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The low temperature behaviour of the dynamic nonlinear (cubic) susceptibility x5(w,T’) in quan-
tum d-dimensional Ising spin glass with short-range interactions between spins is investigated in
terms of the quantum droplet model and the quantum-mechanical nonlinear response theory is em-
ployed. We have revealed a glassy like behaviour of droplet dynamics. The frequency dependence of
x5(w,T) is very remarkable, the temperature dependence is found at very low temperatures (quan-
tum regime). The nonlinear response depends on the tunneling rate for a droplet which regulates
the strength of quantum fluctuations. This response has a strong dependence on the distribution
of droplet free energies and on the droplet length scale average. Implications for experiments in
quantum spin glasses like disordered dipolar quantum Ising magnet LiHo,Y1_.F4 and pseudospin

are noted.
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I. INTRODUCTION

The dynamics of glassy systems is an attractive and
rapidly developing field of physics [1-5]. Spin glasses and
quantum spin glasses are a very interesting system for a
theoretical as well as an experimental investigation of
dynamic phenomena [2-4]. There are two different spin
glass dynamic descriptions: the mean-field theory and
the droplet phenomenological one [1-6]. In this paper we
investigate theoretically nonlinear cubic dynamic suscep-
tibility as a function of frequency and temperature in the
Ising spin glass in a transverse field in terms of quan-
tum droplet model at very low temperatures (quantum
regime). The quantum phase transitions which are gov-
erned by quantum fluctuations of the system may tunnel
from one local minimum of the free energy to another;
new physical effects such as quantum channel of relax-
ation appear. There are few theoretical studies on the
nonlinear static response in quantum spin glasses [7—10]
and almost no studies on the dynamic nonlinear response
[3]. In [3] the dynamic nonlinear response of a quantum
spin glass was found to be frequency independent and
nonsingular in quantum critical regime in contrast to
its behaviour in the usual spin glass. There are exper-
imental data on the nonlinear dynamic response in clas-
sical [11-13] and quantum [14] spin glasses investigated
by the Fourier-transform technique. A third-order non-
linear susceptibility is negative and diverges at an or-
dinary spin glass transition temperature 7, from both
the upper and the lower sides. But when % is mea-
sured by a finite probing frequency the response falls
out of equilibrium before the transition temperature and
does not diverge at T,. Then x45(w) shows a maximum
at T ~ Ty(w) where T (w) is the freezing temperature
which is the upper bound on 7, and T, = Tf(w — 0).
Such a behaviour was observed, for the example, for clas-
sical Ising spin glass Feg sMro 5TiOs [13]. W. Wu el al.

[14] measured nonlinear susceptibility x5(w,7") in quan-
tum spin glass (the diluted dipolar-coupled Ising spin
glass LiHogp 167Y0.833F4 in the transverse field) tuning
transverse field I' from the I' = 0 classical to the 7' = 0
quantum limit. At the mK temperatures they found a
clear dynamic signature of the spin glass to paramagnet
transition whether dominated by thermal or quantum
fluctuations. In [14] it was shown that x4 depends on
the frequency for w > 10 Hz. However, it depends very
weakly on w for w < 10 Hz. There is a crossover be-
tween high w (w-dependent) and low w (w-independent)
behaviours. Nonlinear susceptibility contains a diverging
component which dominates at 7' = 98 mK, but disap-
pears by 25 mK. The x5(w) does not diverge but shows a
maximum at T¢(w). x5(w) measured at a higher temper-
ature and lower transverse field has a larger maximum
than the x%(w) measured at a lower temperature and a
larger transverse field. The analysis of these experimental
data seems not clear [15] because frequencies used in the
experiments [14] are not sufficiently low such as to deter-
mine the equilibrium behaviour of system. Contrary to
the theoretical expectations, quantum transitions may be
qualitatively different from thermally driven transitions
in real spin glasses. Recently the linear dynamic suscep-
tibility (in-phase and out of phase components) at 7' = 0
was investigated theoretically for the Ising spin glass in
a transverse field in terms of the quantum droplet model
by M. J. Thill and D. A. Huse [6]. At present two different
dynamic descriptions exist: the mean field theory and the
droplet picture (more phenomenological but more real).
It is better to understand the actual argument of dis-
cussion [5]. A basic assumtion of the droplet picture is
that the spin glass dynamics is governed by large-scale
excitations whose relaxation time increases with length
scale. There we give an employment of droplet spin glass
model to a dynamic nonlinear response at very low tem-
peratures. In previous papers [16] we have calculated the
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real and imaginary parts of linear dynamic susceptibility
in the same model, as in [6], for nonzero temperatures.
The temperature and frequency dependence of suscepti-
bilities x4 (w,T) and x¥(w;T) is calculated at low tem-
peratures. We find a broad maximum for the real part
X1 (w,T) which shifts towards higher temperatures with
increasing frequency of ac external field w. The temper-
ature of maximum T} (w) depends on frequency w and
increases with w up to the magnitude where x| (w,7T)
starts to decrease. The imaginary part x{(w,7T) has a
very interesting behaviour too. It is shown that many low
temperature properties are dominated by thermally ac-
tive droplets at the classical-to-quantum crossover length
scale of droplets. In contrast to the linear susceptibil-
ity, the nonlinear dynamic cubic susceptibility diverges
or converges depending on the kind of distribution of
free droplet energies. It is shown that both susceptibil-
ities have a glassy behaviour. In [16] the general linear
response theory of magnetic dispersion and absorption
phenomena for quantum systems by Kubo and Tomita
[17] that relates the relaxation function and the linear dy-
namic susceptibility was used. But for simplicity dipole-
dipole and dipole-lattice interactions were neglected. We
note that in [6] the real part of the cubic nonlinear ac
susceptibility was defined as the in-phase 3w magnetiza-
tion response M (3w) to a small time-dependent applied

