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We have derived and analyzed the Landau free energy for two 
oupled Heisenberg subsystems in

the general 
ase of n-
omponent order parameters. The 
al
ulation was done in the weak-
oupling

limit when the ex
hange intera
tions J

1

and J

2

in the subsystems ex
eed the intersubsystem inter-

a
tion K. There exist two stable 
ollinear phases, depending on the sign of K. The phase transitions

to the stable phases are of se
ond order for the whole range of parameters of the model under 
onsid-

eration. The numeri
al 
al
ulations show that for positive sign of intera
tions two more phases exist,

whi
h are metastable or unstable depending on the number of the order parameter 
omponents n.
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I. INTRODUCTION

The model of two bilinearly 
oupled Heisenberg sub-

systems 
omposed of n-
omponent 
lassi
al spins is inter-

esting for the understanding of the magneti
 properties

of substan
es with 
omplex magneti
 stru
ture. Gener-

ally, this model 
an be applied to two 
lasses of magneti


materials. The �rst 
lass 
omprises substan
es with one

type of magneti
 ions whi
h o

upy 
rystallographi
ally

nonequivalent positions in the Bravais latti
e and are

surrounded by di�erent number or type of nonmagneti


ions. Substan
es whi
h 
ontain two 
hemi
ally di�erent

types of magneti
 ions fall in the se
ond 
lass; here the

superlatti
es 
omposed of two di�erent magneti
 mate-

rials 
an be in
luded, too. The resulting e�e
t is that the

inital system 
an be 
onsidered as two 
oupled subsys-

tems having di�erent e�e
tive ex
hange intera
tions no

matter of the mi
ros
opi
 origin of this di�eren
e.

The model, of 
ourse, is quite general and 
an be used

for the analysis of the properties also in other systems.

An example for its appli
ation to the granular super-


ondu
tors is given in book [1℄. In this paper we shall


onsider the appli
ation of the model only to magneti


materials. For this purpose we shall derive the general

Ginzburg{Landau free energy fun
tional from the re-

spe
tive mi
ros
opi
 model and establish the relation

between the intera
tion parameters of the mi
ros
opi


Hamiltonian and the ma
ros
opi
 Landau parameters.

We shall analyze numeri
ally the obtained mean-�eld

equations with the aim to identify the ordered phases

and investigate their stability.

II. DERIVATION OF LANDAU FREE ENERGY

To do the mean-�eld analysis and des
ribe the proper-

ties of magneti
ally ordered phases we should obtain an

expression for the Landau free energy and the 
onne
-

tion of its 
oeÆ
ients with the mi
ros
opi
 parameters.

We start the derivation with the following mi
ros
opi


Hamiltonian:

H = �

1

2

2N

X

ij

h

J

(1)

ij

S

(1)

i

�S

(1)

j

+ J

(2)

ij

S

(2)

i

� S

(2)

j

+ 2K

ij

S

(1)

i

� S

(2)

j

i

; (1)

whi
h des
ribes two bilinearly 
oupled 
lassi
al Heisen-

berg models. Here S

�

i

are n-
omponent 
lassi
al spin ve
-

tors whi
h are normalized by the 
ondition

�

�

�

S

(�)

i

�

�

�

= 1;

(� = 1; 2). The dimensionless ex
hange parametres,

J

(�)

ij

=

J

(�)

ij

T

; (2)

K

ij

=

K

ij

T

;

denote the intera
tion in the subsystems �; (� = 1; 2)

and between them, respe
tively, and in the general 
ase

are the elements of (N � N ) symmetri
 matri
es. We

suppose from the very beginning that the number of lat-

ti
e sites of both subsystems is one and the same. This is

a simpli�ng 
ondition be
ause it makes the system fully

symmetri
 with respe
t to the inter
hange of its parts,

i. e., 1$ 2.

