізики, Віденський технічний університет, 1040, Відень, Австрія ²Інститут теоретичної фізики, Університет ім. Йогана Кеплера, 4040, Лінц, Австрія

Вимірювання питомої теплоємности та намагнічености в чотирикомпонентних борокарбідах RNi_2B_2C (R = Gd, Er i Ho) показують, що критична температура T_c наближено масштабується із фактором Де Жена $(g_J - 1)^2 J(J + 1)$. У GdNi₂B₂C надпровідність зникає через магнетне розщеплення пар, тоді як у системах $Y_{1-x}Er_xNi_2B_2C$ та $Y_{1-x}Ho_xNi_2B_2C$ надпровідність і магнетизм співіснують на цілому проміжку $0 \le x \le 1$. Для RNi_2B_2C із R = Er, Но і Dy можна показати, що кореляційна довжина $\xi(0)$ є більшою від параметра ґратки системи, так що магнетні йони впливають на куперівські пари. Вимірювання над $(Y,R)Ni_2B_2C$ показують, що зміна стрибка теплоємности $\Delta C(T_c)$ щодо T_c підлягає приблизному степеневому співвідношенню відповідно до теорії Абрикосова-Горькова для систем із великим розведенням [1]. Згідно з указаними властивостями системи $(Y,R)Ni_2B_2C$ та тим фактом, що її можна добре описати теорією Еліашберґа, були проведені обчислення, аби протестувати, чи системи з R = Er, Ho, Dy, Gd i Yb можуть просто описуватися YNi_2B_2C із магнетними домішками. Обчислення показують, що модель добре працює при $x \ll 1$.