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The low temperature behaviour of the dynami
 nonlinear (
ubi
) sus
eptibility �

0

3

(!; T ) in quan-

tum d-dimensional Ising spin glass with short-range intera
tions between spins is investigated in

terms of the quantum droplet model and the quantum-me
hani
al nonlinear response theory is em-

ployed. We have revealed a glassy like behaviour of droplet dynami
s. The frequen
y dependen
e of

�

0

3

(!; T ) is very remarkable, the temperature dependen
e is found at very low temperatures (quan-

tum regime). The nonlinear response depends on the tunneling rate for a droplet whi
h regulates

the strength of quantum 
u
tuations. This response has a strong dependen
e on the distribution

of droplet free energies and on the droplet length s
ale average. Impli
ations for experiments in

quantum spin glasses like disordered dipolar quantum Ising magnet LiHo

x

Y

1�x

F

4

and pseudospin

are noted.
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I. INTRODUCTION

The dynami
s of glassy systems is an attra
tive and

rapidly developing �eld of physi
s [1{5℄. Spin glasses and

quantum spin glasses are a very interesting system for a

theoreti
al as well as an experimental investigation of

dynami
 phenomena [2{4℄. There are two di�erent spin

glass dynami
 des
riptions: the mean-�eld theory and

the droplet phenomenologi
al one [1{6℄. In this paper we

investigate theoreti
ally nonlinear 
ubi
 dynami
 sus
ep-

tibility as a fun
tion of frequen
y and temperature in the

Ising spin glass in a transverse �eld in terms of quan-

tum droplet model at very low temperatures (quantum

regime). The quantum phase transitions whi
h are gov-

erned by quantum 
u
tuations of the system may tunnel

from one lo
al minimum of the free energy to another;

new physi
al e�e
ts su
h as quantum 
hannel of relax-

ation appear. There are few theoreti
al studies on the

nonlinear stati
 response in quantum spin glasses [7{10℄

and almost no studies on the dynami
 nonlinear response

[3℄. In [3℄ the dynami
 nonlinear response of a quantum

spin glass was found to be frequen
y independent and

nonsingular in quantum 
riti
al regime in 
ontrast to

its behaviour in the usual spin glass. There are exper-

imental data on the nonlinear dynami
 response in 
las-

si
al [11{13℄ and quantum [14℄ spin glasses investigated

by the Fourier-transform te
hnique. A third-order non-

linear sus
eptibility is negative and diverges at an or-

dinary spin glass transition temperature T

g

from both

the upper and the lower sides. But when �

0

3

is mea-

sured by a �nite probing frequen
y the response falls

out of equilibrium before the transition temperature and

does not diverge at T

g

. Then �

0

3

(!) shows a maximum

at T ' T

f

(!) where T

f

(!) is the freezing temperature

whi
h is the upper bound on T

g

and T

g

= T

f

(! ! 0).

Su
h a behaviour was observed, for the example, for 
las-

si
al Ising spin glass Fe

0:5

Mr

0:5

TiO

3

[13℄. W. Wu et al.

[14℄ measured nonlinear sus
eptibility �

0

3

(!; T ) in quan-

tum spin glass (the diluted dipolar-
oupled Ising spin

glass LiHo

0:167

Y

0:833

F

4

in the transverse �eld) tuning

transverse �eld � from the � = 0 
lassi
al to the T = 0

quantum limit. At the mK temperatures they found a


lear dynami
 signature of the spin glass to paramagnet

transition whether dominated by thermal or quantum


u
tuations. In [14℄ it was shown that �

0

3

depends on

the frequen
y for ! > 10 Hz. However, it depends very

weakly on ! for ! < 10 Hz. There is a 
rossover be-

tween high ! (!-dependent) and low ! (!-independent)

behaviours. Nonlinear sus
eptibility 
ontains a diverging


omponent whi
h dominates at T = 98 mK, but disap-

pears by 25 mK. The �

0

3

(!) does not diverge but shows a

maximum at T

f

(!). �

0

3

(!) measured at a higher temper-

ature and lower transverse �eld has a larger maximum

than the �

0

3

(!) measured at a lower temperature and a

larger transverse �eld. The analysis of these experimental

data seems not 
lear [15℄ be
ause frequen
ies used in the

experiments [14℄ are not suÆ
iently low su
h as to deter-

mine the equilibrium behaviour of system. Contrary to

the theoreti
al expe
tations, quantum transitions may be

qualitatively di�erent from thermally driven transitions

in real spin glasses. Re
ently the linear dynami
 sus
ep-

tibility (in-phase and out of phase 
omponents) at T = 0

was investigated theoreti
ally for the Ising spin glass in

a transverse �eld in terms of the quantum droplet model

by M. J. Thill and D. A. Huse [6℄. At present two di�erent

dynami
 des
riptions exist: the mean �eld theory and the

droplet pi
ture (more phenomenologi
al but more real).

It is better to understand the a
tual argument of dis-


ussion [5℄. A basi
 assumtion of the droplet pi
ture is

that the spin glass dynami
s is governed by large-s
ale

ex
itations whose relaxation time in
reases with length

s
ale. There we give an employment of droplet spin glass

model to a dynami
 nonlinear response at very low tem-

peratures. In previous papers [16℄ we have 
al
ulated the
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real and imaginary parts of linear dynami
 sus
eptibility

in the same model, as in [6℄, for nonzero temperatures.

The temperature and frequen
y dependen
e of sus
epti-

bilities �

0

1

(!; T ) and �

00

1

(!;T ) is 
al
ulated at low tem-

peratures. We �nd a broad maximum for the real part

�

0

1

(!; T ) whi
h shifts towards higher temperatures with

in
reasing frequen
y of a
 external �eld !. The temper-

ature of maximum T

f

(!) depends on frequen
y ! and

in
reases with ! up to the magnitude where �

0

1

(!; T )

starts to de
rease. The imaginary part �

00

1

(!; T ) has a

very interesting behaviour too. It is shown that many low

temperature properties are dominated by thermally a
-

tive droplets at the 
lassi
al-to-quantum 
rossover length

s
ale of droplets. In 
ontrast to the linear sus
eptibil-

ity, the nonlinear dynami
 
ubi
 sus
eptibility diverges

or 
onverges depending on the kind of distribution of

free droplet energies. It is shown that both sus
eptibil-

ities have a glassy behaviour. In [16℄ the general linear

response theory of magneti
 dispersion and absorption

phenomena for quantum systems by Kubo and Tomita

[17℄ that relates the relaxation fun
tion and the linear dy-

nami
 sus
eptibility was used. But for simpli
ity dipole-

dipole and dipole-latti
e intera
tions were negle
ted. We

note that in [6℄ the real part of the 
ubi
 nonlinear a


sus
eptibility was de�ned as the in-phase 3! magnetiza-

tion response M (3!) to a small time-dependent applied

�eld h 
os(!t):

�

0

3

= lim

h!0

24M (3!)

h

3

V

; (1)

where V is the sample volume. The authors of [6℄ gave

some expression for �

0

3

they expe
t only at zero temper-

ature.

