
�URNAL F�ZIQNIH DOSL�D�EN^

t. 5, } 3/4 (2001) s. 341{348

JOURNAL OF PHYSICAL STUDIES

v. 5, No. 3/4 (2001) p. 341{348

MEAN FIELD ANALYSIS OF TWO COUPLED HEISENBERG MODELS

D. V. Shopova

1

, T. L. Boyadjiev

2

1

CPCM Laboratory, G. Nadjakov Institute of Solid State Physis

Bulgarian Aademy of Sienes, BG{1784 So�a, Bulgaria

2

Faulty of Mathematis and Computer Siene, University of So�a

BG{1164 So�a, Bulgaria

(Reeived Otober 2, 2001)

We have derived and analyzed the Landau free energy for two oupled Heisenberg subsystems in

the general ase of n-omponent order parameters. The alulation was done in the weak-oupling

limit when the exhange interations J

1

and J

2

in the subsystems exeed the intersubsystem inter-

ation K. There exist two stable ollinear phases, depending on the sign of K. The phase transitions

to the stable phases are of seond order for the whole range of parameters of the model under onsid-

eration. The numerial alulations show that for positive sign of interations two more phases exist,

whih are metastable or unstable depending on the number of the order parameter omponents n.
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PACS number(s): 75.10.Hk,75.30.Kz,75.40.Cx

I. INTRODUCTION

The model of two bilinearly oupled Heisenberg sub-

systems omposed of n-omponent lassial spins is inter-

esting for the understanding of the magneti properties

of substanes with omplex magneti struture. Gener-

ally, this model an be applied to two lasses of magneti

materials. The �rst lass omprises substanes with one

type of magneti ions whih oupy rystallographially

nonequivalent positions in the Bravais lattie and are

surrounded by di�erent number or type of nonmagneti

ions. Substanes whih ontain two hemially di�erent

types of magneti ions fall in the seond lass; here the

superlatties omposed of two di�erent magneti mate-

rials an be inluded, too. The resulting e�et is that the

inital system an be onsidered as two oupled subsys-

tems having di�erent e�etive exhange interations no

matter of the mirosopi origin of this di�erene.

The model, of ourse, is quite general and an be used

for the analysis of the properties also in other systems.

An example for its appliation to the granular super-

ondutors is given in book [1℄. In this paper we shall

onsider the appliation of the model only to magneti

materials. For this purpose we shall derive the general

Ginzburg{Landau free energy funtional from the re-

spetive mirosopi model and establish the relation

between the interation parameters of the mirosopi

Hamiltonian and the marosopi Landau parameters.

We shall analyze numerially the obtained mean-�eld

equations with the aim to identify the ordered phases

and investigate their stability.

II. DERIVATION OF LANDAU FREE ENERGY

To do the mean-�eld analysis and desribe the proper-

ties of magnetially ordered phases we should obtain an

expression for the Landau free energy and the onne-

tion of its oeÆients with the mirosopi parameters.

We start the derivation with the following mirosopi

Hamiltonian:

H = �

1
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ij
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whih desribes two bilinearly oupled lassial Heisen-

berg models. Here S

�

i

are n-omponent lassial spin ve-

tors whih are normalized by the ondition

�

�

�

S

(�)

i

�

�

�

= 1;

(� = 1; 2). The dimensionless exhange parametres,
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(�)
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(�)

ij

T

; (2)

K

ij

=

K

ij
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;

denote the interation in the subsystems �; (� = 1; 2)

and between them, respetively, and in the general ase

are the elements of (N � N ) symmetri matries. We

suppose from the very beginning that the number of lat-

tie sites of both subsystems is one and the same. This is

a simpli�ng ondition beause it makes the system fully

symmetri with respet to the interhange of its parts,

i. e., 1$ 2.

