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We have derived and analyzed the Landau free energy for two coupled Heisenberg subsystems in

the general case of n-component order parameters. The calculation was done in the weak-coupling

limit when the exchange interactions J; and J» in the subsystems exceed the intersubsystem inter-

action K. There exist two stable collinear phases, depending on the sign of K. The phase transitions

to the stable phases are of second order for the whole range of parameters of the model under consid-

eration. The numerical calculations show that for positive sign of interactions two more phases exist,

which are metastable or unstable depending on the number of the order parameter components n.
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I. INTRODUCTION

The model of two bilinearly coupled Heisenberg sub-
systems composed of n-component classical spins 1s inter-
esting for the understanding of the magnetic properties
of substances with complex magnetic structure. Gener-
ally, this model can be applied to two classes of magnetic
materials. The first class comprises substances with one
type of magnetic ions which occupy crystallographically
nonequivalent positions in the Bravais lattice and are
surrounded by different number or type of nonmagnetic
ions. Substances which contain two chemically different
types of magnetic ions fall in the second class; here the
superlattices composed of two different magnetic mate-
rials can be included, too. The resulting effect is that the
inital system can be considered as two coupled subsys-
tems having different effective exchange interactions no
matter of the microscopic origin of this difference.

The model, of course, is quite general and can be used
for the analysis of the properties also in other systems.
An example for its application to the granular super-
conductors is given in book [1]. In this paper we shall
consider the application of the model only to magnetic
materials. For this purpose we shall derive the general
Ginzburg-Landau free energy functional from the re-
spective microscopic model and establish the relation
between the interaction parameters of the microscopic
Hamiltonian and the macroscopic Landau parameters.
We shall analyze numerically the obtained mean-field
equations with the aim to identify the ordered phases
and investigate their stability.

II. DERIVATION OF LANDAU FREE ENERGY

To do the mean-field analysis and describe the proper-
ties of magnetically ordered phases we should obtain an

expression for the Landau free energy and the connec-
tion of its coefficients with the microscopic parameters.
We start the derivation with the following microscopic
Hamiltonian:
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which describes two bilinearly coupled classical Heisen-
berg models. Here S are n-component classical spin vec-

tors which are normalized by the condition SZ(»Q) =1,
(a = 1,2). The dimensionless exchange parametres,
N Z(O‘)
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denote the interaction in the subsystems «, (o = 1,2)
and between them, respectively, and in the general case
are the elements of (N x N) symmetric matrices. We
suppose from the very beginning that the number of lat-
tice sites of both subsystems is one and the same. This is
a simplifing condition because it makes the system fully
symmetric with respect to the interchange of its parts,
e, 1l 2

In order to find the mean field energy we have to
calculate the partition function which for the Hamilto-
nian (1) is represented by an integral over n-dimensional
unit sphere. We can avoid the integration in the non-
Eucledian spin space by passing to real space vector
fields through the Hubbard-Stratonovich transformation
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(HST) (a systematic presentation of HST is given in
Refs. [2,3]) . There are different ways to apply this trans-
formation for complex models; see, for example [1,4]. For
our aims it will be more adequate to use the approach
of Mukadam and Uzunov [4] which in the original paper
is given for two coupled Ising models but can be gener-
alized for the n-component vector model, too. The main
advantages in their derivation are the direct connection
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Here In/z_l(xl(»l’z)) is the modified Bessel function

and T'(n/2) is the Gamma function; ®; and ®; are n-
(1

component real vector fields which correspond to S,
and SZ(»z), respectively. The dimensionless Landau energy
per particle, g = G/NT, can be obtained from the above
expression by expanding it for small values of |®| and

|®|. Note, that this means variables

2N
=132 (Ji(jl)(I)j + Kiﬂ’j)

and

to be less than unity.