In order to �nd the mean �eld energy we have to


al
ulate the partition fun
tion whi
h for the Hamilto-

nian (1) is represented by an integral over n-dimensional

unit sphere. We 
an avoid the integration in the non-

Eu
ledian spin spa
e by passing to real spa
e ve
tor

�elds through the Hubbard{Stratonovi
h transformation
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(HST) (a systemati
 presentation of HST is given in

Refs. [2,3℄) . There are di�erent ways to apply this trans-

formation for 
omplex models; see, for example [1,4℄. For

our aims it will be more adequate to use the approa
h

of Mukadam and Uzunov [4℄ whi
h in the original paper

is given for two 
oupled Ising models but 
an be gener-

alized for the n-
omponent ve
tor model, too. The main

advantages in their derivation are the dire
t 
onne
tion

of the order parameters with physi
al quantities like, for

example, the sublatti
e magnetizations and the fa
t that

the symmetry of the initial model is expli
itly preserved

in the �nal result. This is very important for the proper

identi�
ation of the ordered magneti
 phases.

We shall not give details in the appli
ation of HST,

rather we shall write down the obtained e�e
tive Hamil-

tonian:

H =

1

2

2N

X

ij

n

J

(1)

ij

�

i
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j

+ J
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�
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Here I

n=2�1

(x

(1;2)

i

) is the modi�ed Bessel fun
tion

and �(n=2) is the Gamma fun
tion; �

i

and 	

i

are n-


omponent real ve
tor �elds whi
h 
orrespond to S

(1)

i

and S

(2)

i

, respe
tively. The dimensionless Landau energy

per parti
le, g = G=NT , 
an be obtained from the above

expression by expanding it for small values of j�j and

j	j. Note, that this means variables

x

(1)

i

=

�

�

�

�

�

�
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j

�
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=
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to be less than unity.

To be more 
on
rete we shall do the 
al
ulations for a

body-
entered 
ubi
 latti
e, whi
h 
ontains two di�erent

magneti
 ions in the elementary 
ell. In our investiga-

tion we negle
t �nite size and surfa
e e�e
ts, that is why

we 
an pass in a standard way to the 
ontinium limit in

k-spa
e. The Fourier transformed expression of Eq. (3)

again 
ontains a bilinear term and we have to diagonal-

ize its quadrati
 part. This is done with the help of the

unitary matrix

^

S:

^

S =

1

D

s

(k)

�

S

0

(k) �S

1

(k)

S

�

1

(k) S

0

(k)

�

: (4)

The matrix elements are given by the following expres-

sions and are k-dependent:

S

0

(k) = J

1

(k)� J

2

(k) +

q

[J

1

(k) � J

2

(k)℄

2

+ 4K

2

(k) ; (5)

S

1

(k) = 2K(k) :

The fun
tion

D

s

(k) =

p

2

n

[J

1

(k) � J

2

(k)℄

2

+ 4K

2

(k)

o

1=4

(6)

�

�

q

[J

1

(k)� J

2

(k)℄

2

+ 4K

2

(k) + J

1

(k) � J

2

(k)

�

1=2

ensures that Det

^

S = 1.

Following the standard mean-�eld pro
edure we have

to �nd the eigenvalues of the matrix

^

S:

�

1;2

(k) =

1

2

h

J

1

(k) + J

2

(k)

�

q

[J

1

(k) � J

2

(k)℄

2

+ 4K

2

(k)

i

: (7)

They enter in the 
oeÆ
ients of the diagonalized

quadrati
 part of the e�e
tive Hamiltonian in the fol-

lowing way:
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H

(2)

�

�

1�

�

1

(k)

n

�

'

2

1

(k) +

�

1�

�

2

(k)

n

�

'

2

2

(k):

It is obvious that there may be ve
tors k, for whi
h

�

1;2

(k) will be negative. The pro
edure whi
h ex
ludes

su
h values of k is well des
ribed in Ref. [1℄. Pra
ti
ally

we have to �nd those values k

0

whi
h give maxima of

�

1;2

(k). Mathemati
ally this is equivalent to the eval-

uation of the integral for the partition fun
tion by the

saddle point method.

