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A general s
heme to 
al
ulate dynami
al sus
eptibilities of strongly 
orrelated ele
tron systems

within the dynami
al mean �eld theory is developed. The approa
h is based on an expansion over

ele
tron hopping around the atomi
 limit (within the diagrammati
 te
hnique for site operators:

proje
tion and Hubbard ones) in in�nite dimensions. As an example, the Fali
ov{Kimball and sim-

pli�ed pseudospin-ele
tron models are 
onsidered for whi
h an analyti
al expressions for dynami
al

sus
eptibilities are obtained.
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I. INTRODUCTION

The development of the Dynami
al Mean Field The-

ory (DMFT), whi
h is exa
t in the d =1 limit, 
lari�ed

some problems 
onne
ted with the simultaneous 
onsid-

eration of the ele
tron hopping and strong lo
al 
orrela-

tions and stimulated a large progress in the understand-

ing of the strongly 
orrelated ele
tron systems [1℄. It was

shown by Metzner and Vollhardt [2,3℄ that in the d =1

limit self-energies are single-site quantities (do not de-

pend on wave ve
tor) whi
h leads to a signi�
ant sim-

pli�
ation. But su
h a lo
al self-energy only probes lo
al

properties in this limit and 
annot dete
t instabilities as-

so
iated with a spe
i�
 wave-ve
tor [1℄ that requires the


al
ulation of sus
eptibilities.

An analyti
al s
heme developed for the des
riptions

of the strongly 
orrelated ele
trons 
an be divided into

two types: (i) weak-
oupling theories, that are based

on the expansion over lo
al many-ele
tron intera
tions

(Dyson approa
h) and are 
lose to the standard Fermi-

liquid theory, and (ii) strong 
oupling theories, that start

from the expansion over ele
tron hopping around the

atomi
 limit (see Ref. [4℄ and referen
es therein). In the

weak-
oupling approa
h sus
eptibilities are solutions of

the Bethe{Salpeter equation and it is known that in the

d! 1 limit the 
orresponding irredu
ible four-verti
es

are also lo
al [1,5℄.

The aim of this arti
le is to develop a general s
heme

to 
al
ulate dynami
al sus
eptibilities within a strong-


oupling DMFT approa
h for strongly 
orrelated ele
-

tron systems. A spe
ial 
ase of the binary alloy [Fali
ov{

Kimball (FK)℄ type models, that 
an be solved exa
tly

in the limit of in�nite dimensions [6℄, will be also 
on-

sidered. Stati
 sus
eptibilities for the FK model have

been already investigated by Brandt and Miels
h [6℄,

who found an Ising-like phase transition to a 
hess-

board 
harge-density-wave phase at half �lling, and Fre-

eri
ks [7℄, who showed that system also displayed the

in
ommensurate order and phase separation at other �ll-

ings.

The preliminary short version of this arti
le was

published in the Pro
eedings of M2S-HTSC-VI Con-

feren
e [8℄. Here we present the details of the general

s
heme.

II. TWO APPROACHES IN MANY-ELECTRON

THEORY

In general, the Hamiltonian of the ele
troni
 system

with strong lo
al 
orrelations 
an be written in the fol-

lowing form

H = H

t

+H

lo


; (2.1)

where

H

t

=

X

ij�

t

ij

a

y

i�

a

j�

(2.2)

des
ribes an intersite ele
tron hopping and H

lo


is a sum

of the single site Hamiltonians

H

lo


=

X

i

H

i

(2.3)

whi
h des
ribe lo
al ele
tron 
orrelations and/or inter-

a
tion with other lo
al ex
itations (latti
e vibrations,

(pseudo)spins, et
.).

A. Weak-
oupling approa
h

As a rule, the �rst term in (2.1) is 
onsidered as an

initial (zero-order) Hamiltonian and the se
ond one is


onsidered as a perturbation. Su
h an approa
h is well

known as the Dyson weak-
oupling approa
h, where the

single ele
tron Green's fun
tions are determined by the

Dyson equation

G

�k

(!