To be more concrete we shall do the calculations for a
body-centered cubic lattice, which contains two different
magnetic ions in the elementary cell. In our investiga-
tion we neglect finite size and surface effects, that is why
we can pass 1n a standard way to the continium limit in
k-space. The Fourier transformed expression of Eq. (3)
again contains a bilinear term and we have to diagonal-
ize its quadratic part. This is done with the help of the
unitary matrix S:

S =

(4)
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of the order parameters with physical quantities like, for
example, the sublattice magnetizations and the fact that
the symmetry of the initial model is explicitly preserved
in the final result. This is very important for the proper
identification of the ordered magnetic phases.

We shall not give details in the application of HST,
rather we shall write down the obtained effective Hamil-
tonian:

IN 17/ N
;u&%j + K2 T (3)
IN 17/ N
;uﬁ)% + Kye)|/2| T (3)

The matrix elements are given by the following expres-
sions and are k-dependent:

So(k) = Jy (k) — Jo(k) + \/ [J1(k) — Jo(K)]” +4K2(k) , (5)

Si(k) = 2K (k) .

The function

Do) = VE {1 (k) - 1001 + 4R}

x {\/[J1 (k) — Jo (k)] + 4K2 (k) + J (k) — Jz(k)}l/z

ensures that Det S = 1.

Following the standard mean-field procedure we have
to find the eigenvalues of the matrix S:

M a(k) = %[Jl (k) + Jo (K)

= 1) — ()] + 4K2(K) (7)

They enter in the coefficients of the diagonalized
quadratic part of the effective Hamiltonian in the fol-
lowing way:
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1 (1 - @) ol (k) + (1 — #) 5 (k).

It is obvious that there may be vectors k, for which
A1,2(k) will be negative. The procedure which excludes
such values of k is well described in Ref. [1]. Practically
we have to find those values ky which give maxima of
A1,2(k). Mathematically this is equivalent to the eval-
uation of the integral for the partition function by the
saddle point method.

For the bcc lattice in the nearest-neighbour approxi-
mation these maxima can be found analytically in two
limiting cases. We are interested only in the so-called
weak coupling limit when the exchange interaction in the
subsystems is bigger than the subsystem coupling. In this
case there are two possibilities: (1) if the in-subsystem
exchanges are positive, the maxima of eigenvalues are
reached for k = 0, and (2) if in-subsystem exchanges are
negative the maxima of A »(k) will be for |k| = n/a,
where a is the lattice constant.

We shall consider in details only a positive exchange in
the subsystems. Then the initial system can be presented
as two interpenetrating ferromagnetically ordered sub-
lattices which interact either ferro- or antiferromagneti-
cally depending on the sign of intersublattice exchange.
To put all these conclusions in a mathematical form we
introduce the following notations:

Jio = Ji a2k =0);
K= [{(k = 0), (8)

/\172 = /\172(1{ = 0)

The mnext steps include an  expansion of
Ji2(k), and K(k) in the vicinity of k = 0 and the
inverse Fourier transform of the obtained expression to
the real space. As a result a Ginzburg-Landau func-
tional is obtained. We shall not study fluctuations and
shall take only the space independent part of it:
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This is the expression for the mean-field Landau
free energy per particle in dimensionless units, see also
Eq. (2) for the model (1).

The parameters of the Landau energy (9) are given in
an explicit form with the help of the averaged over near-
est neighbours initial microscopic exchange parameters:

A
7—172:1_&’ (10)
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Here S1,0 = S1,0(k = 0), see Egs. (5). The number
of the order parameter components enter in Egs. (10)
through the quantity:

u:nz(n—l—Q) ) (11)

For equivalent sublattices, i. e., J, = Jy = JO, w%z =
0, and S = S§ = 1/v/2, and the expression for the Lan-
dau energy becomes quite simple and can be considered
analytically. We should mention that the above expres-
sion for the Landau energy 1s valid not only for the weak
coupling limit (J;Jo — K?) > 0 but also for an arbitrary
value of the relation (J1 J2 — K?) between the exchange
parameters Jy, J; and K.