II. DYNAMICAL NONLINEAR RESPONSE

The full nonlinear response theory despite its gener-

ality and importan
e is of limited pra
ti
al value be-


ause it is mathemati
ally diÆ
ult. Eventually it is ne
-

essary to make approximations, for example, the well-

known perturbation expansion of the time-evolution op-

erators, using perturbation Hamiltonian with some small

parameter. Nonlinear response theory was developed and

des
ribed, for example, in [17{22℄. Here we summarize

brie
y the theory of higher-order dynami
 response. It is

based on the Hamiltonian

^

H

t

=

^

H

0

+

^

H

1

=

^

H

0

�

^

A

j

F

j

(t); t � t

0

; (2)

where

^

H

0

is nonperturbation Hamiltonian of system,

^

H

1

is perturbation Hamiltonian whi
h des
ribes the inter-

a
tion between the Heisenberg operators

^

A

j

(material

operators) and the external perturbation

^

F

j

. At time

t > t

0

one is interested in the expe
tation value of the

Heisenberg operator

^

B

i

whi
h is given by

h

^

B

i

(t)i = Tr[�

0

^

B

i

(t)℄ = Tr[�̂(t)

^

B

i

℄ ; (3)

where the density matrix �̂(t) =

^

U (t; t

0

)�̂(t

0

)

^

U

y

(t; t

0

).

The time-evolution operator

^

U satis�es the S
hr�odinger

equation i�h(d

^

U=dt) =

^

H

^

U . This di�erential equation is

equivalent to an integral equation whi
h has the intera
-

tive solution of the form [18{20℄

^

U (t; t

0

) = T exp

�

�

i

�h

Z

t

t

0

H(t

0

)dt

0

�

'

^

U

0

(t; t

0

)

�

1 +

i

�h

Z

t

t

0

dt

1

F

j

(t

1

)

^

U

y

0

(t

1

; t

0

)

^

A

j

^

U

0

(t

1

; t

0

)

�

; (4)

where

^

U

0

(t; t

0

) = exp

h

�

i

�h

(t � t

0

)

^

H

i

. It is diÆ
ult to

�nd an expression for

^

U in 
losed form. It was used that

^

H

1

(t) is in some sense small.We de�ne the total response

of the system at time t to the external for
e F

j

as the

di�eren
e

�B

i

(t) � h

^

B

i

(t)i � h

^

B

i

i

0

; (5)

where the subs
ript zero on expe
tation values refers to

the equilibrium expe
tations. One 
an then understand

the behaviour of the system in terms of the dynami
al

response. Using aforementioned expressions [2{4℄ the dy-

nami
al response 
an be written through the third order

in the perturbation

^

H

1

in the following form [20℄




^

B

i

(t)

�

�




^

B

i

�

0

= �B

i

(t) '

Z

t

t

0

dt

0

'

ij

(t� t

0

)F

j

(t

0

)

+

Z

t

t

0

dt

1

Z

t

1

t

0

dt

2

'

ijk

(t� t

2

; t

1

� t

2

)F

k

(t

1

)F

j

(t

2

)

+

Z

t

t

0

dt

1

Z

t

1

t

0

dt

2

Z

t

2

t

0

dt

3

'

ijkl

(t� t

3

; t

2

� t

3

; t

1

� t

2

)

�F

e

(t

1

)F

k

(t

2

)F

j

(t

3

) + : : : ; (6)

where '

ij

, '

ijk

, '

ijkl

are the �rst-, se
ond- and third

order response fun
tions,

'

ij

(t� t

0

) =

1

i�h

h[

^

A

j

; B

i

(t� t

0

)℄i

0

; (7)

'

ijk

(t � t

2

; t

1

� t

2

) =

1

(i�h)

2

�h[

^

A

j

; [

^

A

k

(t

1

� t

2

);

^

B

i

(t� t

2

)℄℄i

0

; (8)

'

ijkl

(t� t

3

; t

2

� t

3

; t

1

� t

2

) =

1

(i�h)

3

�h[

^

A

j

; [A

k

(t

1

� t

2

); [A

l

(t

2

� t

3

); B

i

(t� t

3

)℄℄℄i

0

: (9)
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Here we have employed the summation 
onvention over

repeated indi
es and 
y
li
 invarian
e of the tra
e. Ex-

pressions [7{9℄ 
an be written in a more revealing form if

we set t

0

= �1 and 
hange integration variables in
lud-

ing an adiabati
 swit
hing fa
tor if ne
essary. We take

(instead of t, t

1

, t

2

, t

3

) �

1

= t � t

1

, �

2

= t

1

� t

2

time

di�eren
es further. The ordinary linear response theory

utilized only '

ij

(�

1

) and it is the simplest approximation

to the full theory of linear dynami
 response [23℄. Using

new variables we may write the expressions for response

fun
tions in the form

'

(1)

ij

= �

1

i�h

h[A(� ); B(0)℄i; (10)

'

(2)

ijk

=

1

(i�h)

2

h[[A(�

1

+ �

2

); A(�

2

)℄; B℄i; (11)

'

(3)

ijkl

= �

1

(i�h)

3

h[[[A(�

1

+ �

2

+ �

3

);

A(�

2

+ �

3

)℄; A(�

3

)℄; B℄i ; (12)

where the bra
ket h: : :i denotes an expe
tation value with

respe
t to the equilibrium ensemble. The useful interpre-

tation is generated from Eq. [6℄ in the 
ase that t

0

= �1

if we suppose that the external for
e F is 
onstant and

vanishes for t � 0. For t = 0 the system is in partial

equilibrium and starts to relax to equilibrium. It is 
on-

venient to write a nonlinear response for this 
ase (initial

value 
ase [21℄) as

h

^

B(t)i � h

^

Bi

0

= R

(1)

(t)F

+

1

2

R

(2)

(t)FF +

1

3

R

(3)

(t)FFF + : : : ; (13)

where R

�

(t) are the relaxation fun
tions,

R

(1)

(t) =

Z

1

0

d� '

(1)

ij

(�

1

); (14)

R

(2)

(t) =

Z

1

0

d�

1

Z

1

0

d�

2

'

(2)

ijk

(�

2

; �

1

+ �

2

); (15)

R

(3)

(t) =

Z

1

0

d�

1

Z

1

0

d�

2

�

Z

1

0

d�

3

'

(3)

ijkl

(�

3

; �

2

+ �

3

; �

1

+ �

2

+ �

3

): (16)

In this form response may des
ribe relaxation of the

system. If response fun
tion '(t)

(1)

vanishes as t ! 1,

then '(t)

(1)

= �ÆR

(1)

(t)=Æt, so R

(1)

(t) 
ontains mu
h

more information than the response fun
tion.