For the b

 latti
e in the nearest-neighbour approxi-

mation these maxima 
an be found analyti
ally in two

limiting 
ases. We are interested only in the so-
alled

weak 
oupling limit when the ex
hange intera
tion in the

subsystems is bigger than the subsystem 
oupling. In this


ase there are two possibilities: (1) if the in-subsystem

ex
hanges are positive, the maxima of eigenvalues are

rea
hed for k = 0, and (2) if in-subsystem ex
hanges are

negative the maxima of �

1;2

(k) will be for jkj = �=a,

where a is the latti
e 
onstant.

We shall 
onsider in details only a positive ex
hange in

the subsystems. Then the initial system 
an be presented

as two interpenetrating ferromagneti
ally ordered sub-

latti
es whi
h intera
t either ferro- or antiferromagneti-


ally depending on the sign of intersublatti
e ex
hange.

To put all these 
on
lusions in a mathemati
al form we

introdu
e the following notations:

J

1;2

= J

1;2

(k = 0);

K = K(k = 0); (8)

�

1;2

= �

1;2

(k = 0):

The next steps in
lude an expansion of

J

1;2

(k); and K(k) in the vi
inity of k = 0 and the

inverse Fourier transform of the obtained expression to

the real spa
e. As a result a Ginzburg{Landau fun
-

tional is obtained. We shall not study 
u
tuations and

shall take only the spa
e independent part of it:

g �
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�
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1
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+

g

2

4

�
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'
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'
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1
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1
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2

) +w

2

'

2

2
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1

�'

2

) : (9)

This is the expression for the mean-�eld Landau

free energy per parti
le in dimensionless units, see also

Eq. (2) for the model (1).

The parameters of the Landau energy (9) are given in

an expli
it form with the help of the averaged over near-

est neighbours initial mi
ros
opi
 ex
hange parameters:

�

1;2

= 1�

�

1;2

n

; (10)

g
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=

u

2

�

2

1;2

�
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4

1
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0

�

;
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�
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0

;

w
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u

2

�

1;2

p

�
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�
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�
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�

:

Here S

1;0

= S

1;0

(k = 0), see Eqs. (5). The number

of the order parameter 
omponents enter in Eqs. (10)

through the quantity:

u = n

2

(n+ 2) : (11)

For equivalent sublatti
es, i. e., J

1

= J

2

= J

0

; w

0

1;2

�

0; and S

0

1

� S

0

0

= 1=

p

2, and the expression for the Lan-

dau energy be
omes quite simple and 
an be 
onsidered

analyti
ally. We should mention that the above expres-

sion for the Landau energy is valid not only for the weak


oupling limit (J

1

J

2

�K

2

) > 0 but also for an arbitrary

value of the relation (J

1

J

2

�K

2

) between the ex
hange

parameters J

1

; J

2

and K.

The same form of Landau energy was derived with the

help of symmetry group 
onsiderations by Oleksy and

Przystawa [5℄ . They 
laim that the two bilinearly 
ou-

pled order parameters are transformed under two equiva-

lent irredu
ible representations, i. e., the resulting energy

is obtained through a redu
ible representation and nev-

ertheless the phase transitions are of se
ond order. The

last statement violates the Landau 
ondition for the ap-

pearan
e of se
ond order phase transition, namely, the

requirement of the irredu
ibility of representation. As

far as there are no details of the derivation in the origi-

nal paper we 
an hardly make a 
onne
tion between our

results and their 
on
lusions.

III. MEAN-FIELD EQUATIONS

The mean-�eld equations are obtained as usual by the


ondition

�g

�'

1i

= 0 ;

�g

�'

2i

= 0; (i = 1; : : : ; n) ; (12)

where n is the number of the order parameter 
ompo-

nents, i. e., we have a system of 2n equations whi
h in

the general 
ase 
an be hardly solved. Even if we do a

numeri
al 
al
ulation, it will be very diÆ
ult to get phys-

i
ally reasonable information from the obtained data.