The same form of Landau energy was derived with the
help of symmetry group considerations by Oleksy and
Przystawa [5] . They claim that the two bilinearly cou-
pled order parameters are transformed under two equiva-
lent irreducible representations, i. e., the resulting energy
is obtained through a reducible representation and nev-
ertheless the phase transitions are of second order. The
last statement violates the Landau condition for the ap-
pearance of second order phase transition, namely, the
requirement of the irreducibility of representation. As
far as there are no details of the derivation in the origi-
nal paper we can hardly make a connection between our
results and their conclusions.

III. MEAN-FIELD EQUATIONS

The mean-field equations are obtained as usual by the
condition

Oy —0 Oy
1 I

=0, (i=1,...,n), (12)

where n 1s the number of the order parameter compo-
nents, 1. e., we have a system of 2n equations which in
the general case can be hardly solved. Even if we do a
numerical calculation, it will be very difficult to get phys-
ically reasonable information from the obtained data.

The initial microscopic model, Eq. (1), is degenerate
with respect to the rotation of all the spins through one
and the same angle and this kind of degeneracy 1s pre-
served in the Landau energy. It can be partially lifted, if
we take into account the effects like the spin-orbit inter-
action or the presence of an external magnetic field. In
the exchange approximation we can find only the mag-
nitudes of the order parameter vectors and the angles
between them, namely, cos (@)
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It is well established that in a very big class of mag-
netic substances the exchange interaction is several or-
ders bigger than all other magnetic interactions present
in the system under consideration, so they are mainly
responsible for the setting of the magnetic order (for a
thorough discussion of this statement, see [6]). Having in
mind these arguments we shall try to simplify the sys-
tem of equations (12). For this purpose we introduce the
following notations

V1 = 17, P2 = P2y, (13)

1/2

@1:(2@) | @2:(2@) |
i=1 =1

where the direction cosines «; and ~; obey the conditions
n n
i=1 i=1

We shall substitute these new variables in the expres-
sion for the Landau energy, Eq. (9), and find its extrema
under condition (14). The resulting system of equations
has the form:

2
a n
% = (1 + 9197 + v93) P2 + 2vp1 95 (Z am)

i=1

+p2 (3w180% + wz@%) (Z Ofi%') =0, (15)
i=1

2
a n
% = (72 + 9205 + v97) @1 + 200207 (Z am)

i=1

+p1 (w17 + 3wap3) (Z am) =0,
i=1

Oy -
5 = (11 + g107 +v93) P17 + 20010504 (Z_; am)

i=1
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G = (o 9205 + vp1) 1oy + 2vea07; (Z am)

i=1

+o1 (w1l + wapd) vi + 2w 10 (Z am) =0,

i=1
and looks again too formidable for an appropriate anal-

ysis.
The above stated physical arguments give the oppor-
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tunity to simplify the problem, because we have to find
only the quantities ¢q, @2 and Z? aY; = COS (@)
As a first step we can determine the mutual orientation
of the vector order parameters. There are three possible
solutions for the quantity ) ; «;7;. The first one is given
by the relation

2up1 9 Z aiyi + w1t + waps =0 (16)
=1

and describes a general complex noncollinear magnetic
phase.

The other two solutions look as follows:
Zai% =41; (17)
i=1

the solution with the minus sign when substituted in
Egs. (15) gives a system of equations for ¢; andps which
has no solution from the mathematical point of view.

In the remaining part we shall discuss only the plus
solution, Eq. (17) which gives a parallel orientation of
vector order parameters. In order to identify properly
the ordered phases we have to point out how the vec-
tor order parameters ¢, , can be connected with the
physical quantities, such as average sublattice magne-
tizations m, ». All other important quantities like total
magnetization M and staggered magnetization L, can
be expressed through them in a straightforward way:
M =m; +msand L = m; —m5 . The derivation of the
relations between the average sublattice magnetizations
and the order parameters ¢, and ¢+ is straightforward
because of the symmetry correspondence between the
initial spin vectors and the introduced by HST vector
fields (see the remark after Eq. (3)):

my = S, L, (18)
S So
my = —(—

P1— (=¥,
NV VA

where 51 o are defined by Eqgs. (5) for k= 0.