III. DYNAMIC MAGNETIC SUSCEPTIBILITIES

Let the a
 magneti
 �eld h

!

= h 
os(!t) be applied

to a magneti
 system. The magnetization nonlinear re-

sponse

M (!; t) =

n

X

k=1

f�

0

k


os(k!t) + �

00

k

sin(k!t)g

to harmoni
 magneti
 �eld h 
ontains only odd har-

moni
: �

0

1

� �

0

1

h, �

0

3

� �

0

3

h

3

, et
. [11℄. In the expression

forM (!; t) the magnitudes �

0

k

and �

00

k

are real and imag-

inary parts of harmoni
 amplitudes respe
tively. For the

general theory of nonlinear pro
esses one 
an evaluate

[11℄

�

0

1

= �

0

1

(!t)h + [�

0

3

(!; 0; !)℄

h

3

4

+ [4�

0

5

(!; 0; !; 0; !) + 2�

0

5

(!; 0; !; 2!; !)

+ 2�

0

5

(!; 2!; !; 0; !) + �

0

5

(!; 2!; !; 2!; !)

+ �

0

5

(!; 2!; 3!; 2!; !)℄

h

5

16

+ : : : ; (17)

�

0

3

= �

0

3

(3!; 2!; !)

h

3

4

+ [�

0

5

(3!; 2!; 3!; 2!; !)

+ �

0

5

(3!; 4!; 3!; 2!; !) + 2�

0

5

(3!; 2!; !; 0; !)

+ �

0

5

(3!; 2!; !; 2!; !)℄

h

5

16

+ : : : ; (18)

�

0

5

= �

0

5

(5!; 4!; 3!; 2!; !)

h

5

16

+ : : : (19)

The measurement of all the harmoni
 amplitudes �

k

gives a measurement of the sus
eptibilities �

a

in two

limits: a) if �

0

1

h � �

0

3

h

3

� �

0

5

h

5

the ba
k rea
tion is

negligible and ea
h harmoni
 measures the sus
eptibil-

ity of the same order; b) in the stati
 (! ! 0) limit the

solution of the linear system [16℄ fully a

ounts for the

ba
k rea
tion. In the absen
e of a
 magneti
 �eld, the

ba
k rea
tion 
an be made small so that the dynami


sus
eptibilities 
an be obtained from Eq. [16℄. In a more


ompa
t notation we may write

M (!; t) � [M

0

+M

!

+M

3!

+ : : :℄ + [C.C.℄ ; (20)

where M

0

is the equilibrium magnetization in zero �eld;

M

!

is the !-magnetization response; M

3!

is the 3!-

magnetization response and so on.

The expression (10){(12) may be 
onsidered as solu-

tion of the 
orresponding quantum equations 
onsidered

above. For the external a
 �eld we assume a 
lassi
al

value. This �eld intera
ts with quantum system and sys-

tem behaviour is determined by quantum laws. We shall

fo
us on the real part of the third-order nonlinear dy-
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nami
 sus
eptibility �

0

3

(3!; 2!; !) and denote it as �

0

3

(!).

In this paper we are interested in the response when the

a
 magneti
 �eld is applied in z-dire
tion; �

1

= �

zz

and

so on. In formulas (2{12) both A

i

and B

i

are the mag-

neti
 dipole moment operators. Considering the initial

value 
ase [21℄ we suppose, like [6℄, that the system is in

equilibrium with a small time-independent �eld h = h

z

for t � 0 and that the external �eld is turned o� at t = 0,

then for t � 0 the indu
ed magnetization of the sample in

z-dire
tion to �rst order of perturbation theory is given

by M (t)�M

0

� R

(1)

(t)h, where a relaxation fun
tion

R

(1)

(t) =

Z

1

0

'

(1)

(� )d� (21)

and the �rst order response fun
tion is [20℄

'

(1)

ij

(� ) � �

1

i�h

h[M

i

(� );M

j

℄i: (22)

The higher-order response fun
tions are given by

'

(2)

ijk

(�

1

; �

2

) �

1

(i�h)

2

h[[M

i

(�

1

+ �

2

);M

j

(�

2

)℄ ;M

k

℄i; (23)

'

(3)

ijkl

(�

1

; �

2

; �

3

) � �

1

(i�h)

3

�h[[[M

i

(�

1

+ �

2

+ �

3

);M

j

(�

2

+ �

3

)℄ ;M

k

(�

3

)℄ ;M

l

℄i : (24)

The linear and the nonlinear dynami
 sus
eptibilities

(admittan
es in the spe
tral representation [22℄) may be

found through response fun
tions (22){(24). In order to

�nd the 
omplete expression for sus
eptibility, we should

use its symmetry and 
ausality properties [22℄.

The nonlinear sus
eptibilities may be 
hosen so that

these sus
eptibilities were symmetri
al relative to simul-

taneous permutation of tensor indi
es and 
orresponding

to them arguments, for example, the se
ond rank tensors

are �

ijk

(!

1

; !

2

) = �

ikj

(!

2

; !

1

), and the fourth rank ten-

sors are

�

ijkl

(!

1

; !

2

; !

3

) = �

ikjl

(!

2

; !

1

; !

3

)

= �

ijlk

(!

1

; !

3

; !

2

) = : : : (25)

a

ording to the 
ausality property

�

ij

= 0 for �

1

< max (�

2

; �

3

; : : :): (26)

Linear and nonlinear dynami
 sus
eptibilities are given

by

�

ij

(!) =

Z

1

0

d�'

(1)

ij

(� )e

i!�

; (27)

�

ijk

(!

1

; !

2

) =

1

2!

Z

1

0

d�

1

�

Z

1

0

d�

2

n

'

(2)

ijk

(�

1

; �

2

)e

i(!

1

+!

2

)�

1

+i!

1

�

1

o

; (28)

�

ijkl

(!

1

; !

2

; !

3

) =

P

3

3!

Z

1

0

d�

1

Z

1

0

d�

2

�

Z

1

0

d�

3

'

(3)

ijkl

(�

1

; �

2

; �

3

)

� exp [i(!

1

+ !

2

+ !

3

)�

1

+ i!

2

�

2

+ i!

3

�

3

℄ : (29)

In Eq. (28) P

3

means the summation over all permuta-

tions of the subs
ripts (!

1

j), (!

2

k) and (!

3

l) [22℄; re-

sponse fun
tions ' are given by expressions (22){(24).

In parti
ular, the se
ond harmoni
s generation pro
ess

is 
hara
terized by the tensor �

ijk

(!; !). If !

1

= !

2

=

!

3

= !, the triple frequen
y 3! is formed; the frequen
y

tripling is des
ribed by the tensor �

ijkl

(!; !; !) (we note

it as �

0

3

(!)).