The initial mi
ros
opi
 model, Eq. (1), is degenerate

with respe
t to the rotation of all the spins through one

and the same angle and this kind of degenera
y is pre-

served in the Landau energy. It 
an be partially lifted, if

we take into a

ount the e�e
ts like the spin-orbit inter-

a
tion or the presen
e of an external magneti
 �eld. In

the ex
hange approximation we 
an �nd only the mag-

nitudes of the order parameter ve
tors and the angles

between them, namely, 
os

�

\'

1

'

2

�

.
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It is well established that in a very big 
lass of mag-

neti
 substan
es the ex
hange intera
tion is several or-

ders bigger than all other magneti
 intera
tions present

in the system under 
onsideration, so they are mainly

responsible for the setting of the magneti
 order (for a

thorough dis
ussion of this statement, see [6℄). Having in

mind these arguments we shall try to simplify the sys-

tem of equations (12). For this purpose we introdu
e the

following notations

'

1i

= '

1




i

; '

2i

= '

2

�

i

; (13)

'
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n
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'

2
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n
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2
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;

where the dire
tion 
osines �

i
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i

obey the 
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n
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�
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n
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2

i
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We shall substitute these new variables in the expres-

sion for the Landau energy, Eq. (9), and �nd its extrema

under 
ondition (14). The resulting system of equations

has the form:
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and looks again too formidable for an appropriate anal-

ysis.

The above stated physi
al arguments give the oppor-

tunity to simplify the problem, be
ause we have to �nd

only the quantities '

1

; '

2

and

P

n

i

�

i




i

= 
os

�

\'

1

'

2

�

.

As a �rst step we 
an determine the mutual orientation

of the ve
tor order parameters. There are three possible

solutions for the quantity

P

n

i

�

i




i

. The �rst one is given

by the relation

2v'

1

'

2

n

X

i=1

�

i




i

+ w

1

'

2

1

+ w

2

'

2

2
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and des
ribes a general 
omplex non
ollinear magneti


phase.

The other two solutions look as follows:

n

X

i=1

�

i




i

= �1 ; (17)

the solution with the minus sign when substituted in

Eqs. (15) gives a system of equations for '

1

and'

2

whi
h

has no solution from the mathemati
al point of view.

In the remaining part we shall dis
uss only the plus

solution, Eq. (17) whi
h gives a parallel orientation of

ve
tor order parameters. In order to identify properly

the ordered phases we have to point out how the ve
-

tor order parameters '

1;2


an be 
onne
ted with the

physi
al quantities, su
h as average sublatti
e magne-

tizations m

1;2

. All other important quantities like total

magnetization M and staggered magnetization L, 
an

be expressed through them in a straightforward way:

M = m

1

+m

2

and L = m

1

�m

2

. The derivation of the

relations between the average sublatti
e magnetizations

and the order parameters '

1

and '

2

is straightforward

be
ause of the symmetry 
orresponden
e between the

initial spin ve
tors and the introdu
ed by HST ve
tor

�elds (see the remark after Eq. (3)):

m

1

=

S
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�

1

'

1

�

S

1

p

�

2

'

2

; (18)

m

2

=

S

1

p

�

1

'

1

�

S

0

p

�

2

'

2

;

where S

1;0

are de�ned by Eqs. (5) for k = 0.

It is obvious from Eqs. (18) that for parallel

'

1

and '

2

, the sublatti
e magnetizations will be


ollinear. In this 
ase we 
an simplify the mean-�eld

equations by introdu
ing new variables through the

transformation:

� = S

0

p

�

1

'
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� S
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�
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'
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:

The Landau energy, Eq. (9), has a more simple form

after expressing it with the help of the above introdu
ed

variables (19):
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g =
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�
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Here the quantites � = j�j and � = j�j are positive

numbers and are the magnitudes of the respe
tive ve
-

tors. In writing expression (20) we have taken into a
-


ount that 
os

d

(��) =

P

n

i

�

i




i

= 1.