It is obvious from Eqs. (18) that for parallel
@, and ¢,, the sublattice magnetizations will be
collinear. In this case we can simplify the mean-field
equations by introducing new variables through the
transformation:

&= 50\/Z<Pl — S1\/E<P2 ) (19)
1= 51V e + Sov/ Az, .

The Landau energy, Eq. (9), has a more simple form
after expressing it with the help of the above introduced
variables (19):
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a a u
g=§%2+§¥2—%n+1@4+¢)~ (20)

Here the quantites £ = |&| and 1 = || are positive
numbers and are the magnitudes of the respective vec-
tors. In writing expression (20) we have taken into ac-

count that cos (én) = Y\ aivy; = L.
The coefficients in Eq. (20) are connected with the
averaged over nearest neighbours microscopic exchange

parameters in the following way:

1
= == — — 21
a1,z e (21)

D=J,J,—K?>0.

The mean field equations are obtained directly as first
derivatives of Eq. (20) for the Landau energy with re-
spect to & and #:

aryn — aé +un® =0, (22)

€ —an+ug® =0,

where u is given by Eq. (11). It can be checked that the
same system of equations will be obtained, if we mini-
mize the Landau energy expressed by the vectors & and
7 under the additional condition """ a;7; = 1. System
(22) coincides in form with the mean field equations for
the Ising model [4] but is valid for the general form of the
Landau energy, Eq. (9), only for a parallel orientation of

%1 and 3.

IV. RESULTS AND DISCUSSION

We have to point out that up to now the temperature
does not enter explicitly in Eqgs. (22), see also Eq. (2).
This is not adequate for the numerical analysis, so we
shall again introduce the explicit dependence on the
temperature 7', 1. e., the exchange parameters will be
again temperature dependent and respectively also the
coefficients in the quadratic part of the Landau energy
Eq. (20) will become temperature dependent; note that
the temperature dependent exchange parameters are de-
noted by calligraphic letters. We shall not do the numer-
ical calculations for a concrete magnetic substance; that
is why we introduce a dimensionless temperature by the
relation:

_ T
L+ T

X

(23)

We can fix the value of J; and work with the following
dimensionless parameters:

K
-~ 24
b T +T (24)
Ji— T
a=""—""
T+ T

The weak-coupling limit, i.e., the condition (J1J2 —
K?) > 0 becomes:

o + 82 < 1. (25)

As far as the system 1s symmetric with respect to the
interchange of the two sublattices we may accept without
a loss of generality that J1 > Jo.

The mean-field Eqs. (22) are solved by standard New-
ton iteration procedure and the solutions are substituted
in the stability conditions:

ai; >0, (ay 4 3un?)(az + 3ué?) —a® >0, (26)

in order to check the kind of extrema. The critical tem-
perature for the ordered phase is found from the equal-
ity in the second relation of system (26). The calcula-
tions show that there exist one stable and generally two
metastable phases, which may become unstable for some
values of the parameters o, § and the number n of the
order parameter components. Qur results will be illus-
trated by the temperature behaviour of M and L that
is why we shall write down the connection of the vari-
ables & and 7 with the magnetization and the staggared
magnetization:

M= —[(J; - K)n+ (J, — K)] (27)

L=—[(i + K)n—(Jo+ K] .