IV. THE MODEL HAMILTONIAN

The droplet model des
ribing the low-dimensional

short-range Ising spin glass is based on renormalization

group arguments [4℄. In the dimensions above the lower


riti
al dimension d

l

(usually in spin glass 2 � d

l

< 3) the

droplet model �nds a low temperature spin-glass phase

in zero magneti
 �eld. This phase di�ers essentially from

the spin-glass phase in the mean-�eld approximation

of the Sherrington{Kirkpatri
k in�nite-range spin-glass

model [2℄. In the droplet model there are only two pure

thermodynami
al states related to ea
h other by a global

spin 
ip. In magneti
 �eld there is no phase transition.

A droplet is an ex
ited 
luster in an ordered state where

all the spins are inverted. The natural s
aling ansatz for

droplet free energy �

L

whi
h are 
onsidered to be inde-

pendent random variables) is �

L

� L

�

; L � �(T ); � is the


orrelation length, L is the length s
ale of droplet and �

is the zero temperature thermal exponent, � � (d�1)=2.

One droplet 
onsists of order L

d

spins. Below d

l

, � < 0;

above d

l

one has � > 0.

The droplet model of 
lassi
al Ising spin glass was 
on-

sidered by D. S. Fisher and D. A. Huse [4℄. The features

of this model are des
ribed also, for example, in [23℄.

Re
ently M. J. Thill and D. A. Huse [6℄ have shown

that the d-dimensional quantum Ising spin glass in a

transverse �eld with the Hamiltonian

H = �

X

i;j

I

ij

S

z

i

S

z

j

� �

X

i

S

x

i

(30)

(S

i

are the Pauli matri
es, � is the strength of the trans-

verse �eld and the nearest neighbor intera
tions I

ij

are

independent random variables of mean zero) 
an be rep-

resented as the Hamiltonian of the independent quantum

two-level systems (low energy droplets) of the form
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H =

1

2

�

X

L

X

D

L

�

�

D

L

S

z

D

L

+ �

L

S

x

D

L

�

; (31)

where S

z

D

L

and S

x

D

L

are the Pauli matri
es representing

the two states of the droplet; the sum is over all droplets

D

L

at length s
ale L and over all length s
ales L, and

�

X

L

�

Z

1

L

0

dL

L

(32)

with a short-distan
e 
uto� L

0

. The droplet length s
ale

L is more or of the order of the 
orrelation length. �

D

L

is the droplet energy whi
h is independent random vari-

able. The value �

L

regulates the strength of quantum


u
tuations (�

L

! 0 
orresponds to the 
lassi
al limit).

�

L

= �

0

e

��L

d

(33)

is the tunneling rate for a droplet of the linear size L; �

0

is the mi
ros
opi
 tunneling rate; � is de�ned from the

equation 2K = �L

d

where 2K is the surfa
e free energy

of an interfa
e between the two droplet states, so � is a

redu
ed surfa
e tension for this interfa
e; � is approxi-

mately the same for all droplet. We will assume that �

L

is the same for all droplets of s
ale L. The Hamiltonian

of a single droplet is the (2� 2) matrix [6℄

1

2

�

�

D

L

�

L

�

L

��

D

L

�

(34)

with eigenvalues E

�

= �

p

�

2

L

+ �

2

L

.

E = 2jE

�

j is the energy di�eren
e between the two

eigenvalues. Note the Hamiltonian (33) is similar to the

Hamiltonian of two-level system in real glass [24℄. The

droplet ex
itations have a broad distribution of their free

energies at s
ale L for large L in a s
aling form [4,6℄

P

L

(�

L

)d�

L

=

d�

L


(T )L

�

P

�

�

L


(T )L

�

�

; L!1 : (35)

It is assumed that P

L

(x ! 0) > 0, P

L

(0) � P

L

(x) � x

�

at x ! 0. 
(T ) is a generalized temperature dependent

sti�ness modulus whi
h is of the order of 
hara
teristi


ex
hange I =

�

I

2

ij

�1=2

at T = 0 and vanishes for T � T

g

.

There is a 
rossover length s
ale, L

�

(T ), de-

�ned by 
ondition �

L

�

(T )

= k

B

T or L

�

(T ) =

[(1=�)log(�

0

=k

B

T )℄

1=d

. For droplets with L � L

�

(T )

and �

L

� k

B

T the energy

p

�

2

L

+ �

2

L

is always more

than k

B

T and thermal 
u
tuations are insigni�
ant at

temperature T . Droplets with L � L

�

(T ) have �

L

�

k

B

T and behave 
lassi
ally. The large droplets (�

L

�

k

B

T; �

L

� k

B

T ) are thermally a
tive. At low T only a

small fra
tion of droplets is thermally a
tive, but many

low-T stati
 properties are dominated by these droplets

at the 
rossover length L

�

(T ).

The total magnet moment of a droplet wall s
ales as

qL

d

2

where q a random number with mean zero and

q

2

� q

EA

, q

EA

= hS

z

i

i

2

is the Eduards{Anderson order

parameter [4℄. The total magnetizationM of the sample

will be

M =

�

X

L

V

L

d

X

D

L

hS

z

D

L

iqL

d=2

(36)

and

m =

M

V

=

�

X

L

hS

z

D

L

iqL

�d=2

; (37)

where hS

z

D

L

iqL

�d=2

means the average over the droplets

energies �

L

. The stati
 �

3

sus
eptibilities are de�ned in

terms of the expansion of magnetization into Taylor se-

ries approximately as

M = �

1

h� �

3

h

3

+ : : : : (38)

For suÆ
iently small external �eld it is possible to be

restri
ted by few terms of this expansion. The sus
epti-

bilities are obtained as derivatives with respe
t to h at

h = 0 : �

1

= (�m=�h)j

h=0

, �

3

= (�

3

m=�h

3

)

�

�

h=0

.

M. J. Thill and D. A. Huse have 
al
ulated stati
 lin-

ear and nonlinear sus
eptibilities for droplet system de-

s
ribed by the Hamiltonian (30). The stati
 linear sus-


eptibility diverges at T = 0 below the lower 
riti
al di-

mension d

l

. The stati
 nonlinear sus
eptibility diverges

in all dimensions d. The stati
 linear sus
eptibility ap-

pears to start away from the nonzero 
onstant T = 0

value de
reasingly versus T to the lowest order [6℄.

In this paper using the quantum droplet model of the

short-range Ising spin glass in a transverse �eld and

quantum-me
hani
al 
ase ��

L

� 1 (quantum regime)

we 
al
ulate the third order nonlinear dynami
 response

at very low �nite temperatures.