field h cos(wt):

lim 222\ 1
o Ry (M

where V' is the sample volume. The authors of [6] gave
some expression for x5 they expect only at zero temper-
ature.

II. DYNAMICAL NONLINEAR RESPONSE

The full nonlinear response theory despite its gener-
ality and importance i1s of limited practical value be-
cause 1t 18 mathematically difficult. Eventually it is nec-
essary to make approximations, for example, the well-
known perturbation expansion of the time-evolution op-
erators, using perturbation Hamiltonian with some small
parameter. Nonlinear response theory was developed and
described, for example, in [17-22]. Here we summarize
briefly the theory of higher-order dynamic response. It is
based on the Hamiltonian

Ho— AjFj(t), t 2 to, (2)

=
I
=
+
=
I

where H; is nonperturbation Hamiltonian of system, H
is perturbation Hamiltonian which describes the inter-
action between the Heisenberg operators .A; (material
operators) and the external perturbation ]i"j. At time
t > 1o one is interested in the expectation value of the
Heisenberg operator B; which is given by
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(Bi(t)) = Tr[po Bi (t)] = Tr[p(t) Bi] , (3)

where the density matrix p(t) = U(t,to)ﬁ(to)UT(t,to).
The time-evolution operator U satisfies the Schrédinger
equation ¢h(dU /dt) = HU. This differential equation is
equivalent to an integral equation which has the interac-
tive solution of the form [18-20]

-
Ult,to) = Texp [—%/ H(t’)dt’] ~
to

Uo(t,to){l—l—%/t dt1Fj(t1)Ag(tl,tO)AjUO(tlatO)} , (4)

o

where ﬁo(t,to) = exp [—%(t —to)")':l . It is difficult to

find an expression for U in closed form. It was used that
Ha (1) is in some sense small. We define the total response
of the system at time ¢ to the external force F}; as the
difference

AB;(t) = (B;i(t)) — (Bi)o , (5)

where the subscript zero on expectation values refers to
the equilibrium expectations. One can then understand
the behaviour of the system in terms of the dynamical
response. Using aforementioned expressions [2—4] the dy-
namical response can be written through the third order
in the perturbation #; in the following form [20]

(Bi(0)) - (Bi)y = ABi(0) = [ digit =)0

to

t t1
—I-/ dt1/ dty pijr(t —ta, 11 —ta) Fr(t1) F(t2)
to to

t t1 ta
—|—/ dtq / dts / dts goijkl(t —t3,t9 — 13,81 — tz)
to to to

< Fo(t1) Fr(t2) Fy(t3) + . . ., (6)

where ¢35, ik, @ik are the first-, second- and third
order response functions,

piglt — 1) = =[5, Bilt —)])o @

1
Yij(t —to,t1 — o) = W

x([A;, [Ak(ty = t2), Bi(t —t2)]])o (8)

1
Pijli(t —t3,ty — 13,81 — t3) = W

< ([Ag [Ar(t = t2), [Ai(te = t3), Bi(t = 3)]]o- (9)
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Here we have employed the summation convention over
repeated indices and cyclic invariance of the trace. Ex-
pressions [7-9] can be written in a more revealing form if
we set g = —oo and change integration variables includ-
ing an adiabatic switching factor if necessary. We take
(instead of ¢, t1, ta, t3) 7 = ¢t —t1, ™0 = 11 — to time
differences further. The ordinary linear response theory
utilized only ¢;;(m) and it is the simplest approximation
to the full theory of linear dynamic response [23]. Using
new variables we may write the expressions for response
functions in the form

AY) = = ([A(), BON) (10)
2 1

Pijk = Gh)? ([[A(71 + ), A(m)], B]), (11)
3 _ 1

Pijkl = — (ih)? ([[[A(T1 + 72 + 13),

Arz + 7)), A73)], B) (12)

where the bracket (...) denotes an expectation value with
respect to the equilibrium ensemble. The useful interpre-
tation is generated from Eq. [6] in the case that t; = —oc0
if we suppose that the external force F' is constant and
vanishes for ¢ > 0. For ¢ = 0 the system 1s in partial
equilibrium and starts to relax to equilibrium. It is con-
venient to write a nonlinear response for this case (initial
value case [21]) as

(B(1)) = (B)o = RV(t)F

—I-%R(z)(t)FF—i— %R(B)(t)FFF—I—... , (13)
where R%(t) are the relaxation functions,
RO(1) = / dr o (m), (14)
0
@Oy = [ an [ dro®
RE() = dr dra ;53 (T2, 71+ T2), (15)
0 0
R®)(t) = / dn / drs
0 0
></ dngDE?lll(Tg,T2+T3,T1 + 72+ 73). (16)
0

In this form response may describe relaxation of the
system. If response function go(t)(l) vanishes as t — oo,
then o)) = —sRW(1)/t, so RM(t) contains much

more information than the response function.