�

) � = + Σ
(2.4)
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or

G

�k

(!

�

) = G

�k

(!

�

) + G

�k

(!

�

)�

�k

(!

�

)G

�k

(!

�

) (2.5)

=

1

i!

�

+ �� t

k

� �

�k

(!

�

)

:

Here

G

�k

(!

�

) =

1

i!

�

+ �� t

k

(2.6)

and the self-energy �

�k

(!

�

) des
ribes all s
attering pro-


esses originated from the se
ond term in (2.1) and 
an-

not be divided into parts by 
utting o� one zero-order

Green's fun
tion G

�k

(!

�

) line.

Also, it is well known that within su
h a weak-
oupling

approa
h the ele
tron sus
eptibilities (
harge, spin, et
.)


an be presented in the form

�

AB

q

(!

m

) =
- + D ; (2.7)

where the type of sus
eptibility is determined by the end-

ing parts. The full four vertex is a solution of the Bethe{

Salpeter equation

= - D DDD (2.8)

with irredu
ible four vertex D that, in a same way

as self-energy, des
ribes s
attering pro
esses originated

from lo
al 
orrelations and 
annot be divided into parts

by 
utting o� two zero-order Green's fun
tion lines.

B. Strong-
oupling approa
h

On the other hand, an alternative approa
h based on

the expansion over ele
tron hopping around the strong-


oupling limit 
an be built [9,10℄. In this 
ase, the single-

ele
tron Green's fun
tions are determined by the Larkin

equation [9,10℄

G

�k

(!

�

) � = +Ξ Ξ
(2.9)

or

G

�k

(!

�

) = �

�k

(!

�

) + �

�k

(!

�

) t

k

G

�k

(!

�

) (2.10)

=

1

�

�1

�k

(!

�

)� t

k

;

where �

�k

(!

�

) is an irredu
ible a

ording to Larkin part

whi
h 
annot be divided into parts by 
utting o� one

hopping (wavy) line.

Now, sus
eptibilities 
an be presented in the following

form

�

AB

q

(i!

m

) =

- + LA B A B A B
; (2.11)

where

= +
(2.12)

is a sum of the 
hains of hopping lines and full four vertex

is a solution of the equation

= - L LLL : (2.13)

In Eqs. (2.11) and (2.13) quantities ,

D

�

�

�

and L are

irredu
ible verti
ies whi
h 
annot be divided into parts

by 
utting o� two wavy (hopping) lines. It should be

noted that, in 
ontrast to the weak-
oupling approa
h,

verti
es in the strong-
oupling approa
h 
orrespond to

irredu
ible many-parti
le Green's fun
tions.

C. Conne
tion between approa
hes

From Eqs. (2.5) and (2.10) one 
an get a 
onne
tion

between the self-energy and the irredu
ible vertex fun
-

tion a

ording to the Larkin equation:

�

�1

�k

(i!

�

) = i!

�

+ � ��

�k

(i!

�

): (2.14)

The 
onne
tion between the four verti
es in the weak

and strong 
oupling approa
hes is more 
ompli
ated. For

the full four verti
ies one 
an get

= DL ; (2.15)

whereas the irredu
ible four verti
ies are 
onne
ted by

equation

= D'L ; (2.16)

where D

0

is a solution of equation

= - D D'DD' : (2.17)

Here

= + +

= -
: (2.18)

In the 
ase when the operators

^

A and

^

B are 
onstru
ted

only by the ele
troni
 operators, then for three and two

verti
ies we �nd

= D'-A
(2.19)

and

A B = -D' (2.20)

whi
h 
an be treated as some kind of sum rules.
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III. DYNAMICAL MEAN FIELD THEORY

In the 
ase of in�nite dimensions d ! 1 one should

s
ale the hopping integral a

ording to

t

ij

!

t

ij

p

d

(3.1)

in order to obtain a �nite density-of-states and it was

shown by Metzner [3℄ that in this limit the irredu
ible

part be
omes lo
al

�

ij�

(� � �

0

) = Æ

ij

�

�

(� � �

0

) (3.2)

or

�

�k

(!