V. QUANTUM DROPLET DYNAMIC

NONLINEAR SUSCEPTIBILITY

When we 
onsider the droplets at �nite temperatures

they may have two 
hara
teristi
 rates, (a) the Rabi fre-

quen
y (is of the order �

L

) and (b) the rate of 
lassi
al

a
tivation over energy barrier B for the annihilation and


reation of the droplet ex
itations [6℄

t � �

0

exp

�

B

k

B

T

�

; (39)

where B � �L

 

, 0 �  � d� 1,  is some exponent [4℄,

� is a barrier energy at t � T

g

, � � I; �

0

is a mi
ro-

s
opi
 time. There is a 
ompli
ated dynami
al 
lassi
al-

to-quantum 
rossover depending on the temperature fre-

quen
y of a
 external �eld and length s
ale L. A

ording
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to [6℄ the 
rossover dynami
 length is determined from

the 
ondition �

�1

L

= T , i. e.,

L

�

dyn

(T ) �

�

�

�

k

B

T

�

1=( �d)

: (40)

The system behaves presumably 
lassi
ally or quantum

me
hani
ally when the dominant length s
ale L is above

or below L

�

dyn

for the frequen
y !. The linear dynami


sus
eptibility for the model Hamiltonian (30) was 
al-


ulated at zero temperature in [6℄. This sus
eptibility

is dominated by droplets at a length s
ale su
h that !

is of the order the 
hara
teristi
 frequen
y of the quan-

tum droplet system �

L

. We have 
al
ulated the linear

dynami
 sus
eptibility (real and imaginary parts) at �-

nite temperatures 
onsidering both quantum and 
lassi-


al limit and found a glassy behaviour [16℄. M. J. Thill

and D. A. Huse [6℄ suppose that the nonlinear dynami


sus
eptibility that �

0

3

(3!; !) diverges as a power of ex-

ternal �eld frequen
y ! at T = 0 if � < 2, in strong


ontrast to 
lassi
al Ising spin glass at T > 0, where it

diverges as a power of log ! [4℄ (� is a power of �

L

in the

distribution of droplet energies �

L

at the length s
ale L

[6℄).

Now we 
onsider dynami
 third-order sus
eptibility

�

0

3

(!t; T ) at �nite very low temperatures (quantum

regime) when ��

L

� 1. We de�ne nonlinear third or-

der dynami
 sus
eptibility �

0

3

(!; T ) by expressions (24)

and (29)

�

0

3

(!; T ) =

1

(i�h)

3

P

3

3!

Z

1

0

d�

1

Z

1

0

d�

2

�

Z

1

0

d�

3

exp [i (3!�

1

+ !�

2

+ !�

3

)℄

�h[[[M

i

(�

1

+ �

2

+ �

3

);M

j

(�

2

+ �

3

)℄ ;M

k

(�

3

)℄ ;M

l

℄i: (41)

We now 
onsider the 
ubi
 dynami
 nolinear sus
ep-

tibility �

3

(!; T ). The 
ontribution of a single droplet to

the real part of dynami
 third-order sus
eptibility up to

some fa
tor � q

2

EA

L

2d

is proportional to

�

0

3D

L

� q

2

EA

�

P

5

k=0

A

k

(!;�

L

)�

2k

L

�

tanh

�

1

2

�

p

�

2

L

+ �

2

L

�

(�

2

L

+ �

2

L

)

5

2

(�

2

L

+ �

2

L

� 9!

2

) (�

2

L

+ �

2

L

� !

2

)

2

�

�

2

L

+ �

2

L

�

!

2

4

�

!

2

; (42)

where

A

0

= !

2

�

10

L

+ 4!

4

�

8

L

� 5!

6

�

6

L

;

A

1

= 2�

10

L

�

10

L

� 12:5!

2

�

8

L

� 49:75!

4

�

6

L

� 23:5!

6

�

4

L

� 2:25!

8

�

2

L

;

A

3

= 12�

6

L

� 45:5!

2

�

4

L

+ 41:75!

2

�

4

L

;

A

4

= 8�

4

L

� 15:5!

2

�

2

L

;

and A

5

= 2�

2

L

.

We have to average �

3D

L

over droplet energies �

L

using

the distribution of droplet free energies (35) and 
hang-

ing variables from �

L

to x = ��

L

. As follow froms (42)

to average over droplet energies we have to distinguish


ases: frequen
y 3! greater or less than �

L

, ! greater or

less than �

L

and

!

2

greater or less than �

L

, then we have

to average the obtained expression over all length s
ales

L; see Eq. (32).

In our 
al
ulation we take into a

out the �rst two

terms in the expansion of

tanh

�

1

2

q

x

2

+ �

2

�

2

L

�

' 1� 2e

�

p

x

2

+�

2

�

2

L

;

and apply the approximation

q

x

2

+ �

2

�

2

L

' ��

L

+

x

2

2��

L

;

be
ause we have ��

L

� 1.

After averaging over droplet energies for 
ases �

L

>

3!;�

L

� 3!;�

L

< 3! we have re
eived that the real part

of the nonlinear sus
eptibility is dominated by droplets

of length s
ale

L

dom(3!)

�

�

1

�

�

�

�

�

log

�

3!

�

0

�

�

�

�

�

�

1=d

(43)

whi
h is determined by 
ondition �

L

� 3!. Then for

�

L

> 3! the result of two averages is given by the fol-

lowing expression
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�

0

3

�

q

2

EA




1+�

8

<

:

� se


�

��

2

�

X

k=�2;0;2

A

k

!

k�2

�

��k

0

[�(�� k)℄

��

d

G

�

�;

�

�

�

�

log

�

3!

�

0

�

�

�

�

�

(� � k)

�

+

1

�d

�

1

�

�

�

�

�

log

�

3!

�

0

�

�

�

�

�

�

�

e

�3�!

X

k=0;1

B

k

!

(��5�2k)=2

�

�(�+1+2k)=2

9

=

;

; (44)

where G[�; z℄ is in
omplete gamma-fun
tion. The 
oeÆ
ients in this expression depend on � only and are given in

Appendix A. Nonlinear sus
eptibility given by expression (44) does not diverge if 2 < � < 3 and �1 +

d

�

< �. For


ase �

L

< 3! we obtained a similar expression (Appendix A).

After averaging over droplet energies for 
ases �

L

> !;�

L

� !;�

L

< ! we have re
eived that the real part of the

nonlinear sus
eptibility is dominated by droplets of length s
ale

L

dom(!)

�

�

1

�

�

�

�

�

log

�

!

�

0

�

�

�

�

�

�

1=d

(45)

whi
h is determined by 
ondition �

L

� !. For example, for the 
ase of �

L

< ! we re
eived as a result of two averages

�

0

3

�

q

2

EA




1+�

(

1

�d

�

1

�

�

�

�

�

log

�

!

�

0

�

�

�

�

�

�

�

N

0

!

��2

+

8

X

k=1

N

k

!

��2�k

�

k

0

(�k)

��

d

G

�

�;

�

�

�

�

log

�

!

�

0

�

�

�

�

�

k

�

+ � se


�

��

2

�

X

k=0;2

R

k

!

k�2

�

��k

0

(�(� � k))

��

d

G

�

�;

�

�

�

�

log

�

!