III. DYNAMIC MAGNETIC SUSCEPTIBILITIES

Let the ac magnetic field h,, = hcos(wt) be applied
to a magnetic system. The magnetization nonlinear re-
sponse

M(w,t) = Z{@; cos(kwt) + @Z sin(kwt) }
k=1

to harmonic magnetic field A contains only odd har-
monic: @] ~ y|h, ©f ~ y4h3, etc. [11]. In the expression
for M (w,t) the magnitudes ©j, and ©}/ are real and imag-
inary parts of harmonic amplitudes respectively. For the
general theory of nonlinear processes one can evaluate

[11]

h3
Of = xi(wt)h + [x5(w, O’W)]Z
+ [4)({:,((.0,0,(.0,0,(.0) + QXZE’(W,O,W,QW’W)

+ 2x5(w, 2w,w, 0,w) + X5(w, 2w, w, 2w, w)

5

+ X5 (w, 2w, 3w, 2w, w)]— + .. .,

16 (17)

h3
05 = x5(3w, QW’W)Z + x5 (3w, 2w, 3w, 2w, w)

+ X5 (3w, 4w, 3w, 2w, w) + 2x%5 (3w, 2w, w, 0, w)

5
+ X5 (3w, 2w, w, 2w,w)]1—6 + ...,
5

0L = x5 (hw, 4w, 3w, Qw,(,u)1—6 4.

(18)
(19)

The measurement of all the harmonic amplitudes Oy
gives a measurement of the susceptibilities y, in two
limits: a) if x}h > x5h% > \Lh® the back reaction is
negligible and each harmonic measures the susceptibil-
ity of the same order; b) in the static (w — 0) limit the
solution of the linear system [16] fully accounts for the
back reaction. In the absence of ac magnetic field, the
back reaction can be made small so that the dynamic
susceptibilities can be obtained from Eq. [16]. In a more
compact notation we may write

M(w,t) ~ [Mo+ M, + Mz, +..]+[C.C], (20)

where My is the equilibrium magnetization in zero field;
M, is the w-magnetization response; Mgz, is the 3w-
magnetization response and so on.

The expression (10)-(12) may be considered as solu-
tion of the corresponding quantum equations considered
above. For the external ac field we assume a classical
value. This field interacts with quantum system and sys-
tem behaviour is determined by quantum laws. We shall
focus on the real part of the third-order nonlinear dy-
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namic susceptibility x5(3w, 2w, w) and denote it as x5 (w).
In this paper we are interested in the response when the
ac magnetic field is applied in z-direction; x1 = x,. and
so on. In formulas (2-12) both A; and B; are the mag-
netic dipole moment operators. Considering the initial
value case [21] we suppose, like [6], that the system is in
equilibrium with a small time-independent field A = h,
for t < 0 and that the external field is turned off at t = 0,
then for ¢ > 0 the induced magnetization of the sample in
z-direction to first order of perturbation theory is given
by M(t) — My ~ RM(t)h, where a relaxation function

RO = [ p(rir (1)
0
and the first order response function is [20]

o1y (1)~ = (M (), M), (22)

The higher-order response functions are given by

@E;,l(ﬁ, ) & (1;1)2 ([Mi(m1 + 1), M;(2)], Mi]), (23)

1
3
Spgj])gl(Tla T2, T3) ~ — (Zh)

X([[[Mi(m1 + 72 + 73), Mj (2 + 73)], Mi(73)], Mi]) . (24)

w

The linear and the nonlinear dynamic susceptibilities
(admittances in the spectral representation [22]) may be
found through response functions (22)-(24). In order to
find the complete expression for susceptibility, we should
use its symmetry and causality properties [22].

The nonlinear susceptibilities may be chosen so that
these susceptibilities were symmetrical relative to simul-
taneous permutation of tensor indices and corresponding
to them arguments, for example, the second rank tensors
are Yijr(wi,w2) = Xikj(w2,w1), and the fourth rank ten-
sors are

Xijki (w1, w2, ws) = Xikji(wz, w1, ws)

= Xijik (Wi, ws,wa) = ... (25)
according to the causality property
xij = 0 for m < max (2, 73,...). (26)

Linear and nonlinear dynamic susceptibilities are given

by
W) = [l 0
0
1 (o)
Xijh (w1, w2) = —/ dr
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></ dry {@E?,l(ﬁ,Tz)ei(wl"'w)ﬁ-"mm}, (28)
0
P (o) (o)
Xijht(W1, w2, ws) = 3—?/ dT1/ dry
"Jo 0

></ d7'3802('?;11(7'1,7'2,7'3)
0
X exp [i(w1 + wa + w3) Ty + fwaTs + iwsTs] . (29)

In Eq. (28) P; means the summation over all permuta-
tions of the subscripts (w1j), (w2k) and (wsl) [22]; re-
sponse functions ¢ are given by expressions (22)—(24).
In particular, the second harmonics generation process
is characterized by the tensor x;;x(w,w). If w1 = wy =
w3 = w, the triple frequency 3w is formed; the frequency
tripling is described by the tensor x;jri(w,w,w) (we note

it as x5(w)).