�

) = �

�

(!

�

): (3.3)

Su
h a site-diagonal fun
tion, as it was shown by Brandt

andMiels
h [6℄, 
an be 
al
ulated by mapping the d!1

latti
e problem (2.1) with intersite hopping (3.1) onto the

atomi
 model with single-site hopping

H

t

!

Z

�

0

d�

Z

�

0

d�

0

X

�

�

�

(� � �

0

)a

y

�

(� )a

�

(�

0

): (3.4)

Here �

�

(���

0

) is the auxiliary Kadano�-Baym �eld (dy-

nami
al mean �eld) whi
h has to be self-
onsistently

determined from the 
ondition that the same fun
tion

�

�

(!

�

) de�nes the Green's fun
tion for the latti
e and

atomi
 model. The self-
onsistent set of equations for

�

�

(!

�

) and �

�

(!

�

) (e. g., see Ref. [1℄ and referen
es

therein) is the following:

1

N

X

k

1

�

�1

�

(!

�

) � t

k

=

1

�

�1

�

(!

�

)� �

�

(!

�

)

(3.5)

= G

(a)

�

(!

�

; f�

�

(!

�

)g);

where G

(a)

�

(!

�

; f�

�

(!

�

)g) is the Green's fun
tion for the

atomi
 model (3.4).

In the same way as it was done by Metzner [3℄ for the

irredu
ible part �

�

(!

�

) one 
an prove that in the d!1

limit all irredu
ible verti
ies in the strong-
oupling ap-

proa
h (Eqs. (2.11) and (2.13)) are also single site quan-

tities. So, they 
an be also be 
al
ulated from the atomi


model. On the other hand, using Eqs. (2.14){(2.20) it is

easy to show that the self-energy and irredu
ible verti
ies

in the weak-
oupling approa
h are also lo
al quantities

(in Refs. [5℄ that was proved using a di�erent approa
h).

In order to 
al
ulate these single-site irredu
ible verti-


ies �rst of all one has to 
al
ulate an irredu
ible many

parti
le Green's fun
tions for atomi
 model (3.4), i. e.,

1

2 3

4

�

D

Ta

y

1

a

2

a

y

3

a

4

E

a

(3.6)

�

D

Ta

y

1

a

2

E

a

D

Ta

y

3

a

4

E

a

+

D

Ta

y

1

a

4

E

a

D

Ta

y

3

a

2

E

a

;

1

2
0 �

D

T

^

A

0

a

y

1

a

2

E

a

�

D

^

A

0

E

a

D

Ta

y

1

a

2

E

a

(3.7)

and

10 A B �

D

T

^

A

0

^

B

1

E

a

�

D

^

A

0

E

a

D

^

B

1

E

a

: (3.8)

Then irredu
ible four vertex D for the weak-
oupling

approa
h 
an be obtained from equation (2.8), where

now arrows indi
ate single-ele
tron Green's fun
tions for

the atomi
 model (3.5) and full four vertex is determined

from the many-parti
le Green's fun
tion by

D= : (3.9)

On the other hand, irredu
ible four vertex L for the

strong-
oupling approa
h 
an be obtained from equation

(2.13), where the full four vertex is determined from the

many-parti
le Green's fun
tion by

L= (3.10)

or

L=
: (3.11)

Now, the thin wavy lines are the dynami
al mean �eld

�

�

(!

�

) and the thi
k ones, in 
ontrast to (2.12), represent

the sum of 
hains of wavy lines

~

�

�

(!

�

) =

�

�

(!

�

)

1� �

�

(!

�

)�

�

(!

�

)

= �

�

(!

�

)

G

(a)

�

(!

�

)

�

�

(!

�

)

: (3.12)

From the expression for the irredu
ible many parti
le

Green's fun
tion (3.7), (3.8) and (3.6) for atomi
 model

one 
an �nd irredu
ible verti
ies

D

�

�

�

and by equa-

tions

L= -
(3.13)

and

+ - LA B A B A BA B = ; (3.14)

respe
tively, that 
omplete the 
al
ulation of the irre-

du
ible verti
ies for the dynami
al sus
eptibilities.