The 
oeÆ
ients in Eq. (20) are 
onne
ted with the

averaged over nearest neighbours mi
ros
opi
 ex
hange

parameters in the following way:

a

1;2

=

J

1;2

D

�

1

n

; (21)

a =

K

D

;

D = J

1

J

2

�K

2

> 0 :

The mean �eld equations are obtained dire
tly as �rst

derivatives of Eq. (20) for the Landau energy with re-

spe
t to � and �:

a

1

� � a� + u�

3

= 0; (22)

a

2

� � a� + u�

3

= 0 ;

where u is given by Eq. (11). It 
an be 
he
ked that the

same system of equations will be obtained, if we mini-

mize the Landau energy expressed by the ve
tors � and

� under the additional 
ondition

P

n

i

�

i




i

= 1. System

(22) 
oin
ides in form with the mean �eld equations for

the Ising model [4℄ but is valid for the general form of the

Landau energy, Eq. (9), only for a parallel orientation of

'

1

and '

1

.

IV. RESULTS AND DISCUSSION

We have to point out that up to now the temperature

does not enter expli
itly in Eqs. (22), see also Eq. (2).

This is not adequate for the numeri
al analysis, so we

shall again introdu
e the expli
it dependen
e on the

temperature T , i. e., the ex
hange parameters will be

again temperature dependent and respe
tively also the


oeÆ
ients in the quadrati
 part of the Landau energy

Eq. (20) will be
ome temperature dependent; note that

the temperature dependent ex
hange parameters are de-

noted by 
alligraphi
 letters. We shall not do the numer-

i
al 
al
ulations for a 
on
rete magneti
 substan
e; that

is why we introdu
e a dimensionless temperature by the

relation:

x =

T

J

1

+ J

2

: (23)

We 
an �x the value of J

1

and work with the following

dimensionless parameters:

� =

K

J

1

+ J

2

; (24)

� =

J

1

�J

2

J

1

+ J

2

:

The weak-
oupling limit, i.e., the 
ondition (J

1

J

2

�

K

2

) > 0 be
omes:

�

2

+ �

2

< 1: (25)

As far as the system is symmetri
 with respe
t to the

inter
hange of the two sublatti
es we may a

ept without

a loss of generality that J

1

> J

2

.

The mean-�eld Eqs. (22) are solved by standard New-

ton iteration pro
edure and the solutions are substituted

in the stability 
onditions:

a

1

> 0 ; (a

1

+ 3u�

2

)(a

2

+ 3u�

2

) � a

2

� 0 ; (26)

in order to 
he
k the kind of extrema. The 
riti
al tem-

perature for the ordered phase is found from the equal-

ity in the se
ond relation of system (26). The 
al
ula-

tions show that there exist one stable and generally two

metastable phases, whi
h may be
ome unstable for some

values of the parameters �; � and the number n of the

order parameter 
omponents. Our results will be illus-

trated by the temperature behaviour of M and L that

is why we shall write down the 
onne
tion of the vari-

ables � and � with the magnetization and the staggared

magnetization:

M =

1

D

[(J

1

�K)� + (J

2

�K)�℄ ; (27)

L =

1

D

[(J

1

+K)� � (J

2

+K)�℄ :

There are some 
ontroversial �ndings in the literature

for the order of the phase transition to the stable phase.

The 
al
ulations in [4,5℄ are done analyti
ally by some

kind of expansion around the symmetri
 solutions, i.e

when J

1

= J

2

, with the help of adequately 
hosen small

parameters. Our numeri
al results show that the phase

transition to the stable phase is of se
ond order and the

obtained ordered phase has a ferrimagneti
 
hara
ter, in

sense, that both the magnetizationM and the staggered

magnetization L are di�erent from zero. We illustrate

the above statement by the temperature dependen
e of

magnetization and staggered magnetization of the stable

phase for n = 1; 2; 3 given in Figs. 1, 2 and 3, respe
tively.