�

0

�

�

�

�

�

(�� k)

�

+

1

�d

�

1

�

�

�

�

�

log

�

!

�

0

�

�

�

�

�

�

�

e

��!

2

X

k=0

P

k

!

(��5�2k)=2

�

�(�+1+2k)=2

)

: (46)

The 
oeÆ
ients in this expression depend on � only and are given in Appendix B. Nonlinear sus
eptibility given by

expression (46) does not diverge if 2 < � < 7 and (�1 + d=�) < �. (The 
ases of �

L

> ! and �

L

� ! are given in

Appendix B).

After integration over droplet energies for 
ases �

L

>

!

2

;�

L

�

!

2

;�

L

<

!

2

we have re
eived that the real part of

the nonlinear sus
eptibility is dominated by droplets of length s
ale

L

dom(

!

2

)

�

�

1

�

�

�

�

�

log

�

!

2�

0

�
�

�

�

�

�

1=d

(47)

whi
h is determined by 
ondition �

L

�

!

2

. Then for 
ase �

L

>

!

2

the result of two averages is given by the following

expression

�

0

3

�

q

2

EA




1+�

�

1

�d

�

1

�

�

�

�

�

log

�

!

2�

0

�

�

�

�

�

�

�

T

0

!

��2

+

8

X

k=1

T

k

!

��2�k

�

k

0

(�(� � k))

��

d

G

�

�;

�

�

�

�

log

�

!

2�

0

�

�

�

�

�

(�� k)

�

+ � se


�

��

2

�

X

k=0;2

S

k

!

k�2

�

��k

0

(�(� � k))

��

d

G

�

�;

�

�

�

�

log

�

!

2�

0

�

�

�

�

�

(�� k)

�

+

1

�d

�

1

�

�

�

�

�

log

�

!

2�

0

�

�

�

�

�

�

�

 

e

��!

2

X

k=0

U

k

!

(��5�2k)=2

�

�(�+1+2k)=2

+ e

�(3�!)=4

U

3

!

��3

�

�1

!)

: (48)

The 
oeÆ
ients in this expression depend on � only and are given in Appendix C. Nonlinear sus
eptibility given

by expression (48) does not diverge if 2 < � < 7 and (�1 + d=�h�. (Cases �

L

� (!=2);�

L

< (!=2) are given in

Appendix C).
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Expressions for sus
eptibility 
onsist of two parts:

one part does not depend on temperature, the other

one depends on temperature. Nonlinear sus
eptibility

has strong dependen
e on distribution fun
tion P

L

(�

L

),

i. e. on �, on droplet mi
ros
opi
 tunneling rate �

0

and other parameters. One 
an see that the real part

�

0

3

(!; T ) varies approximately logarithmi
ally with fre-

quen
y. This signalizes broad distribution of relaxation

times of the system.

Let us take for numeri
al 
al
ulation the following

numbers: � = 1;�

0

= 10

10

s

�1

; d = 3; � = 2:5; 
 =

10

�15

erg, � = 10

�15

; q = 0:5. The frequen
y depen-

den
e of �

0

3

(!; T ) is shown in Fig. 1. We give log

10

f-

dependen
e at log

10

f from 0 to 11 at several �xed tem-

peratures: T

1

= 0:001; T

2

= 0:005; T

3

= 0:01; T

4

= 0:05.

Fig. 1. The frequen
y dependen
e of real of the nonlin-

ear dynami
al sus
eptibility �

0

3

(!; T ) versus Log

10

f at �xed

temperature

The frequen
y interval 
overs some de
ades of frequen-


ies. Our numeri
al 
al
ulations show the 
rossover be-

tween low-! and high-! behaviours. In low-! region the

nonlinear response is found nonsingular and slowly de-


reasing. When the frequen
y in
reases the 
urve falls

down more qui
kly, the nonlinear response diverges at

! � �

0

=3, then the 
urve rises to some value. In low-! re-

gion we have a qualitative agreement with experimental

data for disordered dipolar magnet LiHo

x

Y

1�x

F

4

. At dif-

ferent low �xed temperatures the behaviour of �

0

3

(!; T )

is the same and the values of �

0

3

(!; T ) are approximately

the same. Therefore we give only one 
urve for all �xed

temperatures.

In Fig. 2 we give the temperature dependen
e of

�

0

3

(!; T ) at the temperatures from 0 to 10

�2

K at sev-

eral �xed frequen
ies: f

1

= 10

7

Hz; f

2

= 2:5 10

7

Hz; f

3

=

510

7

Hz; f

4

= 7:5 10

7

Hz; f

5

= 10

8

Hz of a
 �eld (f =

!=2�). The behaviour of �

0

3

(!; T ) indi
ates the following

glassy-like features. The 
urves of the temperature de-

penden
e of �

0

3

(!; T ) have maxima depending on �xed

frequen
y. The temperature of �

0

3

-maximum T

f

(!) de-

pends on frequen
y. The nonlinear sus
eptibility magni-

tudes at di�erent �xed frequen
ies are remarkably dis-

tinguishable. The temperatures of maximum values are

di�erent. When the frequen
y in
reases the temperature

of �

0

3

-maximum shifts towards high temperatures. The

similar 
urve of temperature variation of �

0

3

was observed

in spin glasses at higher temperatures [2,13℄. If we 
on-

sider only the T -dependent part of �

0

3

, we will see that

the �

0

3

-maxima are sharp (Fig. 3).

Fig. 2. The temperature dependen
e of the real part of the

�

0

3

(!; T ) at various frequen
ies f .

Fig. 3. The temperature dependen
e of the T -dependent

part of the �

0

3

(!; T ) at various frequen
ies f .
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VI. DISCUSSION AND CONCLUSION

The 
ubi
 dynami
 sus
eptibility �

0

3

(3!) is analiti-


ally and numeri
ally 
al
ulated in quantum spin glass

in terms of quantum droplet model on the basis of gen-

eral dynami
 nonlinear quantum-me
hani
al response

theory. We have 
arefully analyzed the sus
eptibility

temperature-frequen
y behaviour to study the proper-

ties of the low temperature magneti
 state and to de-

termine whether or not a 
onventional spin glass state

exists below T

f

. Comparing with the 
ase of a true spin

glass transition we see that our data indi
ate that the

magneti
 state below T

f

does not 
orrespond to a 
on-

ventional spin glass state below T

f

. We �nd a glassy

type slow dynami
s. Our 
al
ulations show that the a


nonlinear sus
eptibilities s
ale for �

L

> 3! with su
h a

frequen
y as

�

0

3

(3!) �

X

k=0;1

A(k)!

(��5�2k)=2

e

�3�!

