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The low temperature behaviour of the dynami nonlinear (ubi) suseptibility �

0

3

(!; T ) in quan-

tum d-dimensional Ising spin glass with short-range interations between spins is investigated in

terms of the quantum droplet model and the quantum-mehanial nonlinear response theory is em-

ployed. We have revealed a glassy like behaviour of droplet dynamis. The frequeny dependene of

�

0

3

(!; T ) is very remarkable, the temperature dependene is found at very low temperatures (quan-

tum regime). The nonlinear response depends on the tunneling rate for a droplet whih regulates

the strength of quantum utuations. This response has a strong dependene on the distribution

of droplet free energies and on the droplet length sale average. Impliations for experiments in

quantum spin glasses like disordered dipolar quantum Ising magnet LiHo

x

Y

1�x

F

4

and pseudospin

are noted.

Key words: spin glasses, phase transition

PACS number(s): 75.40.Gb, 75.10.Nr, 64.70.Pf

I. INTRODUCTION

The dynamis of glassy systems is an attrative and

rapidly developing �eld of physis [1{5℄. Spin glasses and

quantum spin glasses are a very interesting system for a

theoretial as well as an experimental investigation of

dynami phenomena [2{4℄. There are two di�erent spin

glass dynami desriptions: the mean-�eld theory and

the droplet phenomenologial one [1{6℄. In this paper we

investigate theoretially nonlinear ubi dynami susep-

tibility as a funtion of frequeny and temperature in the

Ising spin glass in a transverse �eld in terms of quan-

tum droplet model at very low temperatures (quantum

regime). The quantum phase transitions whih are gov-

erned by quantum utuations of the system may tunnel

from one loal minimum of the free energy to another;

new physial e�ets suh as quantum hannel of relax-

ation appear. There are few theoretial studies on the

nonlinear stati response in quantum spin glasses [7{10℄

and almost no studies on the dynami nonlinear response

[3℄. In [3℄ the dynami nonlinear response of a quantum

spin glass was found to be frequeny independent and

nonsingular in quantum ritial regime in ontrast to

its behaviour in the usual spin glass. There are exper-

imental data on the nonlinear dynami response in las-

sial [11{13℄ and quantum [14℄ spin glasses investigated

by the Fourier-transform tehnique. A third-order non-

linear suseptibility is negative and diverges at an or-

dinary spin glass transition temperature T

g

from both

the upper and the lower sides. But when �

0

3

is mea-

sured by a �nite probing frequeny the response falls

out of equilibrium before the transition temperature and

does not diverge at T

g

. Then �

0

3

(!) shows a maximum

at T ' T

f

(!) where T

f

(!) is the freezing temperature

whih is the upper bound on T

g

and T

g

= T

f

(! ! 0).

Suh a behaviour was observed, for the example, for las-

sial Ising spin glass Fe

0:5

Mr

0:5

TiO

3

[13℄. W. Wu et al.

[14℄ measured nonlinear suseptibility �

0

3

(!; T ) in quan-

tum spin glass (the diluted dipolar-oupled Ising spin

glass LiHo

0:167

Y

0:833

F

4

in the transverse �eld) tuning

transverse �eld � from the � = 0 lassial to the T = 0

quantum limit. At the mK temperatures they found a

lear dynami signature of the spin glass to paramagnet

transition whether dominated by thermal or quantum

utuations. In [14℄ it was shown that �

0

3

depends on

the frequeny for ! > 10 Hz. However, it depends very

weakly on ! for ! < 10 Hz. There is a rossover be-

tween high ! (!-dependent) and low ! (!-independent)

behaviours. Nonlinear suseptibility ontains a diverging

omponent whih dominates at T = 98 mK, but disap-

pears by 25 mK. The �

0

3

(!) does not diverge but shows a

maximum at T

f

(!). �

0

3

(!) measured at a higher temper-

ature and lower transverse �eld has a larger maximum

than the �

0

3

(!) measured at a lower temperature and a

larger transverse �eld. The analysis of these experimental

data seems not lear [15℄ beause frequenies used in the

experiments [14℄ are not suÆiently low suh as to deter-

mine the equilibrium behaviour of system. Contrary to

the theoretial expetations, quantum transitions may be

qualitatively di�erent from thermally driven transitions

in real spin glasses. Reently the linear dynami susep-

tibility (in-phase and out of phase omponents) at T = 0

was investigated theoretially for the Ising spin glass in

a transverse �eld in terms of the quantum droplet model

by M. J. Thill and D. A. Huse [6℄. At present two di�erent

dynami desriptions exist: the mean �eld theory and the

droplet piture (more phenomenologial but more real).

It is better to understand the atual argument of dis-

ussion [5℄. A basi assumtion of the droplet piture is

that the spin glass dynamis is governed by large-sale

exitations whose relaxation time inreases with length

sale. There we give an employment of droplet spin glass

model to a dynami nonlinear response at very low tem-

peratures. In previous papers [16℄ we have alulated the
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real and imaginary parts of linear dynami suseptibility

in the same model, as in [6℄, for nonzero temperatures.

The temperature and frequeny dependene of susepti-

bilities �

0

1

(!; T ) and �

00

1

(!;T ) is alulated at low tem-

peratures. We �nd a broad maximum for the real part

�

0

1

(!; T ) whih shifts towards higher temperatures with

inreasing frequeny of a external �eld !. The temper-

ature of maximum T

f

(!) depends on frequeny ! and

inreases with ! up to the magnitude where �

0

1

(!; T )

starts to derease. The imaginary part �

00

1

(!; T ) has a

very interesting behaviour too. It is shown that many low

temperature properties are dominated by thermally a-

tive droplets at the lassial-to-quantum rossover length

sale of droplets. In ontrast to the linear suseptibil-

ity, the nonlinear dynami ubi suseptibility diverges

or onverges depending on the kind of distribution of

free droplet energies. It is shown that both suseptibil-

ities have a glassy behaviour. In [16℄ the general linear

response theory of magneti dispersion and absorption

phenomena for quantum systems by Kubo and Tomita

[17℄ that relates the relaxation funtion and the linear dy-

nami suseptibility was used. But for simpliity dipole-

dipole and dipole-lattie interations were negleted. We

note that in [6℄ the real part of the ubi nonlinear a

suseptibility was de�ned as the in-phase 3! magnetiza-

tion response M (3!) to a small time-dependent applied

�eld h os(!t):

�

0

3

= lim

h!0

24M (3!)

h

3

V

; (1)

where V is the sample volume. The authors of [6℄ gave

some expression for �

0

3

they expet only at zero temper-

ature.