In order to �nd the mean �eld energy we have to

alulate the partition funtion whih for the Hamilto-

nian (1) is represented by an integral over n-dimensional

unit sphere. We an avoid the integration in the non-

Euledian spin spae by passing to real spae vetor

�elds through the Hubbard{Stratonovih transformation
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(HST) (a systemati presentation of HST is given in

Refs. [2,3℄) . There are di�erent ways to apply this trans-

formation for omplex models; see, for example [1,4℄. For

our aims it will be more adequate to use the approah

of Mukadam and Uzunov [4℄ whih in the original paper

is given for two oupled Ising models but an be gener-

alized for the n-omponent vetor model, too. The main

advantages in their derivation are the diret onnetion

of the order parameters with physial quantities like, for

example, the sublattie magnetizations and the fat that

the symmetry of the initial model is expliitly preserved

in the �nal result. This is very important for the proper

identi�ation of the ordered magneti phases.

We shall not give details in the appliation of HST,

rather we shall write down the obtained e�etive Hamil-

tonian:

H =
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Here I

n=2�1

(x

(1;2)

i

) is the modi�ed Bessel funtion

and �(n=2) is the Gamma funtion; �

i

and 	

i

are n-

omponent real vetor �elds whih orrespond to S

(1)

i

and S

(2)

i

, respetively. The dimensionless Landau energy

per partile, g = G=NT , an be obtained from the above

expression by expanding it for small values of j�j and

j	j. Note, that this means variables
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to be less than unity.

To be more onrete we shall do the alulations for a

body-entered ubi lattie, whih ontains two di�erent

magneti ions in the elementary ell. In our investiga-

tion we neglet �nite size and surfae e�ets, that is why

we an pass in a standard way to the ontinium limit in

k-spae. The Fourier transformed expression of Eq. (3)

again ontains a bilinear term and we have to diagonal-

ize its quadrati part. This is done with the help of the

unitary matrix

^

S:
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The matrix elements are given by the following expres-

sions and are k-dependent:
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ensures that Det

^

S = 1.

Following the standard mean-�eld proedure we have

to �nd the eigenvalues of the matrix

^

S:

�

1;2

(k) =

1

2

h

J

1

(k) + J

2

(k)

�

q

[J

1
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2
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+ 4K

2
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: (7)

They enter in the oeÆients of the diagonalized

quadrati part of the e�etive Hamiltonian in the fol-

lowing way:
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H
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It is obvious that there may be vetors k, for whih

�

1;2

(k) will be negative. The proedure whih exludes

suh values of k is well desribed in Ref. [1℄. Pratially

we have to �nd those values k

0

whih give maxima of

�

1;2

(k). Mathematially this is equivalent to the eval-

uation of the integral for the partition funtion by the

saddle point method.

For the b lattie in the nearest-neighbour approxi-

mation these maxima an be found analytially in two

limiting ases. We are interested only in the so-alled

weak oupling limit when the exhange interation in the

subsystems is bigger than the subsystem oupling. In this

ase there are two possibilities: (1) if the in-subsystem

exhanges are positive, the maxima of eigenvalues are

reahed for k = 0, and (2) if in-subsystem exhanges are

negative the maxima of �

1;2

(k) will be for jkj = �=a,

where a is the lattie onstant.

We shall onsider in details only a positive exhange in

the subsystems. Then the initial system an be presented

as two interpenetrating ferromagnetially ordered sub-

latties whih interat either ferro- or antiferromagneti-

ally depending on the sign of intersublattie exhange.

To put all these onlusions in a mathematial form we

introdue the following notations:

J
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= J
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(k = 0);

K = K(k = 0); (8)
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The next steps inlude an expansion of

J
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(k); and K(k) in the viinity of k = 0 and the

inverse Fourier transform of the obtained expression to

the real spae. As a result a Ginzburg{Landau fun-

tional is obtained. We shall not study utuations and

shall take only the spae independent part of it:
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This is the expression for the mean-�eld Landau

free energy per partile in dimensionless units, see also

Eq. (2) for the model (1).