IV. THE MODEL HAMILTONIAN

The droplet model describing the low-dimensional
short-range Ising spin glass is based on renormalization
group arguments [4]. In the dimensions above the lower
critical dimension d; (usually in spin glass 2 < d; < 3) the
droplet model finds a low temperature spin-glass phase
in zero magnetic field. This phase differs essentially from
the spin-glass phase in the mean-field approximation
of the Sherrington—Kirkpatrick infinite-range spin-glass
model [2]. In the droplet model there are only two pure
thermodynamical states related to each other by a global
spin flip. In magnetic field there is no phase transition.
A droplet 1s an excited cluster in an ordered state where
all the spins are inverted. The natural scaling ansatz for
droplet free energy e; which are considered to be inde-
pendent random variables) is ¢, ~ LY, L > ¢(T); ¢ is the
correlation length, L is the length scale of droplet and 6
is the zero temperature thermal exponent, § < (d—1)/2.
One droplet consists of order L? spins. Below d;, 8 < 0;
above d; one has 8 > 0.

The droplet model of classical Ising spin glass was con-
sidered by D. S. Fisher and D. A. Huse [4]. The features
of this model are described also, for example, in [23].

Recently M. J. Thill and D. A. Huse [6] have shown
that the d-dimensional quantum Ising spin glass in a
transverse field with the Hamiltonian

H=—> IS8 -T> S (30)
i,j i

(S; are the Pauli matrices, T' is the strength of the trans-
verse field and the nearest neighbor interactions Z;; are
independent random variables of mean zero) can be rep-
resented as the Hamiltonian of the independent quantum
two-level systems (low energy droplets) of the form
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= 2 (nu S, +Tu5B,) (31)

L Dp

where S7, and ST, are the Pauli matrices representing
the two states of the droplet; the sum is over all droplets
Dy at length scale L and over all length scales L, and

Z::N/Lmde (32)

with a short-distance cutoff Ly. The droplet length scale
L 1s more or of the order of the correlation length. ep,
is the droplet energy which is independent random vari-
able. The value 'y regulates the strength of quantum
fluctuations (' — 0 corresponds to the classical limit).

Ty = Tge™ 7 (33)

is the tunneling rate for a droplet of the linear size L, T'y
is the microscopic tunneling rate; o is defined from the
equation 2K = ¢L® where 2K is the surface free energy
of an interface between the two droplet states, so o is a
reduced surface tension for this interface; ¢ is approxi-
mately the same for all droplet. We will assume that T'g
is the same for all droplets of scale L. The Hamiltonian
of a single droplet is the (2 x 2) matrix [6]

1 EDL FL
— 4
2 ( 'y —ep, (34)

with eigenvalues Ey = £+/e7 + '7.

E = 2|E4| is the energy difference between the two
eigenvalues. Note the Hamiltonian (33) is similar to the
Hamiltonian of two-level system in real glass [24]. The
droplet excitations have a broad distribution of their free
energies at scale L for large L in a scaling form [4,6]

PL(EL)dGLI ) ,L—)OO. (35)

dEL ( €7,
Y(I)LE - \A(T)LP

It is assumed that Pr(z — 0) > 0, Pr(0) — Pr(zx) ~ «?
at ¥ = 0. y(7) is a generalized temperature dependent
stiffness modulus Wll/lizch is of the order of characteristic
exchange 7 = (IZZJ) at T' = 0 and vanishes for T' > T}

There is a crossover length scale, L*(7), de-
fined by condition T'pepy = kgT or L*(T) =
[(I/U)log(Fo/kBT)]l/d. For droplets with L < L*(T)
and 'y > kg7 the energy /e +I'7 is always more
than kg7 and thermal fluctuations are insignificant at
temperature 7. Droplets with L > L*(T) have T'p <«
kpT and behave classically. The large droplets (ef <
kpT, Tp < kpT) are thermally active. At low 7 only a
small fraction of droplets is thermally active, but many
low-T static properties are dominated by these droplets
at the crossover length L*(T).