Finally, for the latti
e dynami
al sus
eptibility in the

weak (2.7) and strong (2.11) 
oupling approa
hes we get

( )
-1

( )
-1

)
-1

(- + -[ ]
-1

q
; (3.15)

and

( )
-1

-+ -[ ]
-1

q
; (3.16)

respe
tively. Here, (: : :)

�1

denote an inverse kernels of

the 
orresponding integral equations,

= G

(a)

�

(!

�

)G

(a)

�

(!

�+m

); (3.17)

and

q
=

1

N

X

k

G

�k

(!

�

)G

�k+q

(!

�+m

): (3.18)
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IV. BINARY ALLOY TYPE MODELS

To test the possibilities of the above approa
h we 
on-

sider a binary alloy type model

H

i

=

g

2

�

P

+

i

� P

�

i

�

n

i

�

h

2

�

P

+

i

� P

�

i

�

; (4.1)

where P

�

i

=

1

2

� S

z

i

for the U = 0 pseudospin-ele
tron

(PE) model [11℄, P

+

i

= 


i

, P

�

i

= 1�


i

for a binary alloy,

and a

i�

! d

i

, n

i

= d

y

i

d

i

, P

+

i

= f

y

i

f

i

, P

�

i

= 1� f

y

i

f

i

for

the Fali
ov{Kimball (FK) model [12℄. The main di�er-

en
e between these models is in the way that the averag-

ing pro
edure is performed (a statisti
al one for the PE

and FK models and a 
on�gurational one for the binary

alloy) and in the thermodynami
al regimes (h = 
onst

for the PE model, 
 = 
onst for the binary alloy and

n

d

= 
onst and/or n

f

= 
onst for the FK model).

The single-parti
le Green's fun
tion for the e�e
tive

atomi
 model (3.4) is a 
oherent sum of the Green's

fun
tions for subspa
es S

z

i

= �

1

2

and is equal to (see

Refs. [6,13,4℄)

G

(a)

�

(!

�

) =

hP

+

i

i!

�

+ �� �

�

(!

�

)�

g

2

(4.2)

+

hP

�

i

i!

�

+ �� �

�

(!

�

) +

g

2

whi
h allows us to �nd solutions of Eq. (3.5) for the ir-

redu
ible part �

�

(!

�

) and dynami
al mean �eld �

�

(!

�

).

The Fourier transform of the two-ele
tron Green's

fun
tion

D

Ta

y

1

a

2

a

y

3

a

4

E

is also a 
oherent sum of the two-

ele
tron Green's fun
tions for subspa
es

G

��

0

�

1

�

0

1

�

!

�

!

�+m

!

�

0

!

�

0

+m

�

=

X

�

(4.3)

(

Æ

m0

Æ

��

1

Æ

�

0

�

0

1

hP

�

i

�

i!

�

+ �� �

�

(!

�

)�

g

2

� �

i!

�

0

+ � � �

�

0

(!

�

0

)�

g

2

�

�

Æ

��

0

Æ

��

0

Æ

�

1

�

0

1

hP

�

i

�

i!

�

+���

�

(!

�

)�

g

2

� �

i!

�+m

+���

�

1

(!

�+m

)�

g

2

�

)

that gives for the irredu
ible two-ele
tron Green's fun
-

tion (3.6) an expression whi
h is a sum of the two sepa-

rable fun
tions

~

G

��

0

�

1

�

0

1

�

!

�

!

�+m

!

�

0

!

�

0

+m

�

= Æ

m0

Æ

��

1

Æ

�

0

�

0

1

�

�

(!

�

)�

�

0

(!

�

0

)

�Æ

��

0

Æ

��

0

Æ

�

1

�

0

1

�

�

(!

�

)�

�

1

(!

�+m

); (4.4)

where

�

�

(!

�

) =

g

p

hP

+

ihP

�

i

[i!