The parameters of the Landau energy (9) are given in

an expliit form with the help of the averaged over near-

est neighbours initial mirosopi exhange parameters:

�

1;2

= 1�

�

1;2

n

; (10)

g

1;2

=

u

2

�

2

1;2

�

S

4

1

+ S

4

0

�

;

v = u�

1

�

2

S

2

1

S

2

0

;

w

1;2

= �

u

2

�

1;2

p

�

1

�

2

S

0

S

1

�

S

2

0

� S

2

1

�

:

Here S

1;0

= S

1;0

(k = 0), see Eqs. (5). The number

of the order parameter omponents enter in Eqs. (10)

through the quantity:
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2, and the expression for the Lan-

dau energy beomes quite simple and an be onsidered

analytially. We should mention that the above expres-

sion for the Landau energy is valid not only for the weak

oupling limit (J

1

J

2
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) > 0 but also for an arbitrary

value of the relation (J

1

J
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) between the exhange

parameters J
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; J

2

and K.

The same form of Landau energy was derived with the

help of symmetry group onsiderations by Oleksy and

Przystawa [5℄ . They laim that the two bilinearly ou-

pled order parameters are transformed under two equiva-

lent irreduible representations, i. e., the resulting energy

is obtained through a reduible representation and nev-

ertheless the phase transitions are of seond order. The

last statement violates the Landau ondition for the ap-

pearane of seond order phase transition, namely, the

requirement of the irreduibility of representation. As

far as there are no details of the derivation in the origi-

nal paper we an hardly make a onnetion between our

results and their onlusions.

III. MEAN-FIELD EQUATIONS

The mean-�eld equations are obtained as usual by the

ondition

�g

�'

1i

= 0 ;

�g

�'

2i

= 0; (i = 1; : : : ; n) ; (12)

where n is the number of the order parameter ompo-

nents, i. e., we have a system of 2n equations whih in

the general ase an be hardly solved. Even if we do a

numerial alulation, it will be very diÆult to get phys-

ially reasonable information from the obtained data.

The initial mirosopi model, Eq. (1), is degenerate

with respet to the rotation of all the spins through one

and the same angle and this kind of degeneray is pre-

served in the Landau energy. It an be partially lifted, if

we take into aount the e�ets like the spin-orbit inter-

ation or the presene of an external magneti �eld. In

the exhange approximation we an �nd only the mag-

nitudes of the order parameter vetors and the angles

between them, namely, os

�

\'

1

'

2

�

.
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It is well established that in a very big lass of mag-

neti substanes the exhange interation is several or-

ders bigger than all other magneti interations present

in the system under onsideration, so they are mainly

responsible for the setting of the magneti order (for a

thorough disussion of this statement, see [6℄). Having in

mind these arguments we shall try to simplify the sys-

tem of equations (12). For this purpose we introdue the

following notations
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We shall substitute these new variables in the expres-

sion for the Landau energy, Eq. (9), and �nd its extrema

under ondition (14). The resulting system of equations
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and looks again too formidable for an appropriate anal-

ysis.

The above stated physial arguments give the oppor-

tunity to simplify the problem, beause we have to �nd

only the quantities '

1

; '
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and

P
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As a �rst step we an determine the mutual orientation

of the vetor order parameters. There are three possible

solutions for the quantity

P

n

i

�

i



i

. The �rst one is given

by the relation
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and desribes a general omplex nonollinear magneti

phase.

The other two solutions look as follows:
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the solution with the minus sign when substituted in

Eqs. (15) gives a system of equations for '

1

and'

2

whih

has no solution from the mathematial point of view.