The total magnet moment of a droplet wall scales as
q_L% where ¢ a random number with mean zero and
g% ~ qga, qra = (S7)? is the Eduards—Anderson order
parameter [4]. The total magnetization M of the sample

will be

M =3 55 S b e (36)

Dy,

and

(55 VgL , (37)

M ~
L

where (S}, YgL=%/2 means the average over the droplets
energies €7. The static xs susceptibilities are defined in
terms of the expansion of magnetization into Taylor se-
ries approximately as

M:th—X3h3—|—.... (38)

For sufficiently small external field it is possible to be
restricted by few terms of this expansion. The suscepti-
bilities are obtained as derivatives with respect to h at
h=0:x1= (0m/Oh)],_y, x5 = (33m/3h3)|h:0

M. J. Thill and D. A. Huse have calculated static lin-
ear and nonlinear susceptibilities for droplet system de-
scribed by the Hamiltonian (30). The static linear sus-
ceptibility diverges at 7' = 0 below the lower critical di-
mension d;. The static nonlinear susceptibility diverges
in all dimensions d. The static linear susceptibility ap-
pears to start away from the nonzero constant 7" = 0
value decreasingly versus T' to the lowest order [6].

In this paper using the quantum droplet model of the
short-range Ising spin glass in a transverse field and
quantum-mechanical case ST'r > 1 (quantum regime)
we calculate the third order nonlinear dynamic response
at very low finite temperatures.

V. QUANTUM DROPLET DYNAMIC
NONLINEAR SUSCEPTIBILITY

When we consider the droplets at finite temperatures
they may have two characteristic rates, (a) the Rabi fre-
quency (is of the order T'z) and (b) the rate of classical
activation over energy barrier B for the annihilation and
creation of the droplet excitations [6]

B
1~ TOeXp(k’B—T) , (39)

where B ~ ALY, 0 < ¢ < d— 1, is some exponent [4],
A is a barrier energy at t < T,, A ~ Z; 15 is a micro-
scopic time. There is a complicated dynamical classical-
to-quantum crossover depending on the temperature fre-
quency of ac external field and length scale L. According
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to [6] the crossover dynamic length is determined from
the condition Fil =T 1. e,

jun ()~ (Fher)

The system behaves presumably classically or quantum
mechanically when the dominant length scale L is above
or below L”C‘lyn for the frequency w. The linear dynamic

(40)

susceptibility for the model Hamiltonian (30) was cal-
culated at zero temperature in [6]. This susceptibility
is dominated by droplets at a length scale such that w
is of the order the characteristic frequency of the quan-
tum droplet system ['y. We have calculated the linear
dynamic susceptibility (real and imaginary parts) at fi-
nite temperatures considering both quantum and classi-
cal limit and found a glassy behaviour [16]. M. J. Thill
and D. A. Huse [6] suppose that the nonlinear dynamic
susceptibility that y5(3w,w) diverges as a power of ex-
ternal field frequency w at 7' = 0 if ¢ < 2, in strong
contrast to classical Ising spin glass at 7" > 0, where it

(Zhoo Auleo, T

)e%’“) tanh (%ﬁ\/ei + F%)

diverges as a power of log w [4] (¢ is a power of €1, in the
distribution of droplet energies er at the length scale L
6.

Now we consider dynamic third-order susceptibility
X5(wt, T) at finite very low temperatures (quantum
regime) when ST >» 1. We define nonlinear third or-
der dynamic susceptibility x5(w,T) by expressions (24)

and (29)
Zh TR} 3' / dTl/ dT2

></ drsexp [ (Bwr + wrs + wr3)]
0

/

XS(wa

X([[[Mi(m1 + 72 + 73), Mj(72 + 73)], Mi(73)], Mi]). (41)

We now consider the cubic dynamic nolinear suscep-
tibility xs(w,T'). The contribution of a single droplet to
the real part of dynamic third-order susceptibility up to
some factor ~ q%ALZd is proportional to

/ 2
X3p, ~Y9EA

5
2

(e +T7)

where
Ap = T} + 40T — 50°TY |
Ay = 207°T1 — 125w T8 — 49.75w*T¢
— 23.50°T] — 2.250°T% |
Az =121 — 45.50°T] + 41.75w°T']
Ay = 817 — 15.5w°T% |
and As = QF%.

We have to average ysp, over droplet energies €y, using
the distribution of droplet free energies (35) and chang-
ing variables from €z to # = Ber. As follow froms (42)
to average over droplet energies we have to distinguish
cases: frequency 3w greater or less than 'y, w greater or
less than 'y, and % greater or less than I'y, then we have
to average the obtained expression over all length scales
L; see Eq. (32).

In our calculation we take into accout the first two

360

(€3 +T3 —9w?) (] +T3 —w?)” (¢ + T3 —

(42)

2ot

terms in the expansion of

1 2 272
tanh (5\/1‘2—1—621%) ~ 11— 2" VTHITL

and apply the approximation

2
\Jx? + 3212 ~ 6U
¥2 4+ 6L+26F

because we have GT'p, > 1.