Ol— "=

There are some controversial findings in the literature
for the order of the phase transition to the stable phase.
The calculations in [4,5] are done analytically by some
kind of expansion around the symmetric solutions, i.e
when J; = Jo, with the help of adequately chosen small
parameters. OQur numerical results show that the phase
transition to the stable phase is of second order and the
obtained ordered phase has a ferrimagnetic character, in
sense, that both the magnetization M and the staggered
magnetization L are different from zero. We illustrate
the above statement by the temperature dependence of
magnetization and staggered magnetization of the stable
phase for n = 1,2, 3 given in Figs. 1, 2 and 3, respectively.
All three figures show that there is no principal differ-
ence in the behaviour of M and L with the change of the
number of order parameter components. But with the
increase of the intersublattice interaction K ~ 3, M and
L are getting closer in magnitude. For small sublattice
coupling and n > 2, L gains negative values for temper-
atures < zy. The sublattice magnetizations m; and
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ms which near the critical temperature have the relation
my > msg, change in such a way with the temperature,
that for g, L = 0 ,i.e., m; = mg. We shall call xg
a “compensation point” in analogy with ferrimagnetism
[7] and it exists for relatively small values of the parame-
ter § and arbitrary values of & < 1. For the temperatures
r < ®g, my < Mg, see Fig. 2, (§ = 0.1). The order of
the phase transition to the stable phase is checked also
by a numerical differentiation of the Landau energy for
the stable phase in the critical point and a zero jump of
the entropy is found.

n=10a=05
2:

0; lllllllll T LAAALLLELL THTTTTITT TITTHTTTT TITTTTITTT LAALLERRRL) TITrTTTT
0.6 0.7 0.8 0.9 1

Reduced Temperaturé X

Fig. 1. The temperature dependence of M (thick line) and
L (dashed line) of the stable phase for n = 1, @ = 0.5 and
different values of the parameter 3.

0.2 0.3 04 0.5
Reduced Temperature x

Fig. 2. The temperature dependence of M (thick line) and
L (dashed line) of the stable phase for n = 2, @ = 0.5 and
different values of the parameter 3.

We found as mathematical solutions of the system of
equations (22) two more phases. Our analysis shows that
for n = 1 these solutions are absolutely unstable. For
n > 2 there exist 3 phases — two metastable phases and
a stable one. First of all we shall identify the nature of
the metastable phases with the help of Fig. 4, where the
temperature dependence of M and L are given for n = 2.
For the stable phase M > |L|, as expected, for the whole
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range of temperatures. There 1s a “compensation point”
for these concrete values of the parameters «, 3. The
phase transition is of second order; this is also seen from
Fig. 5, where the temperature dependence of the Landau
energies for the three phases from Fig. 4 are given. The
high-temperature metastable phase, see Figs. 4, 5, occurs
through a second order phase transition and has |L| > M
for the whole range of parameters, for which it exists.

n=30=05
51

Reduced Temperature x

Fig. 3. The temperature dependence of M (thick line) and
L (dashed line) of the stable phase for n = 3, @ = 0.5 and
different values of the parameter 3.

3n=Lu=OLB=02

0.2
Reduced Temperature x

Fig. 4. The temperature dependence of M and L for the
stable (thick line), high-temperature metastable (dash-dotted
line) and low-temperature metastable (dashed line) phases for
n=2, a=0.2, =2

The staggered magnetization 1s negative, so nevertheless
J1 > J2 the sublattice magnetizations obey the rela-
tion m; < msg. The low temperature metastable phase
(dashed line in Figs. 4 and 5) is even more exotic. It
has positive staggered magnetization and again L > M.
The phase transition to the low-temperature phase is
definitely of first order. The relation between the en-
ergies of the three phases can be seen in Fig. 5. The
two metastable phases described above are “inverse” be-
cause for positive coupling between the sublattices, the
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staggered magnetization is bigger in magnitude than the
magnetization. It is a question of additional investigation
whether the account of crystal anisotropy, dipole inter-
action or finite size effects may change the stability of
the metastable phases.

