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A perturbative alulation of the e�et of utuations in the nonzero frequeny modes of a

weakly interating Bose gas on the ondensation temperature is reviewed. These dynami modes,

disarded in most of the reent studies, have a temperature-indued energy gap that allows for a

perturbative approah. The simple, yet powerful algorithm onsists of a high-temperature expansion

in onjuntion with zeta funtion regularization of infrared divergenes. The algorithm is shown

to be reliable by demonstrating that it reprodues known results for a series of examples. With

two-loop ontributions properly inluded, the dynami modes are seen not to lead to a shift in the

ondensation temperature.
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I. INTRODUCTION

The past �ve years or so have seen numerous stud-

ies aimed to determine the ondensation temperature of

a weakly interating Bose gas (for referenes and riti-

al disussions of the various approahes, see Ref. [1℄).

These studies, driven by experiments on Bose{Einstein

ondensation (BEC), were based on a variety of analyti,

omputational, and experimental methods. With only a

few exeptions, however, the theoretial studies took the

same starting point of onsidering only the stati part of

the quantum �eld desribing the bosons. The rationale

is that the dynami modes have a temperature-indued

energy gap. This makes them irrelevant ompared to the

stati mode, for whih that gap vanishes, when studying

the long-distane ritial behaviour of the system lose

to the phase transition. With the gapped thermal modes

deoupled, the mirosopi quantum theory redues to

a stati, lassial theory, assumed to properly desribe

this thermal phase transition in equilibrium. Universal

properties, suh as the ritial exponents an indeed be

omputed from this naive theory, as is well known.

Critial temperatures are, however, not universal. Al-

though phase transitions ourring in di�erent systems

may display the same long-distane behavior harater-

ized by the same values of the ritial exponents, they in

general take plae at di�erent temperatures. For exam-

ple, BEC in a relativisti free Bose gas is in the same uni-

versality lass as BEC in its nonrelativisti ounterpart,

yet the ondensation temperatures di�er in both systems

[2℄. This di�erene arises beause the ritial tempera-

tures of these noninterating systems are determined en-

tirely by the dynami modes (see Se. II B) whose spe-

trum di�er for the relativisti and nonrelativisti Bose

gases. The universal properties, on the other hand, are

determined by the stati modes, whih are similar for

both gases. Whereas universal quantities are largely in-

dependent of the dynamis and details of the underly-

ing theory, nonuniversal quantities in priniple depend

on them. The ritial temperatures of lattie models are

even sensitive to suh short-distane details as the pre-

ise lattie used.

The proper way to proeed when alulating nonuni-

versal properties is well established. One has to go down

one level and start from the mirosopi model desrib-

ing the quantum system under onsideration and pertur-

batively integrate out the irrelevant degrees of freedom

(the dynami modes when onsidering BEC). One thus

obtains an e�etive theory in terms of the remaining, rel-

evant degree of freedom (the stati mode in ase of BEC),

with the oeÆients being determined by the irrelevant

degrees of freedom that have been integrated out. This

e�etive �eld program was arried out for the problem at

hand almost a deade ago [3℄, with the onlusion that

the dynami modes lead to a shift in the ondensation

temperature of a weakly interating Bose gas. The pur-

pose of this paper is to revise that �nding. Namely [4℄,

the shift obtained at one loop is aneled by a two-loop

ontribution not onsidered in Ref. [3℄. There, only the

leading ontribution in a high-temperature expansion of

the two-loop Feynman diagrams was onsidered, whereas

the aneling terms appear in the next order. To show

that it is this omission and not, as has reently been

suggested [1℄, the method used that led to the inorret

onlusion, we larify and justify in detail the pertur-

bative approah of Ref. [3℄. To appreiate the approah,

we �rst reall some essentials of �nite-temperature �eld

theory.