�

�

�

log(3!�

�1

0

)

�

�

[d�(1+�)�℄=�

+

X

n=�2;0;2

B(n)!

n�2

G[�;

�

�

log(3!�

�1

0

)

�

�

(�� n)℄ ; (49)

where A(k) and B(n) and some expressions whi
h do

not 
ontain !. The nonlinear sus
eptibility diverges for

! ! 0 if d > (1 + �)� and � < 7, in 
ontrast to 
lassi
al

Ising spin glass at T > 0 (where it diverges as a power

of log!). Similar frequen
y dependen
e was observed by

W. Wu et al. [14℄. So, the droplet dynami
s at very low

temperatures is extremely slow.

Our 
al
ulations at T = 0 
oin
ide with T = 0 re-

sult of M. J. Thill and D. A. Huse [6℄. For �nite temer-

atures we �nd some features whi
h have been re
ently

observed [13℄. We suppose that at some very low temper-

ature (temperature of the maximum of �

0

3

(!; T )) there

is a phase transition. If � > 0 and d = 3, we suppose

a true phase transition at very low temperature T

f

. For

our numeri
al data we �nd T

f

� 10

�4

� 8:5 10

�4

K for

f = 10

7

� 10

8

Hz, respe
tively (Fig. 3).

Besides frequen
y and temperature dependen
e the

shape of �

0

3

(3!) depends 
ru
ially on the probability dis-

tribution of droplet free energies, on the tunneling rate

for a droplet of linear size L, on the material parameters.

In 
onsequen
e of this dependen
e there is divergen
e (or


onvergen
e) of �

0

3

(3!). We need to take into a

ount

(in a future paper) the dipole-dipole intera
tion between

droplets and also droplet latti
e intera
tion.

Applying our results to the reported experimental data

on the nonlinear dynami
 sus
eptibility of LiHo

x

Y

1�x

F

4

we demonstrate that a fairly good agreement may be

a
hieved.

This work is partially supported by the RBRF under

Grant 01{02{16368.

APPENDIX A

The 
oeÆ
ients in expression (44) are the following:

� =

d� �(1 + �)

d

;

A

�2

= �

1

4

�

�

4

; A

0

= �

6263

1600

�

23�

100

+

6441

6400

2

�+1

2

; A

2

= �

135

10

+ 12 2

�+1

2

;

B

0

= G

�

�� 1

2

�

2

��7

2

3

��1

2

(1435�

2

+ 843�� 1988)

175

; B

1

= G

�

�� 1

2

�

2

��7

2

3

��3

2

(791� 791�

2

)

5

:

�

0

3

(!; T ) �

q

2

EA




1+�

�

1

�

�

�

�

log

�

3!

�

0

�

�

�

�

�

�

�d

(

C

0

� se


�

��

2

�

!

��2

+ e

�3�!

4

X

k=1

C

k

!

�+1�2k

2

�

��+5�2k

2

)

for �

L

� 3! where

C

0

=

243 35

��1

2

2

7��

185

�

68931 2

3��3

925

+

3

�

2

�

391 2

�+5

2

3

�

925

�

27 2

3��5

2

�

5

; C

1

= �G

�

�� 1

2

�

2

��3

2

3

�+3

2

5

;

C

2

= G

�

�� 1

2

�

2

��3

2

3

�+1

2

5

�G

�

�+ 1

2

�

2

�+1

2

3

��5

2

(458 + 945�)

35

;
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C

3

= �G

�

�+ 1

2

�

11897 2

��7

2

3

��5

2

175

+ G

�

�+ 3

2

�

10206 2

��7

2

3

��5

2

35

;

C

4

= �G

�

�+ 3

2

�

359106 2

��7

2

3

��5

2

175

:

This expression does not diverge if 2 < � < 3 and �1 +

d

�

< �. This expression has singularity at ! �

�

0

3

. When

the frequen
y in
reases the values of �

0

3

are growing to in�nity while !!

�

0

3

. �

0

3

maintains this property when ! is

more than

�

0

3

. The temperature dependen
e of �

0

3

in this 
ase has no extremes, we observe monotonous de
rease of

values of �

0

3

with temperature.

APPENDIX B

The 
oeÆ
ients in expression (46) are the following:

N

0

=

576�

2

+ 2223�+ 3015

405(�+ 1)(�+ 3)

; N

1

=

4941�

2

+ 7586�+ 4589

405(�+ 1)(�+ 3)

; N

2

=

�3293�

2

� 1994�+ 2595

405(�+ 1)(�+ 3)

;

N

3

= �

2595�

2

+ 4156�+ 1553

405(�+ 1)(�+ 3)

; N

4

=

1641�

2

+ 1294�� 347

405(�+ 1)(�+ 3)

; N

5

=

499�

2

+ 819�+ 296

405(�+ 1)(�+ 3)

;

N

6

=

�312�

2

� 266�+ 30

405(�+ 1)(�+ 3)

; N

7

= �

6�+ 4

81(�+ 3)

; N

8

=

4�

81(�+ 3)

;

R

0

=

4(2

��1

2

� 1)

25

; R

2

=

�� 11

50

; P

0

= �G

�

�+ 1

2

�

2

��5

2

(24�+ 85)

3

; P

1

= G

�

�+ 3

2

�

7787 2

��9

2

75

;

P

2

=

�

G

�

�+ 3

2

�

+ G

�

�+ 5

2

��

2

��9

2

374410(�+ 3)

225(�+ 5)

:

�

0

3

�

q

2

EA




1+�

8

<

:

�

1

�

�

�

�

log

�

!

�

0

�

�

�

�

�

�

�d

J

0

!

��2

+

3

X

k=1

J

k

!

��2�k

�

k

0

(�k)

��

d

G

�

�;

�

�

�

�

log

�

!

�

0

�
�

�

�

�

k

�

+� se


�

��

2

�

X

k=0;2

K

k

!

k�2

�

��k

0

(�(� � k))

��

d

G

�

�;

�

�

�

�

log

�

!

�

0

�

�

�

�

�

(� � k)

�

+

�

1

�

�

�

�

log

�

!

�

0

�
�

�

�

�

�

�d

 

e

��!

3

X

k=0

 L

k

!

��3�2k

2

�

��+1�2k

2

+ e

�3�!

 L

4

!

��3

�

�1

!

9

=

;

for �

L

> ! where

J

0

= �

3

�

(4�

2

� 36�� 34)

5(�+ 1)(�+ 3)

; J

1

=

3

��1

(26�

2

+ 58�+ 30)

5(�+ 1)(�+ 3)

; J

2

= �

3

��2

(6�+ 2)

�+ 3

; J

3

=

3

��3

2�

�+ 3

;

K

0

= �

2

�

157�

160

�

103

32

+

2

��1

2

21

5

; K

2

= �

3�

2

4

+

2�

5

�

37

20

+

2

�+1

2

8

5

;

 L

0

= G

�

�+ 1

2

�

2

��7

2

(9� �

2

);  L

1

= G

�

�+ 1

2

�

2

��5

2

(�3�

3

� 9�

2

+ 3�� 4)

3

;

 L

2

= G

�

�+ 3

2

�

2

��9

2

66601

225

;  L

3

= G

�

�+ 5

2

�

2

��7

2

45

;  L

4

= �

2

�+

7

2

7

25

:
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This expression does not diverge if 2 < � < 5 and �1 +

d

�

< �.