In the remaining part we shall disuss only the plus

solution, Eq. (17) whih gives a parallel orientation of

vetor order parameters. In order to identify properly

the ordered phases we have to point out how the ve-

tor order parameters '

1;2

an be onneted with the

physial quantities, suh as average sublattie magne-

tizations m

1;2

. All other important quantities like total

magnetization M and staggered magnetization L, an

be expressed through them in a straightforward way:
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. The derivation of the

relations between the average sublattie magnetizations

and the order parameters '
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is straightforward

beause of the symmetry orrespondene between the

initial spin vetors and the introdued by HST vetor

�elds (see the remark after Eq. (3)):
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are de�ned by Eqs. (5) for k = 0.

It is obvious from Eqs. (18) that for parallel

'

1

and '

2

, the sublattie magnetizations will be

ollinear. In this ase we an simplify the mean-�eld

equations by introduing new variables through the

transformation:
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The Landau energy, Eq. (9), has a more simple form

after expressing it with the help of the above introdued

variables (19):

344



MEAN FIELD ANALYSIS OF TWO COUPLED HEISENBERG MODELS
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Here the quantites � = j�j and � = j�j are positive

numbers and are the magnitudes of the respetive ve-

tors. In writing expression (20) we have taken into a-

ount that os
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The oeÆients in Eq. (20) are onneted with the

averaged over nearest neighbours mirosopi exhange

parameters in the following way:
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The mean �eld equations are obtained diretly as �rst

derivatives of Eq. (20) for the Landau energy with re-

spet to � and �:
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where u is given by Eq. (11). It an be heked that the

same system of equations will be obtained, if we mini-

mize the Landau energy expressed by the vetors � and
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(22) oinides in form with the mean �eld equations for

the Ising model [4℄ but is valid for the general form of the

Landau energy, Eq. (9), only for a parallel orientation of

'

1

and '

1

.

IV. RESULTS AND DISCUSSION

We have to point out that up to now the temperature

does not enter expliitly in Eqs. (22), see also Eq. (2).

This is not adequate for the numerial analysis, so we

shall again introdue the expliit dependene on the

temperature T , i. e., the exhange parameters will be

again temperature dependent and respetively also the

oeÆients in the quadrati part of the Landau energy

Eq. (20) will beome temperature dependent; note that

the temperature dependent exhange parameters are de-

noted by alligraphi letters. We shall not do the numer-

ial alulations for a onrete magneti substane; that

is why we introdue a dimensionless temperature by the

relation:

x =

T

J

1

+ J

2

: (23)

We an �x the value of J

1

and work with the following

dimensionless parameters:

� =

K

J

1

+ J

2

; (24)

� =

J

1

�J

2

J

1

+ J

2

:

The weak-oupling limit, i.e., the ondition (J

1

J

2

�

K

2

) > 0 beomes:

�

2

+ �

2

< 1: (25)

As far as the system is symmetri with respet to the

interhange of the two sublatties we may aept without

a loss of generality that J

1

> J

2

.

The mean-�eld Eqs. (22) are solved by standard New-

ton iteration proedure and the solutions are substituted

in the stability onditions:

a

1

> 0 ; (a

1

+ 3u�

2

)(a

2

+ 3u�

2

) � a

2

� 0 ; (26)

in order to hek the kind of extrema. The ritial tem-

perature for the ordered phase is found from the equal-

ity in the seond relation of system (26). The alula-

tions show that there exist one stable and generally two

metastable phases, whih may beome unstable for some

values of the parameters �; � and the number n of the

order parameter omponents. Our results will be illus-

trated by the temperature behaviour of M and L that

is why we shall write down the onnetion of the vari-

ables � and � with the magnetization and the staggared

magnetization:

M =

1

D

[(J

1

�K)� + (J

2

�K)�℄ ; (27)

L =

1

D

[(J

1

+K)� � (J

2

+K)�℄ :

There are some ontroversial �ndings in the literature

for the order of the phase transition to the stable phase.