After averaging over droplet energies for cases I'p >
3w, 'y ~ 3w, 'y < 3w we have received that the real part
of the nonlinear susceptibility is dominated by droplets
of length scale

1
Ldom(Sw) ~ (;

(43)

which 1s determined by condition I'; ~ 3w. Then for
't > 3w the result of two averages is given by the fol-
lowing expression



LINEAR AND CUBIC DYNAMIC SUSCEPTIBILITIES IN QUANTUM SPIN GLASS

o (3)e-o]

3w “ —38w $—5—2k)/2 a—(¢+1+2k)/2
()] 5 i)

k=0,1

XéN Q%A T sec [?] Z A k— 2F¢ k[ (¢ k)] We=% |:OZ,

d
k=-2,0,2
—|—1 11
— [ =llo
ad

where Go, 2] is incomplete gamma-function. The coefficients in this expression depend on ¢ only and are given in
Appendix A. Nonlinear susceptibility given by expression (44) does not diverge if 2 < ¢ < 3 and —1 + % < ¢. For
case I'p < 3w we obtained a similar expression (Appendix A).

After averaging over droplet energies for cases I'p > w, 'y ~ w,'; < w we have received that the real part of the
nonlinear susceptibility is dominated by droplets of length scale

w 1/d
Ldom(w) ( log (FO) ‘) (45)

which is determined by condition I', ~ w. For example, for the case of ['p < w we received as a result of two averages
w “ ° (k)™=
o (2)]) ot Lt

2
, a5a 1 w
~ - log [ =) |k
Xs 71+¢{ad< —~ ’ Og<Fo)‘ ]
w
1 — —k
: og<ro)‘(¢> )]

k)
+ msec [?] Rkwk_zfg_ki(g(qs 7 ) G [a
k=0,2
1 /1 w \[\* :
— (= -~ —pw Po($—5-2k)/2 g—(o+1+2k)/2 L 46
+ad<0' Og<F0)D ‘ ; K P (16)
The coefficients in this expression depend on ¢ only and are given in Appendix B. Nonlinear susceptibility given by
expression (46) does not diverge if 2 < ¢ < 7 and (=1 + d/f) < ¢. (The cases of T > w and 'y ~ w are given in
Appendix B).

After integration over droplet energies for cases I'y > %,I'p ~ %,I't < % we have received that the real part of
the nonlinear susceptibility is dominated by droplets of length scale

)

y 1/d
Ldom(« lo 47
e (e () .
which is determined by condition I'y, ~ 5. Then for case 'y > % the result of two averages is given by the following
expression
o 8
/ qga | 1 (1 w $—2 s—a—kpk (0@ — k)™ w
~ — =l — Ti T ry——=—G 1 — —k
N {ad <a 8 <QFO)D o +}; he 0 d o log { 35, )| (@ =)
— k)
+ msec i Skwk_zfg_kw(} , |log (¢ — k)
2 d 2T,
k=0,2
1 (1 w \[\* :
— (= et —Bw (6=5-2k)/2 g—($+1+42k)/2 | —(8Bw)/4[7, ,¢—33-1
+ ad( log<2F0)D (e ;Ukw I} +e Usw®™°3 )} (48)

The coefficients in this expression depend on ¢ only and are given in Appendix C. Nonlinear susceptibility given
by expression (48) does not diverge if 2 < ¢ < 7 and (—1+d/0(¢. (Cases 'y ~ (w/2),Tr < (w/2) are given in
Appendix C).
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Expressions for susceptibility consist of two parts:
one part does not depend on temperature, the other
one depends on temperature. Nonlinear susceptibility
has strong dependence on distribution function Pr(er),
1. e. on ¢, on droplet microscopic tunneling rate Iy
and other parameters. One can see that the real part
X5(w,T) varies approximately logarithmically with fre-
quency. This signalizes broad distribution of relaxation
times of the system.

Let us take for numerical calculation the following
numbers: @ = 1,Tg = 10'% ' d = 3,¢ = 2.5,v =
10~ %erg, ¢ = 10715, ¢ = 0.5. The frequency depen-
dence of x4(w,T) is shown in Fig. 1. We give log,, f-
dependence at log,, f from 0 to 11 at several fixed tem-

peratures: 77 = 0.001,7% = 0.005,75 = 0.01, 74 = 0.05.

X, T) (arb. units)

0 2 4 6 8 10
Logyo f

Fig. 1. The frequency dependence of real of the nonlin-
ear dynamical susceptibility x4(w,T) versus Logio f at fixed
temperature

The frequency interval covers some decades of frequen-
cies. Our numerical calculations show the crossover be-
tween low-w and high-w behaviours. In low-w region the
nonlinear response is found nonsingular and slowly de-
creasing. When the frequency increases the curve falls
down more quickly, the nonlinear response diverges at
w ~ T'y/3, then the curve rises to some value. In low-w re-
gion we have a qualitative agreement with experimental
data for disordered dipolar magnet LiHo, Y1_,F4. At dif-
ferent low fixed temperatures the behaviour of x4(w,T)
is the same and the values of x5(w, T) are approximately
the same. Therefore we give only one curve for all fixed
temperatures.