II. DYNAMICAL NONLINEAR RESPONSE

The full nonlinear response theory despite its gener-

ality and importane is of limited pratial value be-

ause it is mathematially diÆult. Eventually it is ne-

essary to make approximations, for example, the well-

known perturbation expansion of the time-evolution op-

erators, using perturbation Hamiltonian with some small

parameter. Nonlinear response theory was developed and

desribed, for example, in [17{22℄. Here we summarize

briey the theory of higher-order dynami response. It is

based on the Hamiltonian

^

H

t

=

^

H

0

+

^

H

1

=

^

H

0

�

^

A

j

F

j

(t); t � t

0

; (2)

where

^

H

0

is nonperturbation Hamiltonian of system,

^

H

1

is perturbation Hamiltonian whih desribes the inter-

ation between the Heisenberg operators

^

A

j

(material

operators) and the external perturbation

^

F

j

. At time

t > t

0

one is interested in the expetation value of the

Heisenberg operator

^

B

i

whih is given by

h

^

B

i

(t)i = Tr[�

0

^

B

i

(t)℄ = Tr[�̂(t)

^

B

i

℄ ; (3)

where the density matrix �̂(t) =

^

U (t; t

0

)�̂(t

0

)

^

U

y

(t; t

0

).

The time-evolution operator

^

U satis�es the Shr�odinger

equation i�h(d

^

U=dt) =

^

H

^

U . This di�erential equation is

equivalent to an integral equation whih has the intera-

tive solution of the form [18{20℄

^

U (t; t

0

) = T exp

�

�

i

�h

Z

t

t

0

H(t

0

)dt

0

�

'

^

U

0

(t; t

0

)

�

1 +

i

�h

Z

t

t

0

dt

1

F

j

(t

1

)

^

U

y

0

(t

1

; t

0

)

^

A

j

^

U

0

(t

1

; t

0

)

�

; (4)

where

^

U

0

(t; t

0

) = exp

h

�

i

�h

(t � t

0

)

^

H

i

. It is diÆult to

�nd an expression for

^

U in losed form. It was used that

^

H

1

(t) is in some sense small.We de�ne the total response

of the system at time t to the external fore F

j

as the

di�erene

�B

i

(t) � h

^

B

i

(t)i � h

^

B

i

i

0

; (5)

where the subsript zero on expetation values refers to

the equilibrium expetations. One an then understand

the behaviour of the system in terms of the dynamial

response. Using aforementioned expressions [2{4℄ the dy-

namial response an be written through the third order

in the perturbation

^

H

1

in the following form [20℄




^

B

i

(t)

�

�




^

B

i

�

0

= �B

i

(t) '

Z

t

t

0

dt

0

'

ij

(t� t

0

)F

j

(t

0

)

+

Z

t

t

0

dt

1

Z

t

1

t

0

dt

2

'

ijk

(t� t

2

; t

1

� t

2

)F

k

(t

1

)F

j

(t

2

)

+

Z

t

t

0

dt

1

Z

t

1

t

0

dt

2

Z

t

2

t

0

dt

3

'

ijkl

(t� t

3

; t

2

� t

3

; t

1

� t

2

)

�F

e

(t

1

)F

k

(t

2

)F

j

(t

3

) + : : : ; (6)

where '

ij

, '

ijk

, '

ijkl

are the �rst-, seond- and third

order response funtions,

'

ij

(t� t

0

) =

1

i�h

h[

^

A

j

; B

i

(t� t

0

)℄i

0

; (7)

'

ijk

(t � t

2

; t

1

� t

2

) =

1

(i�h)

2

�h[

^

A

j

; [

^

A

k

(t

1

� t

2

);

^

B

i

(t� t

2

)℄℄i

0

; (8)

'

ijkl

(t� t

3

; t

2

� t

3

; t

1

� t

2

) =

1

(i�h)

3

�h[

^

A

j

; [A

k

(t

1

� t

2

); [A

l

(t

2

� t

3

); B

i

(t� t

3

)℄℄℄i

0

: (9)
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Here we have employed the summation onvention over

repeated indies and yli invariane of the trae. Ex-

pressions [7{9℄ an be written in a more revealing form if

we set t

0

= �1 and hange integration variables inlud-

ing an adiabati swithing fator if neessary. We take

(instead of t, t

1

, t

2

, t

3

) �

1

= t � t

1

, �

2

= t

1

� t

2

time

di�erenes further. The ordinary linear response theory

utilized only '

ij

(�

1

) and it is the simplest approximation

to the full theory of linear dynami response [23℄. Using

new variables we may write the expressions for response

funtions in the form

'

(1)

ij

= �

1

i�h

h[A(� ); B(0)℄i; (10)

'

(2)

ijk

=

1

(i�h)

2

h[[A(�

1

+ �

2

); A(�

2

)℄; B℄i; (11)

'

(3)

ijkl

= �

1

(i�h)

3

h[[[A(�

1

+ �

2

+ �

3

);

A(�

2

+ �

3

)℄; A(�

3

)℄; B℄i ; (12)

where the braket h: : :i denotes an expetation value with

respet to the equilibrium ensemble. The useful interpre-

tation is generated from Eq. [6℄ in the ase that t

0

= �1

if we suppose that the external fore F is onstant and

vanishes for t � 0. For t = 0 the system is in partial

equilibrium and starts to relax to equilibrium. It is on-

venient to write a nonlinear response for this ase (initial

value ase [21℄) as

h

^

B(t)i � h

^

Bi

0

= R

(1)

(t)F

+

1

2

R

(2)

(t)FF +

1

3

R

(3)

(t)FFF + : : : ; (13)

where R

�

(t) are the relaxation funtions,

R

(1)

(t) =

Z

1

0

d� '

(1)

ij

(�

1

); (14)

R

(2)

(t) =

Z

1

0

d�

1

Z

1

0

d�

2

'

(2)

ijk

(�

2

; �

1

+ �

2

); (15)

R

(3)

(t) =

Z

1

0

d�

1

Z

1

0

d�

2

�

Z

1

0

d�

3

'

(3)

ijkl

(�

3

; �

2

+ �

3

; �

1

+ �

2

+ �

3

): (16)

In this form response may desribe relaxation of the

system. If response funtion '(t)

(1)

vanishes as t ! 1,

then '(t)

(1)

= �ÆR

(1)

(t)=Æt, so R

(1)

(t) ontains muh

more information than the response funtion.