�

+ � � �

�

(!

�

)℄

2

�

g

2

4

: (4.5)

Su
h a separable form allows us to 
al
ulate the inverse

kernels of the integral equations and to �nd all quantities

in an analyti
al form.

Within the weak-
oupling approa
h, starting from the

expression (4.4) with the use of Eq. (3.9), one 
an �nd so-

lution of the Bethe{Salpeter equation for the irredu
ible

four vertex in an analyti
al form:

�

��

0

�

1

�

0

1

�

!

�

!

�+m

!

�

0

!

�

0

+m

�

=

�

�

(!

�

)

G

2

�

(!

�

) + �

2

�

(!

�

)

(4.6)

�

Æ

m0

Æ

��

1

Æ

�

0

�

0

1

1�

P

�

00

�

00

�

2

�

00

(!

�

00

)

G

2

�

00

(!

�

00

)+�

2

�

00

(!

�

00

)

�

�

�

0

(!

�

0

)

G

2

�

0

(!

�

0

) + �

2

�

0

(!

�

0

)

�

Æ

��

0

Æ

��

0

Æ

�

1

�

0

1

G

�

(!

�

)G

�

1

(!

�+m

)

�

�

�

(!

�

)�

�

1

(!

�+m

)

G

�

(!

�

)G

�

1

(!

�+m

) + �

�

(!

�

)�

�

1

(!

�+m

)

;

whi
h must be substituted into Eq. (2.8) for the full four

vertex for latti
e and allows to 
al
ulate ele
tron sus
ep-

tibilities, e. g., for 
harge sus
eptibility one 
an get

�

nn

q

(!

m

) = Æ

m0

�

2

n

T � �(T; q)

+K

nn

q

(!

m

); (4.7)

K

nn

q

(!

m

) =

1

�

X

��

1

�

�1

�q

(!

�

; !

m

)� �

�

(!

�

; !

m

)

; (4.8)

where

�

�

(!

�

; !

m

)= (4.9)

�

�

(!

�

)�

�

(!

�+m

)

~�

�

(!

�

!

m

) [�

�

(!

�

)�

�

(!

�+m

)� ~�

�

(!

�

!

m

)℄

originates from the last term in (4.6) and

�

n

= (4.10)

1

�

X

��

�

�

(!

�

)~�

�

(!

�

0)�

�q

(!

�

0)

~�

2

�

(!

�

0) + �

2

�

(!

�

) [�

�q

(!

�

0)� ~�

�

(!

�

0)℄

;

�(T; q)= (4.11)

1

�

X

��

�

2

�

(!

�

) [�

�q

(!

�

0)� ~�

�

(!

�

0)℄

~�

2

�

(!

�

0) + �

2

�

(!

�

) [�

�q

(!

�

0)� ~�

�

(!

�
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;

�

�q

(!

�

!

m

) = �

1

N

X

k

G

�k

(!

�

)G

�k+q

(!

�+m

); (4.12)

~�

�

(!

�

!

m

) = �G

(a)

�

(!

�

)G

(a)

�

(!

�+m

): (4.13)

But su
h a diagrammati
 weak-
oupling approa
h does

not allow one to 
al
ulate pseudospin and mixed sus
ep-

tibilities.

On the other hand, the strong-
oupling approa
h al-

lows us to 
al
ulate all sus
eptibilities. To do this, we


al
ulate the irredu
ible many-parti
le Green's fun
tions

D

Tn

�

(� )a

y

�

0

(�

0

)a

�

0

(�

00

)

E

irr

! Æ

m0

X

�

0

�

�

(!

�

0

)�

�

0

(!

�

)

�Æ

��

0

h

�

�

(!

�

)�

�

(!

�+m

)+G

(a)

�

(!

�

)G

(a)

�

(!

�+m

)

i

; (4.14)
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�

irr

! (4.15)
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P
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; (4.16)
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m0
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hP

+

i hP

�

i

X

�

�

�

(!