The alulations in [4,5℄ are done analytially by some

kind of expansion around the symmetri solutions, i.e

when J

1

= J

2

, with the help of adequately hosen small

parameters. Our numerial results show that the phase

transition to the stable phase is of seond order and the

obtained ordered phase has a ferrimagneti harater, in

sense, that both the magnetizationM and the staggered

magnetization L are di�erent from zero. We illustrate

the above statement by the temperature dependene of

magnetization and staggered magnetization of the stable

phase for n = 1; 2; 3 given in Figs. 1, 2 and 3, respetively.

All three �gures show that there is no prinipal di�er-

ene in the behaviour ofM and L with the hange of the

number of order parameter omponents. But with the

inrease of the intersublattie interation K � �, M and

L are getting loser in magnitude. For small sublattie

oupling and n � 2, L gains negative values for temper-

atures x < x

0

. The sublattie magnetizations m

1

and
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m

2

whih near the ritial temperature have the relation

m

1

> m

2

, hange in suh a way with the temperature,

that for x

0

; L = 0 ; i. e., m

1

= m

2

. We shall all x

0

a \ompensation point" in analogy with ferrimagnetism

[7℄ and it exists for relatively small values of the parame-

ter � and arbitrary values of � < 1. For the temperatures

x < x

0

; m

1

< m

2

, see Fig. 2, (� = 0:1). The order of

the phase transition to the stable phase is heked also

by a numerial di�erentiation of the Landau energy for

the stable phase in the ritial point and a zero jump of

the entropy is found.

Fig. 1. The temperature dependene ofM (thik line) and

L (dashed line) of the stable phase for n = 1, � = 0:5 and

di�erent values of the parameter �.

Fig. 2. The temperature dependene ofM (thik line) and

L (dashed line) of the stable phase for n = 2, � = 0:5 and

di�erent values of the parameter �.

We found as mathematial solutions of the system of

equations (22) two more phases. Our analysis shows that

for n = 1 these solutions are absolutely unstable. For

n � 2 there exist 3 phases | two metastable phases and

a stable one. First of all we shall identify the nature of

the metastable phases with the help of Fig. 4, where the

temperature dependene ofM and L are given for n = 2.

For the stable phaseM > jLj, as expeted, for the whole

range of temperatures. There is a \ompensation point"

for these onrete values of the parameters �; �. The

phase transition is of seond order; this is also seen from

Fig. 5, where the temperature dependene of the Landau

energies for the three phases from Fig. 4 are given. The

high-temperature metastable phase, see Figs. 4, 5, ours

through a seond order phase transition and has jLj > M

for the whole range of parameters, for whih it exists.

Fig. 3. The temperature dependene ofM (thik line) and

L (dashed line) of the stable phase for n = 3, � = 0:5 and

di�erent values of the parameter �.

Fig. 4. The temperature dependene of M and L for the

stable (thik line), high-temperature metastable (dash-dotted

line) and low-temperature metastable (dashed line) phases for

n = 2; � = 0:2; � = 2.

The staggered magnetization is negative, so nevertheless

J

1

> J

2

the sublattie magnetizations obey the rela-

tion m

1

< m

2

. The low temperature metastable phase

(dashed line in Figs. 4 and 5) is even more exoti. It

has positive staggered magnetization and again L > M .

The phase transition to the low-temperature phase is

de�nitely of �rst order. The relation between the en-

ergies of the three phases an be seen in Fig. 5. The

two metastable phases desribed above are \inverse" be-

ause for positive oupling between the sublatties, the
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staggered magnetization is bigger in magnitude than the

magnetization. It is a question of additional investigation

whether the aount of rystal anisotropy, dipole inter-

ation or �nite size e�ets may hange the stability of

the metastable phases.

The same piture is valid for n = 3 and the dif-

ferene between the detailed piture, given above

for n = 2, is only quantitative. The inrease of

the magnitude of intersublattie interation shifts

the domain of existene of the metastable phases

to lower temperatures. This is well illustrated in

Fig. 6, where the Landau energy of the metastable

phases for two values of the parameter � are given.