III. DYNAMIC MAGNETIC SUSCEPTIBILITIES

Let the a magneti �eld h

!

= h os(!t) be applied

to a magneti system. The magnetization nonlinear re-

sponse

M (!; t) =

n

X

k=1

f�

0

k

os(k!t) + �

00

k

sin(k!t)g

to harmoni magneti �eld h ontains only odd har-

moni: �

0

1

� �

0

1

h, �

0

3

� �

0

3

h

3

, et. [11℄. In the expression

forM (!; t) the magnitudes �

0

k

and �

00

k

are real and imag-

inary parts of harmoni amplitudes respetively. For the

general theory of nonlinear proesses one an evaluate

[11℄

�

0

1

= �

0

1

(!t)h + [�

0

3

(!; 0; !)℄

h

3

4

+ [4�

0

5

(!; 0; !; 0; !) + 2�

0

5

(!; 0; !; 2!; !)

+ 2�

0

5

(!; 2!; !; 0; !) + �

0

5

(!; 2!; !; 2!; !)

+ �

0

5

(!; 2!; 3!; 2!; !)℄

h

5

16

+ : : : ; (17)

�

0

3

= �

0

3

(3!; 2!; !)

h

3

4

+ [�

0

5

(3!; 2!; 3!; 2!; !)

+ �

0

5

(3!; 4!; 3!; 2!; !) + 2�

0

5

(3!; 2!; !; 0; !)

+ �

0

5

(3!; 2!; !; 2!; !)℄

h

5

16

+ : : : ; (18)

�

0

5

= �

0

5

(5!; 4!; 3!; 2!; !)

h

5

16

+ : : : (19)

The measurement of all the harmoni amplitudes �

k

gives a measurement of the suseptibilities �

a

in two

limits: a) if �

0

1

h � �

0

3

h

3

� �

0

5

h

5

the bak reation is

negligible and eah harmoni measures the suseptibil-

ity of the same order; b) in the stati (! ! 0) limit the

solution of the linear system [16℄ fully aounts for the

bak reation. In the absene of a magneti �eld, the

bak reation an be made small so that the dynami

suseptibilities an be obtained from Eq. [16℄. In a more

ompat notation we may write

M (!; t) � [M

0

+M

!

+M

3!

+ : : :℄ + [C.C.℄ ; (20)

where M

0

is the equilibrium magnetization in zero �eld;

M

!

is the !-magnetization response; M

3!

is the 3!-

magnetization response and so on.

The expression (10){(12) may be onsidered as solu-

tion of the orresponding quantum equations onsidered

above. For the external a �eld we assume a lassial

value. This �eld interats with quantum system and sys-

tem behaviour is determined by quantum laws. We shall

fous on the real part of the third-order nonlinear dy-
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nami suseptibility �

0

3

(3!; 2!; !) and denote it as �

0

3

(!).

In this paper we are interested in the response when the

a magneti �eld is applied in z-diretion; �

1

= �

zz

and

so on. In formulas (2{12) both A

i

and B

i

are the mag-

neti dipole moment operators. Considering the initial

value ase [21℄ we suppose, like [6℄, that the system is in

equilibrium with a small time-independent �eld h = h

z

for t � 0 and that the external �eld is turned o� at t = 0,

then for t � 0 the indued magnetization of the sample in

z-diretion to �rst order of perturbation theory is given

by M (t)�M

0

� R

(1)

(t)h, where a relaxation funtion

R

(1)

(t) =

Z

1

0

'

(1)

(� )d� (21)

and the �rst order response funtion is [20℄

'

(1)

ij

(� ) � �

1

i�h

h[M

i

(� );M

j

℄i: (22)

The higher-order response funtions are given by

'

(2)

ijk

(�

1

; �

2

) �

1

(i�h)

2

h[[M

i

(�

1

+ �

2

);M

j

(�

2

)℄ ;M

k

℄i; (23)

'

(3)

ijkl

(�

1

; �

2

; �

3

) � �

1

(i�h)

3

�h[[[M

i

(�

1

+ �

2

+ �

3

);M

j

(�

2

+ �

3

)℄ ;M

k

(�

3

)℄ ;M

l

℄i : (24)

The linear and the nonlinear dynami suseptibilities

(admittanes in the spetral representation [22℄) may be

found through response funtions (22){(24). In order to

�nd the omplete expression for suseptibility, we should

use its symmetry and ausality properties [22℄.

The nonlinear suseptibilities may be hosen so that

these suseptibilities were symmetrial relative to simul-

taneous permutation of tensor indies and orresponding

to them arguments, for example, the seond rank tensors

are �

ijk

(!

1

; !

2

) = �

ikj

(!

2

; !

1

), and the fourth rank ten-

sors are

�

ijkl

(!

1

; !

2

; !

3

) = �

ikjl

(!

2

; !

1

; !

3

)

= �

ijlk

(!

1

; !

3

; !

2

) = : : : (25)

aording to the ausality property

�

ij

= 0 for �

1

< max (�

2

; �

3

; : : :): (26)

Linear and nonlinear dynami suseptibilities are given

by

�

ij

(!) =

Z

1

0

d�'

(1)

ij

(� )e

i!�

; (27)

�

ijk

(!

1

; !

2

) =

1

2!

Z

1

0

d�

1

�

Z

1

0

d�

2

n

'

(2)

ijk

(�

1

; �

2

)e

i(!

1

+!

2

)�

1

+i!

1

�

1

o

; (28)

�

ijkl

(!

1

; !

2

; !

3

) =

P

3

3!

Z

1

0

d�

1

Z

1

0

d�

2

�

Z

1

0

d�

3

'

(3)

ijkl

(�

1

; �

2

; �

3

)

� exp [i(!

1

+ !

2

+ !

3

)�

1

+ i!

2

�

2

+ i!

3

�

3

℄ : (29)

In Eq. (28) P

3

means the summation over all permuta-

tions of the subsripts (!

1

j), (!

2

k) and (!

3

l) [22℄; re-

sponse funtions ' are given by expressions (22){(24).

In partiular, the seond harmonis generation proess

is haraterized by the tensor �

ijk

(!; !). If !

1

= !

2

=

!