All three �gures show that there is no prin
ipal di�er-

en
e in the behaviour ofM and L with the 
hange of the

number of order parameter 
omponents. But with the

in
rease of the intersublatti
e intera
tion K � �, M and

L are getting 
loser in magnitude. For small sublatti
e


oupling and n � 2, L gains negative values for temper-

atures x < x

0

. The sublatti
e magnetizations m

1

and
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m

2

whi
h near the 
riti
al temperature have the relation

m

1

> m

2

, 
hange in su
h a way with the temperature,

that for x

0

; L = 0 ; i. e., m

1

= m

2

. We shall 
all x

0

a \
ompensation point" in analogy with ferrimagnetism

[7℄ and it exists for relatively small values of the parame-

ter � and arbitrary values of � < 1. For the temperatures

x < x

0

; m

1

< m

2

, see Fig. 2, (� = 0:1). The order of

the phase transition to the stable phase is 
he
ked also

by a numeri
al di�erentiation of the Landau energy for

the stable phase in the 
riti
al point and a zero jump of

the entropy is found.

Fig. 1. The temperature dependen
e ofM (thi
k line) and

L (dashed line) of the stable phase for n = 1, � = 0:5 and

di�erent values of the parameter �.

Fig. 2. The temperature dependen
e ofM (thi
k line) and

L (dashed line) of the stable phase for n = 2, � = 0:5 and

di�erent values of the parameter �.

We found as mathemati
al solutions of the system of

equations (22) two more phases. Our analysis shows that

for n = 1 these solutions are absolutely unstable. For

n � 2 there exist 3 phases | two metastable phases and

a stable one. First of all we shall identify the nature of

the metastable phases with the help of Fig. 4, where the

temperature dependen
e ofM and L are given for n = 2.

For the stable phaseM > jLj, as expe
ted, for the whole

range of temperatures. There is a \
ompensation point"

for these 
on
rete values of the parameters �; �. The

phase transition is of se
ond order; this is also seen from

Fig. 5, where the temperature dependen
e of the Landau

energies for the three phases from Fig. 4 are given. The

high-temperature metastable phase, see Figs. 4, 5, o

urs

through a se
ond order phase transition and has jLj > M

for the whole range of parameters, for whi
h it exists.

Fig. 3. The temperature dependen
e ofM (thi
k line) and

L (dashed line) of the stable phase for n = 3, � = 0:5 and

di�erent values of the parameter �.

Fig. 4. The temperature dependen
e of M and L for the

stable (thi
k line), high-temperature metastable (dash-dotted

line) and low-temperature metastable (dashed line) phases for

n = 2; � = 0:2; � = 2.

The staggered magnetization is negative, so nevertheless

J

1

> J

2

the sublatti
e magnetizations obey the rela-

tion m

1

< m

2

. The low temperature metastable phase

(dashed line in Figs. 4 and 5) is even more exoti
. It

has positive staggered magnetization and again L > M .

The phase transition to the low-temperature phase is

de�nitely of �rst order. The relation between the en-

ergies of the three phases 
an be seen in Fig. 5. The

two metastable phases des
ribed above are \inverse" be-


ause for positive 
oupling between the sublatti
es, the
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staggered magnetization is bigger in magnitude than the

magnetization. It is a question of additional investigation

whether the a

ount of 
rystal anisotropy, dipole inter-

a
tion or �nite size e�e
ts may 
hange the stability of

the metastable phases.

The same pi
ture is valid for n = 3 and the dif-

feren
e between the detailed pi
ture, given above

for n = 2, is only quantitative. The in
rease of

the magnitude of intersublatti
e intera
tion shifts

the domain of existen
e of the metastable phases

to lower temperatures. This is well illustrated in

Fig. 6, where the Landau energy of the metastable

phases for two values of the parameter � are given.

Fig. 5. The temperature dependen
e of Landau free en-

ergy for the stable (thi
k line), high-temperature metastable

(dash-dotted line) and low-temperature metastable (dashed

line) phases for n = 2; � = 0:2; � = 0:2.