Fig. 5. The temperature dependene of Landau free en-

ergy for the stable (thik line), high-temperature metastable

(dash-dotted line) and low-temperature metastable (dashed

line) phases for n = 2; � = 0:2; � = 0:2.

Fig. 6. The temperature dependene of Landau free

energy for the high-temperature (dash-dotted line) and

low-temperature (dashed line) metastable phases for n = 3,

� = 0:0:1; and two values of �.

We have alulated the dependene of the transition tem-

peratures of the stable (x



), high-temperature (x

h

) and

low-temperature (x

l

) phases on the magnitude of the in-

tersublattie exhange. This is shown in Fig. 7 for two

values of the order parameter omponents: n = 2; 3.

With the inrease of �, x

h

(dotted-dashed line) and x

l

(dashed line) are shifted to lower values and for some

value of � at �rst the low-temperature phase eases to

exist as a physial solution; the same happens with the

high-temperature phase but for a bigger value of �. The

point � = 0 is a limiting ase of fully deoupled ferro-

magnetially ordered sublatties.

Fig. 7. The dependene of the transition temperatures of

the stable (thik line), high-temperature (dash-dotted line)

and low-temperature (dashed line) phases on the sublattie

oupling � for n = 2 and n = 3.

Fig. 8. The temperature dependene of Landau free energy

for the stable (thik line) and low-temperature metastable

(dashed line) phases for n = 3; � = 0:2 and two values of �.

The same e�et ours when the di�erene between

two sublatties grows, whih is measured by the inrease

of the parameter �. This is illustrated in Fig. 8, where

the Landau energy of the stable and low-temperature

metastable phases are given for two values of �. It an be

seen that the di�erene between the transition temper-

atures of the stable phase (T



) and the low-temperature

phase (T

l

) beomes bigger with the inrease of �. So we

an state that for big interlattie interation and/or big

di�erene between the sublatties the metastable phases

do not exist and only the stable one is present.

In onlusion, we have analyzed one partiular ase,

namely a positive sublattie interation in the weak ou-
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pling limit. We suppose that for an antiferromagneti

(negative) oupling the piture will not be hanged sub-

stantially, nevetheless this ase needs a separate inves-

tigation. Even in the simplest ase, we have presented,

the model of two oupled Heisenberg subsystems exhibits

quite a omplex behaviour.
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ANAL�Z METODOM SEREDN^OGO POL� DVOH ZV'�ZANIH MODELE�

GA�ZENBER�A

D. V. Xopova

1

, T. L. Bo�d�ev

2

1

Laborator�� SRSM, �nstitut f�ziki tverdogo t�la �. Nad�akova,

Bolgars~ka akadem�� nauk, BG{1784, Bolgar��

2

Fakul~tet matematiki � komp'�ternih nauk

Sof��s~ki� un�versitet, BG{1164, Bolgar��

Otrimano � proanal�zovano viraz dl� v�l~noÝ ener��Ý Landau dvoh zv'�zanih ga�zenber��vs~kih p�dsis-

tem u zagal~nomu vipadku n-komponentnih parametr�v por�dku. Obqislenn� provedeno v grani� slabkogo

zv'�zku, koli obm�nn� vzamod�Ý J

1

ta J

2

v p�dsistemah pereviwu�t~ m��p�dsistemnu vzamod�� K. Zale�no

v�d znaka K �snu�t~ dv� st��k� kol�nearn� fazi. Fazov� perehodi do st��kih faz  fazovimi perehodami

drugogo rodu dl� vs~ogo naboru rozgl�nutih parametr�v model�. Qisel~n� rozrahunki pokazu�t~, wo dl�

dodatnogo znaka vzamod�Ý �snu�t~ we dv� fazi, �k�  metastab�l~nimi abo nest��kimi zale�no v�d k�l~kosti

komponent n parametra por�dku.
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