The same picture is valid for n = 3 and the dif-
ference between the detailed picture, given above
for n = 2, is only quantitative. The increase of
the magnitude of intersublattice interaction shifts
the domain of existence of the metastable phases
to lower temperatures. This is well illustrated in
Fig. 6, where the Landau energy of the metastable
phases for two values of the parameter § are given.

A= 20=02,$=02

.,"
7
% /'/
Q K4
2-025] ’
/ I
: |9 @ 0
R
< I
DJ .I I;
—0.5 Hrrterrereeee e P e
0.1 0.2 0.3
Reduced Temperature x

Fig. 5. The temperature dependence of Landau free en-
ergy for the stable (thick line), high-temperature metastable
(dash-dotted line) and low-temperature metastable (dashed
line) phases forn =2, o« =0.2, §=0.2.

n=3,a=001
s Nid ]
Q / z ~
5 013 © 7
= ~ Q..
S ! nid
Y ¢ g
g /@ 7@
& £
§ —0.31 . I}l 4
g ,;’, pa vV =01
— 7 ' AP
1.7 R
_0.5 -Il, llllllll |,ll llllllll TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTT
004 0.0 0.08 0.1 0.12  0.14
Reduced Temperature x
Fig. 6. The temperature dependence of Landau free

energy for the high-temperature (dash-dotted line) and
low-temperature (dashed line) metastable phases for n = 3,
a = 0.0.1, and two values of 3.

We have calculated the dependence of the transition tem-
peratures of the stable (x.), high-temperature (x) and
low-temperature (#;) phases on the magnitude of the in-
tersublattice exchange. This is shown in Fig. 7 for two
values of the order parameter components: n = 2,3.

With the increase of 3, x5 (dotted-dashed line) and z;
(dashed line) are shifted to lower values and for some
value of § at first the low-temperature phase ceases to
exist as a physical solution; the same happens with the
high-temperature phase but for a bigger value of 3. The
point 8 = 0 is a limiting case of fully decoupled ferro-
magnetically ordered sublattices.

o=0.01

0.351

o
[\
w

0.151

Reduced Temperature x

0.05 3

Fig. 7. The dependence of the transition temperatures of
the stable (thick line), high-temperature (dash-dotted line)
and low-temperature (dashed line) phases on the sublattice
coupling 3 for n =2 and n = 3.

5
o
=
=
]
o
[
g
=
<
3
10.05 0. 0.1 0.2 025
Reduced Temperature x

Fig. 8. The temperature dependence of Landau free energy
for the stable (thick line) and low-temperature metastable
(dashed line) phases for n = 3, B8 = 0.2 and two values of a.

The same effect occurs when the difference between
two sublattices grows, which i1s measured by the increase
of the parameter a. This is illustrated in Fig. 8, where
the Landau energy of the stable and low-temperature
metastable phases are given for two values of . It can be
seen that the difference between the transition temper-
atures of the stable phase (7;) and the low-temperature
phase (7;) becomes bigger with the increase of a. So we
can state that for big interlattice interaction and/or big
difference between the sublattices the metastable phases
do not exist and only the stable one is present.

In conclusion, we have analyzed one particular case,
namely a positive sublattice interaction in the weak cou-
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pling limit. We suppose that for an antiferromagnetic
(negative) coupling the picture will not be changed sub-
stantially, nevetheless this case needs a separate inves-
tigation. Even in the simplest case, we have presented,
the model of two coupled Heisenberg subsystems exhibits
quite a complex behaviour.
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OPYTOTO POMY IJif BCHOTO HAOOPY PO3TIIAHYTHX MapaMeTpiB Momesmi. YucesibHI pO3paxyHK! MOKA3yIOTh, 100 A

JOIATHOTO 3HaKa B3a€MOIil ICHYIOTH Iie OBl ¢has3u, gKi € MeTacTablIbHUMI ab0o HECTIHKMMY 3aJIeXKHO Bid K1JTBKOCTH

KOMIIOHEHT n IMapaMeTpa IMopAlKy.
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