3

= !, the triple frequeny 3! is formed; the frequeny

tripling is desribed by the tensor �

ijkl

(!; !; !) (we note

it as �

0

3

(!)).

IV. THE MODEL HAMILTONIAN

The droplet model desribing the low-dimensional

short-range Ising spin glass is based on renormalization

group arguments [4℄. In the dimensions above the lower

ritial dimension d

l

(usually in spin glass 2 � d

l

< 3) the

droplet model �nds a low temperature spin-glass phase

in zero magneti �eld. This phase di�ers essentially from

the spin-glass phase in the mean-�eld approximation

of the Sherrington{Kirkpatrik in�nite-range spin-glass

model [2℄. In the droplet model there are only two pure

thermodynamial states related to eah other by a global

spin ip. In magneti �eld there is no phase transition.

A droplet is an exited luster in an ordered state where

all the spins are inverted. The natural saling ansatz for

droplet free energy �

L

whih are onsidered to be inde-

pendent random variables) is �

L

� L

�

; L � �(T ); � is the

orrelation length, L is the length sale of droplet and �

is the zero temperature thermal exponent, � � (d�1)=2.

One droplet onsists of order L

d

spins. Below d

l

, � < 0;

above d

l

one has � > 0.

The droplet model of lassial Ising spin glass was on-

sidered by D. S. Fisher and D. A. Huse [4℄. The features

of this model are desribed also, for example, in [23℄.

Reently M. J. Thill and D. A. Huse [6℄ have shown

that the d-dimensional quantum Ising spin glass in a

transverse �eld with the Hamiltonian

H = �

X

i;j

I

ij

S

z

i

S

z

j

� �

X

i

S

x

i

(30)

(S

i

are the Pauli matries, � is the strength of the trans-

verse �eld and the nearest neighbor interations I

ij

are

independent random variables of mean zero) an be rep-

resented as the Hamiltonian of the independent quantum

two-level systems (low energy droplets) of the form
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H =

1

2

�

X

L

X

D

L

�

�

D

L

S

z

D

L

+ �

L

S

x

D

L

�

; (31)

where S

z

D

L

and S

x

D

L

are the Pauli matries representing

the two states of the droplet; the sum is over all droplets

D

L

at length sale L and over all length sales L, and

�

X

L

�

Z

1

L

0

dL

L

(32)

with a short-distane uto� L

0

. The droplet length sale

L is more or of the order of the orrelation length. �

D

L

is the droplet energy whih is independent random vari-

able. The value �

L

regulates the strength of quantum

utuations (�

L

! 0 orresponds to the lassial limit).

�

L

= �

0

e

��L

d

(33)

is the tunneling rate for a droplet of the linear size L; �

0

is the mirosopi tunneling rate; � is de�ned from the

equation 2K = �L

d

where 2K is the surfae free energy

of an interfae between the two droplet states, so � is a

redued surfae tension for this interfae; � is approxi-

mately the same for all droplet. We will assume that �

L

is the same for all droplets of sale L. The Hamiltonian

of a single droplet is the (2� 2) matrix [6℄

1

2

�

�

D

L

�

L

�

L

��

D

L

�

(34)

with eigenvalues E

�

= �

p

�

2

L

+ �

2

L

.

E = 2jE

�

j is the energy di�erene between the two

eigenvalues. Note the Hamiltonian (33) is similar to the

Hamiltonian of two-level system in real glass [24℄. The

droplet exitations have a broad distribution of their free

energies at sale L for large L in a saling form [4,6℄

P

L

(�

L

)d�

L

=

d�

L

(T )L

�

P

�

�

L

(T )L

�

�

; L!1 : (35)

It is assumed that P

L

(x ! 0) > 0, P

L

(0) � P

L

(x) � x

�

at x ! 0. (T ) is a generalized temperature dependent

sti�ness modulus whih is of the order of harateristi

exhange I =

�

I

2

ij

�1=2

at T = 0 and vanishes for T � T

g

.

There is a rossover length sale, L

�

(T ), de-

�ned by ondition �

L

�

(T )

= k

B

T or L

�

(T ) =

[(1=�)log(�

0

=k

B

T )℄

1=d

. For droplets with L � L

�

(T )

and �

L

� k

B

T the energy

p

�

2

L

+ �

2

L

is always more

than k

B

T and thermal utuations are insigni�ant at

temperature T . Droplets with L � L

�

(T ) have �

L

�

k

B

T and behave lassially. The large droplets (�

L

�

k

B

T; �

L

� k

B

T ) are thermally ative. At low T only a

small fration of droplets is thermally ative, but many

low-T stati properties are dominated by these droplets

at the rossover length L

�

(T ).

The total magnet moment of a droplet wall sales as

qL

d

2

where q a random number with mean zero and

q

2

� q

EA

, q

EA

= hS

z

i

i

2

is the Eduards{Anderson order

parameter [4℄. The total magnetizationM of the sample

will be

M =

�

X

L

V

L

d

X

D

L

hS

z

D

L

iqL

d=2

(36)

and

m =

M

V

=

�

X

L

hS

z

D

L

iqL

�d=2

; (37)

where hS

z

D

L

iqL

�d=2

means the average over the droplets

energies �

L

. The stati �

3

suseptibilities are de�ned in

terms of the expansion of magnetization into Taylor se-

ries approximately as

M = �

1

h� �

3

h

3

+ : : : : (38)

For suÆiently small external �eld it is possible to be

restrited by few terms of this expansion. The susepti-

bilities are obtained as derivatives with respet to h at

h = 0 : �

1

= (�m=�h)j

h=0

, �

3

= (�

3

m=�h

3

)

�

�

h=0

.

M. J. Thill and D. A. Huse have alulated stati lin-

ear and nonlinear suseptibilities for droplet system de-

sribed by the Hamiltonian (30). The stati linear sus-

eptibility diverges at T = 0 below the lower ritial di-

mension d

l

. The stati nonlinear suseptibility diverges

in all dimensions d. The stati linear suseptibility ap-

pears to start away from the nonzero onstant T = 0

value dereasingly versus T to the lowest order [6℄.

In this paper using the quantum droplet model of the

short-range Ising spin glass in a transverse �eld and

quantum-mehanial ase ��

L

� 1 (quantum regime)

we alulate the third order nonlinear dynami response

at very low �nite temperatures.