Fig. 6. The temperature dependen
e of Landau free

energy for the high-temperature (dash-dotted line) and

low-temperature (dashed line) metastable phases for n = 3,

� = 0:0:1; and two values of �.

We have 
al
ulated the dependen
e of the transition tem-

peratures of the stable (x




), high-temperature (x

h

) and

low-temperature (x

l

) phases on the magnitude of the in-

tersublatti
e ex
hange. This is shown in Fig. 7 for two

values of the order parameter 
omponents: n = 2; 3.

With the in
rease of �, x

h

(dotted-dashed line) and x

l

(dashed line) are shifted to lower values and for some

value of � at �rst the low-temperature phase 
eases to

exist as a physi
al solution; the same happens with the

high-temperature phase but for a bigger value of �. The

point � = 0 is a limiting 
ase of fully de
oupled ferro-

magneti
ally ordered sublatti
es.

Fig. 7. The dependen
e of the transition temperatures of

the stable (thi
k line), high-temperature (dash-dotted line)

and low-temperature (dashed line) phases on the sublatti
e


oupling � for n = 2 and n = 3.

Fig. 8. The temperature dependen
e of Landau free energy

for the stable (thi
k line) and low-temperature metastable

(dashed line) phases for n = 3; � = 0:2 and two values of �.

The same e�e
t o

urs when the di�eren
e between

two sublatti
es grows, whi
h is measured by the in
rease

of the parameter �. This is illustrated in Fig. 8, where

the Landau energy of the stable and low-temperature

metastable phases are given for two values of �. It 
an be

seen that the di�eren
e between the transition temper-

atures of the stable phase (T




) and the low-temperature

phase (T

l

) be
omes bigger with the in
rease of �. So we


an state that for big interlatti
e intera
tion and/or big

di�eren
e between the sublatti
es the metastable phases

do not exist and only the stable one is present.

In 
on
lusion, we have analyzed one parti
ular 
ase,

namely a positive sublatti
e intera
tion in the weak 
ou-
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pling limit. We suppose that for an antiferromagneti


(negative) 
oupling the pi
ture will not be 
hanged sub-

stantially, nevetheless this 
ase needs a separate inves-

tigation. Even in the simplest 
ase, we have presented,

the model of two 
oupled Heisenberg subsystems exhibits

quite a 
omplex behaviour.
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ANAL�Z METODOM SEREDN^OGO POL� DVOH ZV'�ZANIH MODELE�

GA�ZENBER�A

D. V. Xopova

1

, T. L. Bo�d�ev

2

1

Laborator�� SRSM, �nstitut f�ziki tverdogo t�la �. Nad�akova,

Bolgars~ka akadem�� nauk, BG{1784, Bolgar��

2

Fakul~tet matematiki � komp'�ternih nauk

Sof��s~ki� un�versitet, BG{1164, Bolgar��

Otrimano � proanal�zovano viraz dl� v�l~noÝ ener��Ý Landau dvoh zv'�zanih ga�zenber��vs~kih p�dsis-

tem u zagal~nomu vipadku n-komponentnih parametr�v por�dku. Obqislenn� provedeno v grani
� slabkogo

zv'�zku, koli obm�nn� vza
mod�Ý J

1

ta J

2

v p�dsistemah pereviwu�t~ m��p�dsistemnu vza
mod�� K. Zale�no

v�d znaka K �snu�t~ dv� st��k� kol�nearn� fazi. Fazov� perehodi do st��kih faz 
 fazovimi perehodami

drugogo rodu dl� vs~ogo naboru rozgl�nutih parametr�v model�. Qisel~n� rozrahunki pokazu�t~, wo dl�

dodatnogo znaka vza
mod�Ý �snu�t~ we dv� fazi, �k� 
 metastab�l~nimi abo nest��kimi zale�no v�d k�l~kosti

komponent n parametra por�dku.

348