In Fig. 2 we give the temperature dependence of
X5(w,T) at the temperatures from 0 to 1072 K at sev-
eral fixed frequencies: f; = 10" Hz, fo = 2.5107 Hz, f3 =
510"Hz, fy = 7.5107Hz, f5 = 108Hz of ac field (f =
w/27). The behaviour of x4(w,T") indicates the following
glassy-like features. The curves of the temperature de-
pendence of y4(w,T) have maxima depending on fixed
frequency. The temperature of x4-maximum 7% (w) de-
pends on frequency. The nonlinear susceptibility magni-
tudes at different fixed frequencies are remarkably dis-
tinguishable. The temperatures of maximum values are
different. When the frequency increases the temperature
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of xh-maximum shifts towards high temperatures. The
similar curve of temperature variation of x5 was observed
in spin glasses at higher temperatures [2,13]. If we con-
sider only the T-dependent part of %, we will see that
the x4-maxima are sharp (Fig. 3).

f,=

f,=2510

fy=

([

X, T) (arb. units)

£,=7510"

f5=10°

0.002 0.004 0.006 0.008 0.01
T®

Fig. 2. The temperature dependence of the real part of the
x5(w,T) at various frequencies f.

T - dependent part of ¥, (w, T) (erb. units)

k=) k=)
% - ) -
S b - b %
I I I n I
| o @ LW L .
[} 0.0002 0.0004 0.0006 0.0008 0.001
T®

Fig. 3. The temperature dependence of the T-dependent
part of the yv4(w, T) at various frequencies f.
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VI. DISCUSSION AND CONCLUSION

The cubic dynamic susceptibility y4(3w) is analiti-
cally and numerically calculated in quantum spin glass
in terms of quantum droplet model on the basis of gen-
eral dynamic nonlinear quantum-mechanical response
theory. We have carefully analyzed the susceptibility
temperature-frequency behaviour to study the proper-
ties of the low temperature magnetic state and to de-
termine whether or not a conventional spin glass state
exists below T¢. Comparing with the case of a true spin
glass transition we see that our data indicate that the
magnetic state below T} does not correspond to a con-
ventional spin glass state below T;. We find a glassy
type slow dynamics. Our calculations show that the ac
nonlinear susceptibilities scale for I';, > 3w with such a
frequency as

Xa(36) ~ 3 A6 20
k=0,1

« |log(3wF51) |[d—(1+¢)9]/¢

+ Y B(n)w" T Gla, [log(3wI5 )| (6 —n)],  (49)

n=-—2,0,2

where A(k) and B(n) and some expressions which do
not contain w. The nonlinear susceptibility diverges for

w—0ifd > (14 ¢)f and ¢ < 7, in contrast to classical
Ising spin glass at 7' > 0 (where it diverges as a power
of logw). Similar frequency dependence was observed by
W. Wu et al. [14]. So, the droplet dynamics at very low
temperatures is extremely slow.

Our calculations at 7' = 0 coincide with 7" = 0 re-
sult of M. J. Thill and D. A. Huse [6]. For finite temer-
atures we find some features which have been recently
observed [13]. We suppose that at some very low temper-
ature (temperature of the maximum of x4(w,T)) there
is a phase transition. If § > 0 and d = 3, we suppose
a true phase transition at very low temperature 7. For
our numerical data we find 77 ~ 107* = 8.5107*K for
f =107 = 10® Hz, respectively (Fig. 3).

Besides frequency and temperature dependence the
shape of x4(3w) depends crucially on the probability dis-
tribution of droplet free energies, on the tunneling rate
for a droplet of linear size L, on the material parameters.
In consequence of this dependence there is divergence (or
convergence) of x5(3w). We need to take into account
(in a future paper) the dipole-dipole interaction between
droplets and also droplet lattice interaction.

Applying our results to the reported experimental data
on the nonlinear dynamic susceptibility of LiHo, Y _,F4
we demonstrate that a fairly good agreement may be
achieved.

This work 1s partially supported by the RBRF under
Grant 01-02-16368.

APPENDIX A

The coefficients in expression (44) are the following:

d—0(1

o (1+9).
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SRR 1600 100 ' 6400° ~ 7 10 ’
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By =G B =G .
2 175 2 5
2 1 IOg 3w : 4 1—2 —o45-—2
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for I'y, ~ 3w where
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2 35 ’
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CBI_G[ 2 175
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$—5

¢+ 3 359106 2% 3°%
2 175 '

04:—(;[

This expression does not diverge if 2 < ¢ < 3 and —1 —|— < ¢. This expression has singularity at w ~ F— When
the frequency increases the values of x4 are growing to mﬁmty while w — Lo . X5 maintains this property When w is

more than L2, The temperature dependence of X% in this case has no extremes, we observe monotonous decrease of

values of x4 with temperature.

APPENDIX B

The coefficients in expression (46) are the following:
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This expression does not diverge if 2 < ¢ < 5 and —1 + % < ¢.