V. QUANTUM DROPLET DYNAMIC

NONLINEAR SUSCEPTIBILITY

When we onsider the droplets at �nite temperatures

they may have two harateristi rates, (a) the Rabi fre-

queny (is of the order �

L

) and (b) the rate of lassial

ativation over energy barrier B for the annihilation and

reation of the droplet exitations [6℄

t � �

0

exp

�

B

k

B

T

�

; (39)

where B � �L

 

, 0 �  � d� 1,  is some exponent [4℄,

� is a barrier energy at t � T

g

, � � I; �

0

is a miro-

sopi time. There is a ompliated dynamial lassial-

to-quantum rossover depending on the temperature fre-

queny of a external �eld and length sale L. Aording
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to [6℄ the rossover dynami length is determined from

the ondition �

�1

L

= T , i. e.,

L

�

dyn

(T ) �

�

�

�

k

B

T

�

1=( �d)

: (40)

The system behaves presumably lassially or quantum

mehanially when the dominant length sale L is above

or below L

�

dyn

for the frequeny !. The linear dynami

suseptibility for the model Hamiltonian (30) was al-

ulated at zero temperature in [6℄. This suseptibility

is dominated by droplets at a length sale suh that !

is of the order the harateristi frequeny of the quan-

tum droplet system �

L

. We have alulated the linear

dynami suseptibility (real and imaginary parts) at �-

nite temperatures onsidering both quantum and lassi-

al limit and found a glassy behaviour [16℄. M. J. Thill

and D. A. Huse [6℄ suppose that the nonlinear dynami

suseptibility that �

0

3

(3!; !) diverges as a power of ex-

ternal �eld frequeny ! at T = 0 if � < 2, in strong

ontrast to lassial Ising spin glass at T > 0, where it

diverges as a power of log ! [4℄ (� is a power of �

L

in the

distribution of droplet energies �

L

at the length sale L

[6℄).

Now we onsider dynami third-order suseptibility

�

0

3

(!t; T ) at �nite very low temperatures (quantum

regime) when ��

L

� 1. We de�ne nonlinear third or-

der dynami suseptibility �

0

3

(!; T ) by expressions (24)

and (29)

�

0

3

(!; T ) =

1

(i�h)

3

P

3

3!

Z

1

0

d�

1

Z

1

0

d�

2

�

Z

1

0

d�

3

exp [i (3!�

1

+ !�

2

+ !�

3

)℄

�h[[[M

i

(�

1

+ �

2

+ �

3

);M

j

(�

2

+ �

3

)℄ ;M

k

(�

3

)℄ ;M

l

℄i: (41)

We now onsider the ubi dynami nolinear susep-

tibility �

3

(!; T ). The ontribution of a single droplet to

the real part of dynami third-order suseptibility up to

some fator � q

2

EA

L

2d

is proportional to

�

0

3D

L

� q

2

EA

�

P

5

k=0

A

k

(!;�

L

)�

2k

L

�

tanh

�

1

2

�

p

�

2

L

+ �

2

L

�

(�

2

L

+ �

2

L

)

5

2

(�

2

L

+ �

2

L

� 9!

2

) (�

2

L

+ �

2

L

� !

2

)

2

�

�

2

L

+ �

2

L

�

!

2

4

�

!

2

; (42)

where

A

0

= !

2

�

10

L

+ 4!

4

�

8

L

� 5!

6

�

6

L

;

A

1

= 2�

10

L

�

10

L

� 12:5!

2

�

8

L

� 49:75!

4

�

6

L

� 23:5!

6

�

4

L

� 2:25!

8

�

2

L

;

A

3

= 12�

6

L

� 45:5!

2

�

4

L

+ 41:75!

2

�

4

L

;

A

4

= 8�

4

L

� 15:5!

2

�

2

L

;

and A

5

= 2�

2

L

.

We have to average �

3D

L

over droplet energies �

L

using

the distribution of droplet free energies (35) and hang-

ing variables from �

L

to x = ��

L

. As follow froms (42)

to average over droplet energies we have to distinguish

ases: frequeny 3! greater or less than �

L

, ! greater or

less than �

L

and

!

2

greater or less than �

L

, then we have

to average the obtained expression over all length sales

L; see Eq. (32).

In our alulation we take into aout the �rst two

terms in the expansion of

tanh

�

1

2

q

x

2

+ �

2

�

2

L

�

' 1� 2e

�

p

x

2

+�

2

�

2

L

;

and apply the approximation

q

x

2

+ �

2

�

2

L

' ��

L

+

x

2

2��

L

;

beause we have ��

L

� 1.

After averaging over droplet energies for ases �

L

>

3!;�

L

� 3!;�

L

< 3! we have reeived that the real part

of the nonlinear suseptibility is dominated by droplets

of length sale

L

dom(3!)

�

�

1

�

�

�

�

�

log

�

3!

�

0

�

�

�

�

�

�

1=d

(43)

whih is determined by ondition �

L

� 3!. Then for

�

L

> 3! the result of two averages is given by the fol-

lowing expression
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�

0

3

�

q

2

EA



1+�

8

<

:

� se

�

��

2

�

X

k=�2;0;2

A

k

!

k�2

�

��k

0

[�(�� k)℄

��

d

G

�

�;

�

�

�

�

log

�

3!

�

0

�

�

�

�

�

(� � k)

�

+

1

�d

�

1

�

�

�

�

�

log

�

3!

�

0

�

�

�

�

�

�

�

e

�3�!

X

k=0;1

B

k

!

(��5�2k)=2

�

�(�+1+2k)=2

9

=

;

; (44)

where G[�; z℄ is inomplete gamma-funtion. The oeÆients in this expression depend on � only and are given in

Appendix A. Nonlinear suseptibility given by expression (44) does not diverge if 2 < � < 3 and �1 +

d

�

< �. For

ase �

L

< 3! we obtained a similar expression (Appendix A).

After averaging over droplet energies for ases �

L

> !;�

L

� !;�

L

< ! we have reeived that the real part of the

nonlinear suseptibility is dominated by droplets of length sale

L

dom(!)

�

�

1

�

�

�

�

�

log

�

!

�

0

�

�

�

�

�

�

1=d

(45)

whih is determined by ondition �

L

� !. For example, for the ase of �

L

< ! we reeived as a result of two averages

�

0

3

�

q

2

EA



1+�

(

1

�d

�

1

�

�

�

�

�

log

�

!

�

0

�

�

�

�

�

�

�

N

0

!

��2

+

8

X

k=1

N

k

!