�

0

3

�

q

2

EA




1+�

�

1

�

�

�

�

log

�

!

�

0

�

�

�

�

�

�

�d

(

� se


�

��

2

�

M

0

!

��2

+ e

��!

5

X

k=1

M

k

!

�+3�2k

2

�

��+7�2k

2

)

for �

L

� ! where

M

0

= �

2

��1

2

33

50

�

2

8��

3

��1

2

50

+

�+ 3

10

; M

1

= G

�

�+ 1

2

�

2

�+1

2

; M

2

= G

�

�� 1

2

�

2

��1

2

(2� �);

M

3

= G

�

�+ 1

2

�

2

�+3

2

; M

4

= �G

�

�+ 1

2

�

2

��1

2

(30�+ 121)

15

; M

5

= G

�

�+ 3

2

�

2

�+1

2

101

45

:

This expression does not diverge if 2 < � < 5 and �1 +

d

�

< �. Nonlinear sus
eptibility as a fun
tion of ! for

the 
ase of �

L

> ! has singularity at ! � �

0

. Before this point we �nd �

0

3

-minima depending on �xed temperature.

When ! be
omes larger than �

0

the values of �

0

3

grow to in�nity (Fig. 4).

Fig. 4. The frequen
y dependen
e of the real part of the

nonlinear dynami
al sus
eptibility �

0

3

(!; T ) versus Log

10

f at

several �xed temperatures for 
ase �

L

> !

Fig. 5. The temperature dependen
e of the real part of the

nonlinear dynami
al sus
eptibility �

0

3

(!; T ) at several �xed

frequen
ies f .

In the temperature behaviour of �

0

3

we also observe the minima. The temperatures of the minima and their values

depend on �xed frequen
ies.

The 
ase of �

L

� ! has its own parti
ular features, for example in temperature dependen
e (Fig. 5).

APPENDIX C

The 
oeÆ
ients in expression (48) are the following:

T

0

=

�3996�

2

� 9548�� 6155

405(�+ 1)(�+ 3)

; T

1

=

4941�

2

+ 7586�+ 4589

405(�+ 1)(�+ 3)

; T

2

=

�3293�

2

� 1994�+ 2595

405(�+ 1)(�+ 3)

;

T

3

= �

2595�

2

+ 4156�+ 1553

405(�+ 1)(�+ 3)

; T

4

=

1641�

2

+ 1294�� 347

405(�+ 1)(�+ 3)

; T

5

=

499�

2

+ 819�+ 296

405(�+ 1)(�+ 3)

;

T

6

=

�312�

2

� 266�+ 30

405(�+ 1)(�+ 3)

; T

7

= �

6�+ 4

81(�+ 3)

; T

8

=

4�

81(�+ 3)

;
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�
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��
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3��
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:

This expression does not diverge if 2 < � < 7 and �1 +

d

�

< �.
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� 2772�� 3044)
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=
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2

� 50148�� 32432)
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� 35804�+ 7940)

81(�+ 1)(�+ 3)

;

W

8

=

2

���3

(�17608�

2

� 21024�� 3416)

81(�+ 1)(�+ 3)

; W

9

=

2

���3

(10288�

2
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:

This expression does not diverge if 2 < � and �1 +

d

�

< �.

In the 
ase of �

L

�

!

2

we �nd quite a di�erent temperature dependen
e of �

0

3

(!; T ) than for �

L

> 3! (Fig. 6). The
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frequen
y dependen
e is also di�erent. �

0

3

(!; T ) has singularity at ! � 2�

0

, before this point we �nd the minima of

�

0

3

depending on �xed temperature.

For �

L

<

!

2

�

0

3

(!; T ) has the minima on T and temperatures of the minima are lower (approximately by ten times)

than for �

L

�

!

2

. �

0

3

(!; T ) as a fun
tion of ! has singularity at ! � 2�

0

(Fig. 7). The values of �

0

3

(!; T ) at di�erent

�xed temperatures are approximately the same.

Fig. 6. The temperature dependen
e of the real part of

the nonlinear dynami
al sus
eptibility �

0

3

(!; T ) at various fre-

quen
ies f

Fig. 7. The frequen
y dependen
e of the real part of the

nonlinear dynami
al sus
eptibility �

0

3

(!; T ) versus Log

10

f at

several �xed temperature
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L�N��NA TA KUB�QNA DINAM�QNA SPRI�N�TLIV�ST^

U KVANTOVOMU SP�NOVOMU SKL�

D�. Buz�el~�o

1

, R. V. Saburova

2

, V. G. Suxkova

2

1

F�ziqni� v�dd�l �m. E. R. Ka�n�el~�o, Un�versitet m. Salerno, 84081, Baron�s�{Salerno

ta v�dd�l Na
�onal~nogo �nstitutu f�ziqnogo mater��loznavstva, Salerno, �tal��

2

F�ziqni� fakul~tet, Kazans~ki� ener�etiqni� un�versitet,

vul. Krasnosel~s~ka, 51, Kazan~, 420066, Ros��

Dosl�d�eno niz~kotemperaturnu poved�nku dinam�qnoÝ nel�n��noÝ (kub�qnoÝ) spri�n�tlivosti �

0

3

(!; T )

u kvantovomu d-vim�rnomu �zin�ovomu sp�novomu skl� z korotkos��no� vza
mod�
� pom�� sp�nami. Z 
�
�

meto� zastosovano kvantovu kraplinnu model~ ta kvantovomehan�qnu nel�n��nu teor�� v�dguku. Otrimano

sklopod�bnu poved�nku kraplinnoÝ dinam�ki. Vi�vleno sil~nu qastotnu zale�n�st~ �

0

3

(!; T ); temperaturnu

zale�n�st~ pom�qeno pri du�e niz~kih temperaturah (kvantovi� re�im). Nel�n��ni� v�dguk zale�ni� v�d

tempu tunel�vann� krapl�, wo regul�
 veliqinu kvantovih fl�ktua
��. Ce� v�dguk sil~no zale�it~

v�d rozpod�lu v�l~nih ener��� krapel~ ta v�d seredn~ogo znaqenn� masxtabu dov�in krapel~. Zaznaqeno

zastosuvann� rezul~tat�v v eksperimentah nad kvantovimi sp�novimi steklami na zrazok nevpor�dkovanogo

dipol~nogo kvantovogo �zin�ovogo magnetika LiHo

x

Y

1�x

F

4

ta psevdosp�nu.
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