, _ 4Ea (% log (Fio) )O‘ T $-2 , —Puw : ota—ok  —odrook
X3~71+¢ i T sec 5 Moyw +e ZMkw 2 37 2

k=1

for I'f, ~ w where

295733 2893 443 d+17  en ¢—17 o1
Mo = === = =———+ 5 Ml—G[ 5 ]2 : Mz—G[ 5 ]2 (2-9),
¢+17 et ¢+ 17 2% (306 + 121) 6 +3] 25 101
Ms = 272 My = — My = LA
’ G[ 2 o Ma=—G 15 o M =G 45

This expression does not diverge if 2 < ¢ < 5 and —1 + % < ¢. Nonlinear susceptibility as a function of w for
the case of ', > w has singularity at w ~ T'g. Before this point we find y5-minima depending on fixed temperature.
When w becomes larger than T'y the values of x4 grow to infinity (Fig. 4).

FRERE

?I. ? [}

al 1=
: £
g
. 3]
e 3
Sl =
N J

o

[}

L

2 4 6 8 10 0 0.002 0.004 0.006 0.008 0.01

Logyo f TE

Fig. 4. The frequency dependence of the real part of the

nonlinear dynamical susceptibility x5(w,T) versus Logio f at
several fixed temperatures for case I'fy > w

Fig. 5. The temperature dependence of the real part of the
nonlinear dynamical susceptibility x5(w,T) at several fixed
frequencies f.

In the temperature behaviour of x5 we also observe the minima. The temperatures of the minima and their values
depend on fixed frequencies.

The case of T'p ~ w has its own particular features, for example in temperature dependence (Fig. 5).

APPENDIX C

The coefficients in expression (48) are the following:
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This expression does not diverge if 2 < ¢ < 7 and —1 + % < .
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This expression does not diverge if 2 < ¢ and —1 + % < .
In the case of 'y ~ % we find quite a different temperature dependence of x3(w, ') than for I't > 3w (Fig. 6). The
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frequency dependence is also different. x5(w,T) has singularity at w ~ 2Ty, before this point we find the minima of
X% depending on fixed temperature.

For I'y < % x3(w,T) has the minima on 7" and temperatures of the minima are lower (approximately by ten times)
than for I'y ~ %. x3(w,T") as a function of w has singularity at w ~ 2I'g (Fig. 7). The values of x3(w,T’) at different

fixed temperatures are approximately the same.

X, T) (arb. units)

0 0.0005 0.001 0.0015 0.002

T®
Fig. 6. The temperature dependence of the real part of

the nonlinear dynamical susceptibility x5(w,T") at various fre-
quencies f

X, T) (arb. units)

5

Fig. 7. The frequency dependence of the real part of the
nonlinear dynamical susceptibility x4(w,T) versus Logio f at
several fixed temperature

0 2 4 6 8 10
Logyo f
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JITHIMHA TA KYBIYHA TUHAMIYHA CIIPUAHSIT/INBICTDL
¥ KBAHTOBOMY CIITHOBOMY CKI/JII

Ix. Bysienstio, P. B. Ca6yposa?, B. I'. Cymkospa’
L @isunnui 6i0dia im. E. P. Kaanieaviio, ¥Ynisepcumem m. Canepro, 84081, Baponici—Canepro
ma 61ddia Hayiornaavrozo incmumymy dizunnoeo mamepiaroznascmea, Caaepro, Imanis
2 Qisunnudi paxysomem, Kasancoxuli enepremusnutl yrnisepcumem,
ey.s. Kpacnoceavcora, 51, Kazans, 420066, Pocis

JocrimkeHo HU3bKOTEMIIEpATYDHY TIOBEIIHKY IMHAMIiYHOI HeJiHiiHol (Ky6iuHoi) crpuiinarausoctu X5(w,T)
Y KBAHTOBOMY d-BHMIPDHOMY 13MHI'OBOMY CITIHOBOMY CKJIl 3 KOPOTKOCSZKHOIO B3a€MOIEI0 MOMIXK CINHAMH. 3 INEI0
MEeTOI0 3aCTOCOBAHO KBAHTOBY KDAIJIUHHY MOJIe/h Ta KBAHTOBOMEXaHIYHY HeJiHIiHY Teopito Biaryky. OrpuMano
CKJIOTIOMIOHY TIOBEIIHKY KPAIIMHHOI IMHAMIKY. BUABIEHO CHIBHY YacTOTHY 3aiexHicTh X5 (w, T); TeMmepatypry
3aJI€XKHICTD [IOMIYeHO HPHU IyXKe HU3bKHUX TeMieparypax (KkBaHToBHil pexxum). Heniniituuit Binryk samexsuii Bim
TeMITy TYHEJIIOBAHHZA KPAIlJl, IO PEryJilo€ BeJWYUHY KBaHTOBUX durrokTyarii. el BiAryk cuibHO 3ajiekuTh
BII PO3IOIIAY BUIBHMX eHepriii Kpallejib Ta BiI CepeIHbOro 3HadYeHHsS MacliTady JOBXKHWH Kpallesb. 3a3HadeHO
3aCTOCYBaHHA PE3yJIbTATIB B eKCIEPUMEHTAX Ha /] KBAHTOBUMU CIIIHOBUMY CTEKJIAMU HA 3Pa30K HEBIIOPAIKOBAHOTO
JUIIOJIBHOTO KBAHTOBOTO 13mHroBoro marHernka LiHo,Y:1_,F4 Ta ncesmocmimy.