��2�k

�

k

0

(�k)

��

d

G

�

�;

�

�

�

�

log

�

!

�

0

�

�

�

�

�

k

�

+ � se

�

��

2

�

X

k=0;2

R

k

!

k�2

�

��k

0

(�(� � k))

��

d

G

�

�;

�

�

�

�

log

�

!

�

0

�

�

�

�

�

(�� k)

�

+

1

�d

�

1

�

�

�

�

�

log

�

!

�

0

�

�

�

�

�

�

�

e

��!

2

X

k=0

P

k

!

(��5�2k)=2

�

�(�+1+2k)=2

)

: (46)

The oeÆients in this expression depend on � only and are given in Appendix B. Nonlinear suseptibility given by

expression (46) does not diverge if 2 < � < 7 and (�1 + d=�) < �. (The ases of �

L

> ! and �

L

� ! are given in

Appendix B).

After integration over droplet energies for ases �

L

>

!

2

;�

L

�

!

2

;�

L

<

!

2

we have reeived that the real part of

the nonlinear suseptibility is dominated by droplets of length sale

L

dom(

!

2

)

�

�

1

�

�

�

�

�

log

�

!

2�

0

�
�

�

�

�

�

1=d

(47)

whih is determined by ondition �

L

�

!

2

. Then for ase �

L

>

!

2

the result of two averages is given by the following

expression

�

0

3

�

q

2

EA



1+�

�

1

�d

�

1

�

�

�

�

�

log

�

!

2�

0

�

�

�

�

�

�

�

T

0

!

��2

+

8

X

k=1

T

k

!

��2�k

�

k

0

(�(� � k))

��

d

G

�

�;

�

�

�

�

log

�

!

2�

0

�

�

�

�

�

(�� k)

�

+ � se

�

��

2

�

X

k=0;2

S

k

!

k�2

�

��k

0

(�(� � k))

��

d

G

�

�;

�

�

�

�

log

�

!

2�

0

�

�

�

�

�

(�� k)

�

+

1

�d

�

1

�

�

�

�

�

log

�

!

2�

0

�

�

�

�

�

�

�

 

e

��!

2

X

k=0

U

k

!

(��5�2k)=2

�

�(�+1+2k)=2

+ e

�(3�!)=4

U

3

!

��3

�

�1

!)

: (48)

The oeÆients in this expression depend on � only and are given in Appendix C. Nonlinear suseptibility given

by expression (48) does not diverge if 2 < � < 7 and (�1 + d=�h�. (Cases �

L

� (!=2);�

L

< (!=2) are given in

Appendix C).
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Expressions for suseptibility onsist of two parts:

one part does not depend on temperature, the other

one depends on temperature. Nonlinear suseptibility

has strong dependene on distribution funtion P

L

(�

L

),

i. e. on �, on droplet mirosopi tunneling rate �

0

and other parameters. One an see that the real part

�

0

3

(!; T ) varies approximately logarithmially with fre-

queny. This signalizes broad distribution of relaxation

times of the system.

Let us take for numerial alulation the following

numbers: � = 1;�

0

= 10

10

s

�1

; d = 3; � = 2:5;  =

10

�15

erg, � = 10

�15

; q = 0:5. The frequeny depen-

dene of �

0

3

(!; T ) is shown in Fig. 1. We give log

10

f-

dependene at log

10

f from 0 to 11 at several �xed tem-

peratures: T

1

= 0:001; T

2

= 0:005; T

3

= 0:01; T

4

= 0:05.

Fig. 1. The frequeny dependene of real of the nonlin-

ear dynamial suseptibility �

0

3

(!; T ) versus Log

10

f at �xed

temperature

The frequeny interval overs some deades of frequen-

ies. Our numerial alulations show the rossover be-

tween low-! and high-! behaviours. In low-! region the

nonlinear response is found nonsingular and slowly de-

reasing. When the frequeny inreases the urve falls

down more quikly, the nonlinear response diverges at

! � �

0

=3, then the urve rises to some value. In low-! re-

gion we have a qualitative agreement with experimental

data for disordered dipolar magnet LiHo

x

Y

1�x

F

4

. At dif-

ferent low �xed temperatures the behaviour of �

0

3

(!; T )

is the same and the values of �

0

3

(!; T ) are approximately

the same. Therefore we give only one urve for all �xed

temperatures.

In Fig. 2 we give the temperature dependene of

�

0

3

(!; T ) at the temperatures from 0 to 10

�2

K at sev-

eral �xed frequenies: f

1

= 10

7

Hz; f

2

= 2:5 10

7

Hz; f

3

=

510

7

Hz; f

4

= 7:5 10

7

Hz; f

5

= 10

8

Hz of a �eld (f =

!=2�). The behaviour of �

0

3

(!; T ) indiates the following

glassy-like features. The urves of the temperature de-

pendene of �

0

3

(!; T ) have maxima depending on �xed

frequeny. The temperature of �

0

3

-maximum T

f

(!) de-

pends on frequeny. The nonlinear suseptibility magni-

tudes at di�erent �xed frequenies are remarkably dis-

tinguishable. The temperatures of maximum values are

di�erent. When the frequeny inreases the temperature

of �

0

3

-maximum shifts towards high temperatures. The

similar urve of temperature variation of �

0

3

was observed

in spin glasses at higher temperatures [2,13℄. If we on-

sider only the T -dependent part of �

0

3

, we will see that

the �

0

3

-maxima are sharp (Fig. 3).

Fig. 2. The temperature dependene of the real part of the

�

0

3

(!; T ) at various frequenies f .

Fig. 3. The temperature dependene of the T -dependent

part of the �

0

3

(!; T ) at various frequenies f .
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VI. DISCUSSION AND CONCLUSION

The ubi dynami suseptibility �

0

3

(3!) is analiti-

ally and numerially alulated in quantum spin glass

in terms of quantum droplet model on the basis of gen-

eral dynami nonlinear quantum-mehanial response

theory. We have arefully analyzed the suseptibility

temperature-frequeny behaviour to study the proper-

ties of the low temperature magneti state and to de-

termine whether or not a onventional spin glass state

exists below T

f

. Comparing with the ase of a true spin

glass transition we see that our data indiate that the

magneti state below T

f

does not orrespond to a on-

ventional spin glass state below T

f

. We �nd a glassy

type slow dynamis. Our alulations show that the a

nonlinear suseptibilities sale for �

L

> 3! with suh a

frequeny as

�

0

3

(3!) �

X

k=0;1

A(k)!