�

);

After substituting (4.14){(4.18) into Eq. (3.16) we get

for the 
harge sus
eptibility the same expression (4.7),

whereas for the pseudospin and mixed sus
eptibilities

�

S

z

S

z

q

(!

m

) = Æ

m0

�

2

S

z

T � �(T; q)

(4.19)

= Æ

m0

hP

+

i hP

�

i

T � �(T; q)

;

�

nS

z

q

(!

m

) = �

S

z

n

q

(!

m

) = Æ

m0

�

S

z

�

n

T � �(T; q)

; (4.20)

where

�

S

z

=

p

hP

+

i hP

�

i: (4.21)

Expression (4.11) for �(T; q) 
oin
ides with the one

obtained by Freeri
ks [7℄ from the equations for the

stati
 sus
eptibilities (!

m

= 0) derived by Brandt and

Miels
h [6℄. The irredu
ible four vertex (4.9) was also

derived by Freeri
ks and Miller [14℄ within the Baym{

Kadano� formalism and used to �nd the exa
t solu-

tion for the nonresonant Raman s
attering for the FK

model [15,16℄.

V. DISCUSSION

For the binary alloy (Falikov{Kimball) model (4.1)

expressions (4.7), (4.19) and (4.20) de�ne the so-
alled

isothermal sus
eptibilities [17℄. Furthermore, the pseu-

dospin (4.19) and mixed (4.20) sus
eptibilities are only

stati
 (with fa
tor Æ

m0

) be
ause the pseudospin opera-

tor S

z

i


ommutes with the Hamiltonian and is an inte-

gral of motion. It should be noted, that the binary alloy

model (4.1) 
an be redu
ed to the Ising type model with

an e�e
tive multisite retarded pseudospin intera
tions by

taking tra
e of the statisti
al operator with the Hamil-

tonian (4.1) over ele
tron (fermion) variables [4℄. These

explains the Ising type expression obtained for the pseu-

dospin sus
eptibility (4.19), but now the expression for

the 
riti
al temperature �(T; q) is more 
ompli
ated.

The expression for the 
harge sus
eptibility (4.7) 
on-

tains two terms. The �rst one is stati
 and 
an be written

as

�

nS

z

h

�

S

z

S

z

i

�1

�

S

z

n

: (5.1)

This des
ribes the 
ontribution from the pseudospin sub-

system to the 
harge sus
eptibility. It gives the main


ontribution to the stati
 sus
eptibilities. The se
ond

term K

nn

q

(!

m

) in (4.7) gives the pure ele
tron response

and des
ribes the so-
alled isolated (Kubo) sus
eptibil-

ity [17℄. In general, terms with the fa
tor Æ

m0

give the

di�eren
e between the isothermal and isolated sus
epti-

bilities (see Appendix in Ref. [18℄).
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A. M. SHVAIKA

DINAM�QN� SPRI�N�TLIVOST� V P�DHOD� SIL^NOGO ZV'�ZKU:

ZAGAL^NA SHEMA TA MODEL^ FAL�KOVA{K�MBALA

A. M. Xva�ka

�nstitut f�ziki kondensovanih sistem Na
�onal~noÝ akadem�Ý nauk UkraÝni

vul. Sv
n
�
~kogo, 1, L~v�v, 79011, UkraÝna

U me�ah teor�Ý dinam�qnogo seredn~ogo pol� rozvinena zagal~na shema do rozrahunku dinam�qnih spri�-

n�tlivoste� sil~nokorel~ovanih elektronnih sistem. P�dh�d �runtu
t~s� na rozvinenn�h za elektronnim

perenosom wodo atomnoÝ me�� (u me�ah d���ramnoÝ tehn�ki dl� vuzlovih operator�v: proek
��nih qi Gab-

barda) dl� bezme�noÝ rozm�rnosti prostoru. �k priklad rozgl�nuto model� Fal�kova{K�mbala ta sprowenu

psevdosp�n-elektronnu, dl� �kih otrimano anal�tiqn� virazi dl� dinam�qnih spri�n�tlivoste�.
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