(��5�2k)=2

e

�3�!

�

�

�

log(3!�

�1

0

)

�

�

[d�(1+�)�℄=�

+

X

n=�2;0;2

B(n)!

n�2

G[�;

�

�

log(3!�

�1

0

)

�

�

(�� n)℄ ; (49)

where A(k) and B(n) and some expressions whih do

not ontain !. The nonlinear suseptibility diverges for

! ! 0 if d > (1 + �)� and � < 7, in ontrast to lassial

Ising spin glass at T > 0 (where it diverges as a power

of log!). Similar frequeny dependene was observed by

W. Wu et al. [14℄. So, the droplet dynamis at very low

temperatures is extremely slow.

Our alulations at T = 0 oinide with T = 0 re-

sult of M. J. Thill and D. A. Huse [6℄. For �nite temer-

atures we �nd some features whih have been reently

observed [13℄. We suppose that at some very low temper-

ature (temperature of the maximum of �

0

3

(!; T )) there

is a phase transition. If � > 0 and d = 3, we suppose

a true phase transition at very low temperature T

f

. For

our numerial data we �nd T

f

� 10

�4

� 8:5 10

�4

K for

f = 10

7

� 10

8

Hz, respetively (Fig. 3).

Besides frequeny and temperature dependene the

shape of �

0

3

(3!) depends ruially on the probability dis-

tribution of droplet free energies, on the tunneling rate

for a droplet of linear size L, on the material parameters.

In onsequene of this dependene there is divergene (or

onvergene) of �

0

3

(3!). We need to take into aount

(in a future paper) the dipole-dipole interation between

droplets and also droplet lattie interation.

Applying our results to the reported experimental data

on the nonlinear dynami suseptibility of LiHo

x

Y

1�x

F

4

we demonstrate that a fairly good agreement may be

ahieved.
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APPENDIX A

The oeÆients in expression (44) are the following:

� =

d� �(1 + �)

d

;

A

�2

= �

1

4

�

�

4

; A

0

= �

6263

1600

�

23�

100

+

6441

6400

2

�+1

2

; A

2

= �

135

10

+ 12 2

�+1

2

;

B

0

= G

�

�� 1

2

�

2

��7

2

3

��1

2

(1435�

2

+ 843�� 1988)

175

; B

1

= G

�

�� 1

2

�

2

��7

2

3

��3

2

(791� 791�

2

)

5

:

�

0

3

(!; T ) �

q

2

EA



1+�

�

1

�

�

�

�

log

�

3!

�

0

�

�

�

�

�

�

�d

(

C

0

� se

�

��

2

�

!

��2

+ e

�3�!

4

X

k=1

C

k

!

�+1�2k

2

�

��+5�2k

2

)

for �

L

� 3! where

C

0

=

243 35

��1

2

2

7��

185

�

68931 2

3��3

925

+

3

�

2

�

391 2

�+5

2

3

�

925

�

27 2

3��5

2

�

5

; C

1

= �G

�

�� 1

2

�

2

��3

2

3

�+3

2

5

;

C

2

= G

�

�� 1

2

�

2

��3

2

3

�+1

2

5

�G

�

�+ 1

2

�

2

�+1

2

3

��5

2

(458 + 945�)

35

;
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C

3

= �G

�

�+ 1

2

�

11897 2

��7

2

3

��5

2

175

+ G

�

�+ 3

2

�

10206 2

��7

2

3

��5

2

35

;

C

4

= �G

�

�+ 3

2

�

359106 2

��7

2

3

��5

2

175

:

This expression does not diverge if 2 < � < 3 and �1 +

d

�

< �. This expression has singularity at ! �

�

0

3

. When

the frequeny inreases the values of �

0

3

are growing to in�nity while !!

�

0

3

. �

0

3

maintains this property when ! is

more than

�

0

3

. The temperature dependene of �

0

3

in this ase has no extremes, we observe monotonous derease of

values of �

0

3

with temperature.

APPENDIX B

The oeÆients in expression (46) are the following:

N

0

=

576�

2

+ 2223�+ 3015

405(�+ 1)(�+ 3)

; N

1

=

4941�

2

+ 7586�+ 4589

405(�+ 1)(�+ 3)

; N

2

=

�3293�

2

� 1994�+ 2595

405(�+ 1)(�+ 3)

;

N

3

= �

2595�

2

+ 4156�+ 1553

405(�+ 1)(�+ 3)

; N

4

=

1641�

2

+ 1294�� 347

405(�+ 1)(�+ 3)

; N

5

=

499�

2

+ 819�+ 296

405(�+ 1)(�+ 3)

;

N

6

=

�312�

2

� 266�+ 30

405(�+ 1)(�+ 3)

; N

7

= �

6�+ 4

81(�+ 3)

; N

8

=

4�

81(�+ 3)

;

R

0

=

4(2

��1

2

� 1)

25

; R

2

=

�� 11

50

; P

0

= �G

�

�+ 1

2

�

2

��5

2

(24�+ 85)

3

; P

1

= G

�

�+ 3

2

�

7787 2

��9

2

75

;

P

2

=

�

G

�

�+ 3

2

�

+ G

�

�+ 5

2

��

2

��9

2

374410(�+ 3)

225(�+ 5)

:

�

0

3

�
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2
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��2
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X
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��2�k

�

k
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�

!
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�
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k

�

+� se

�
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2

�
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K

k

!

k�2

�

��k

0

(�(� � k))

��

d

G

�

�;

�

�

�

�

log

�

!

�

0

�

�

�

�

�

(� � k)

�

+

�

1

�

�

�

�

log

�

!

�

0

�
�

�

�

�

�

�d

 

e

��!

3

X

k=0

 L

k

!

��3�2k

2

�

��+1�2k

2

+ e

�3�!

 L

4

!

��3

�

�1

!

9

=

;

for �

L

> ! where

J

0

= �

3

�

(4�

2

� 36�� 34)

5(�+ 1)(�+ 3)

; J

1

=

3

��1

(26�

2

+ 58�+ 30)

5(�+ 1)(�+ 3)

; J

2

= �

3

��2

(6�+ 2)

�+ 3

; J

3

=

3

��3

2�

�+ 3

;

K

0

= �

2

�

157�

160

�

103

32

+

2

��1

2

21

5

; K

2

= �

3�

2

4

+

2�

5

�

37

20

+

2

�+1

2

8

5

;

 L

0

= G

�

�+ 1

2

�

2

��7

2

(9� �

2

);  L

1

= G

�

�+ 1

2

�

2

��5

2

(�3�

3

� 9�

2

+ 3�� 4)

3

;

 L

2

= G

�

�+ 3

2

�

2

��9

2

66601

225

;  L

3

= G

�

�+ 5

2

�

2

��7

2

45

;  L

4

= �

2

�+

7

2

7

25

:
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This expression does not diverge if 2 < � < 5 and �1 +

d

�

< �.

�

0

3

�

q

2

EA
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�
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�
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!

�

0

�

�

�

�

�

�

�d

(

� se

�

��

2

�

M

0

!

��2

+ e

��!

5

X

k=1

M

k

!

�+3�2k

2

�

��+7�2k

2

)

for �

L

� ! where

M

0

= �

2

��1

2

33

50

�

2

8��

3

��1

2

50

+

�+ 3

10

; M

1

= G

�

�+ 1

2

�

2

�+1

2

; M

2

= G

�

�� 1

2

�

2

��1

2

(2� �);

M

3

= G

�

�+ 1

2

�

2

�+3

2

; M

4

= �G

�

�+ 1

2

�

2

��1

2

(30�+ 121)

15

; M

5

= G

�

�+ 3

2

�

2

�+1

2

101

45

:

This expression does not diverge if 2 < � < 5 and �1 +

d

�

< �. Nonlinear suseptibility as a funtion of ! for

the ase of �

L

> ! has singularity at ! � �

0

. Before this point we �nd �

0

3

-minima depending on �xed temperature.

When ! beomes larger than �

0

the values of �

0

3

grow to in�nity (Fig. 4).

Fig. 4. The frequeny dependene of the real part of the

nonlinear dynamial suseptibility �

0

3

(!; T ) versus Log

10

f at

several �xed temperatures for ase �

L

> !

Fig. 5. The temperature dependene of the real part of the

nonlinear dynamial suseptibility �

0

3

(!; T ) at several �xed

frequenies f .

In the temperature behaviour of �

0

3

we also observe the minima. The temperatures of the minima and their values

depend on �xed frequenies.

The ase of �

L

� ! has its own partiular features, for example in temperature dependene (Fig. 5).

APPENDIX C

The oeÆients in expression (48) are the following:

T

0

=

�3996�

2

� 9548�� 6155

405(�+ 1)(�+ 3)

; T

1

=

4941�

2

+ 7586�+ 4589

405(�+ 1)(�+ 3)

; T

2

=

�3293�

2

� 1994�+ 2595

405(�+ 1)(�+ 3)

;

T

3

= �

2595�

2

+ 4156�+ 1553

405(�+ 1)(�+ 3)

; T

4

=

1641�

2

+ 1294�� 347

405(�+ 1)(�+ 3)
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5

=

499�

2

+ 819�+ 296

405(�+ 1)(�+ 3)
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T

6

=

�312�

2

� 266�+ 30

405(�+ 1)(�+ 3)
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7
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6�+ 4

81(�+ 3)
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=
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81(�+ 3)

;
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:

This expression does not diverge if 2 < � < 7 and �1 +

d

�

< �.
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2
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:

This expression does not diverge if 2 < � and �1 +

d

�

< �.

In the ase of �

L

�

!

2

we �nd quite a di�erent temperature dependene of �

0

3

(!; T ) than for �

L

> 3! (Fig. 6). The
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frequeny dependene is also di�erent. �

0

3

(!; T ) has singularity at ! � 2�

0

, before this point we �nd the minima of

�

0

3

depending on �xed temperature.

For �

L

<

!

2

�

0

3

(!; T ) has the minima on T and temperatures of the minima are lower (approximately by ten times)

than for �

L

�

!

2

. �

0

3

(!; T ) as a funtion of ! has singularity at ! � 2�

0

(Fig. 7). The values of �

0

3

(!; T ) at di�erent

�xed temperatures are approximately the same.

Fig. 6. The temperature dependene of the real part of

the nonlinear dynamial suseptibility �

0

3

(!; T ) at various fre-

quenies f

Fig. 7. The frequeny dependene of the real part of the

nonlinear dynamial suseptibility �

0

3

(!; T ) versus Log

10

f at

several �xed temperature
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L�N��NA TA KUB�QNA DINAM�QNA SPRI�N�TLIV�ST^

U KVANTOVOMU SP�NOVOMU SKL�

D�. Buz�el~�o

1

, R. V. Saburova

2

, V. G. Suxkova

2

1

F�ziqni� v�dd�l �m. E. R. Ka�n�el~�o, Un�versitet m. Salerno, 84081, Baron�s�{Salerno

ta v�dd�l Na�onal~nogo �nstitutu f�ziqnogo mater��loznavstva, Salerno, �tal��

2

F�ziqni� fakul~tet, Kazans~ki� ener�etiqni� un�versitet,

vul. Krasnosel~s~ka, 51, Kazan~, 420066, Ros��

Dosl�d�eno niz~kotemperaturnu poved�nku dinam�qnoÝ nel�n��noÝ (kub�qnoÝ) spri�n�tlivosti �

0

3

(!; T )

u kvantovomu d-vim�rnomu �zin�ovomu sp�novomu skl� z korotkos��no� vzamod�� pom�� sp�nami. Z ��

meto� zastosovano kvantovu kraplinnu model~ ta kvantovomehan�qnu nel�n��nu teor�� v�dguku. Otrimano

sklopod�bnu poved�nku kraplinnoÝ dinam�ki. Vi�vleno sil~nu qastotnu zale�n�st~ �

0

3

(!; T ); temperaturnu

zale�n�st~ pom�qeno pri du�e niz~kih temperaturah (kvantovi� re�im). Nel�n��ni� v�dguk zale�ni� v�d

tempu tunel�vann� krapl�, wo regul� veliqinu kvantovih fl�ktua��. Ce� v�dguk sil~no zale�it~

v�d rozpod�lu v�l~nih ener��� krapel~ ta v�d seredn~ogo znaqenn� masxtabu dov�in krapel~. Zaznaqeno

zastosuvann� rezul~tat�v v eksperimentah nad kvantovimi sp�novimi steklami na zrazok nevpor�dkovanogo

dipol~nogo kvantovogo �zin�ovogo magnetika LiHo

x

Y

1�x

F

4

ta psevdosp�nu.

368