A. Finite Temperature

The properties of a quantum system at �nite temper-

ature an be studied [6℄ by going over to imaginary time
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t ! �i� , with � restrited to the interval 0 � � � ~�,

where � = 1=k

B

T is the inverse temperature. The time

dimension thus beomes ompati�ed and, onsequently,

the energy variable ~k

0

disrete k

0

! i!

n

, with !

n

the

so-alled Matsubara frequenies,

~!

n

=

�

2��

�1

n for bosons

��

�1

(2n+ 1) for fermions;

(1)

where n is a (positive or negative) integer. The di�erene

between the bosoni and fermioni frequenies arises be-

ause a bosoni �eld �(�;x) satis�es periodi boundary

onditions �(~�;x) = �(0;x), whereas a fermioni �eld

satis�es antiperiodi ones  (~�;x) = � (0;x). Being

(anti)periodi, the �elds an be expanded in a Fourier

series as (with a similar equation for  ):

�(�;x) =

1

~�

1

X

n=�1

Z

d

d

k

(2�)

d

e

�i!

n

�+ik�x

�

n

(k); (2)

where �

n

(k) := �(!

n

;k).

An integral over the energy variable ~k

0

at the abso-

lute zero of temperature beomes a sum over the Ma-

tsubara frequenies at �nite temperature:

Z

dk

0

2�

g(k

0

)!

i

~�

X

n

g(i!

n

); (3)

where g is an arbitrary funtion.

The frequeny sums enountered below are typially

evaluated using the identity [6℄

1

�

1

X

n=�1

1

�i~!

n

+ z

=

1

2

+ n(z); (4)

or beause of antisymmetry [7℄

1

�

1

X

n=�1

z

~

2

!

2

n

+ z

2

=

1

2

+ n(z); (5)

where n(z) is the Bose{Einstein distribution funtion

n(z) =

1

e

�z

� 1

=

1

�z

�

1

2

+O(�z): (6)

The �rst term at the right hand of the identity (4) gives

the result for zero temperature, while the seond gives

the thermal ontribution. Suh a splitting is onvenient

beause the pure quantum T = 0 part an often be om-

bined with the bare (zero-loop) theory. In a renormaliz-

able theory, for example, the zero-temperature part leads

to a renormalization of the bare parameters. These on-

tributions are then ombined with the bare theory to

dress its parameters.

In this paper, the thermal ontributions to the grand

anonial thermodynami potential 
 of various systems

are expanded in a high-temperature series. Aording to

standard statistial mehanis, 
 is related to the parti-

tion funtion Z via [8℄


 = ��

�1

lnZ: (7)

Physially, this potential determines the thermodynami

pressure p through 
 = �pV , with V the volume of

the system. High-temperature expansions are an impor-

tant omputational tool for studying interating theories

where usually no exat results an be derived as for free

theories. The standard approah is to use the identity (4)

bakwards and to replae the Bose{Einstein distribution

funtion again with an expression involving a frequeny

sum:

n(z) =

1

�z

�

1

2

+

2

�

1

X

n=1

z

~

2

!

2

n

+ z

2

; (8)

where in the �rst term at the right hand, the n = 0 on-

tribution is isolated. The seond term anels the T = 0

ontribution ontained in the sum. These two terms or-

respond to the �rst terms in a Laurent expansion of the

Bose{Einstein distribution funtion.

The n = 0 ontribution, stemming from the �

0

(k)

mode in the Fourier series (2), is of speial interest to us.

This zero-frequeny mode, spei� to bosoni systems, is

a thermal mode for whih the temperature-indued en-

ergy gap 2��

�1

n in the denominator at the left hand of

Eq. (4) vanishes. It is related to the stati �eld � alluded

to above as follows:

�(x) =

Z

~�

0

d� �(�;x) =

Z

d

d

k

(2�)

d

e

ik�x

�

0

(k); (9)

where use is made of the Fourier series (2). This lassi-

al, zero-frequeny mode is the order parameter of BEC

in a weakly interating Bose gas. It develops a nonzero

value in the ordered state where the U (1) symmetry

� ! exp(i�)� (� being a onstant transformation pa-

rameter) is spontaneously broken, with j�j

2

determining

the average number density of ondensed partiles. That

is, a nonzero value of the order parameter (a lassial

objet) implies the presene of a ondensate (a quan-

tum phenomenon). Being stati, this mode is unaware of

the time dimension and only notes the spae dimensions.

Compared to the dynami modes �

n

(k), with n 6= 0,

it lives in one dimension less and its ontributions are

aordingly di�erent in form from those of the gapped

thermal modes, being typial for a d-dimensional rather

than a (d+ 1)-dimensional theory.

The following hierarhy an be identi�ed, with the

pure quantum zero-temperature modes living in d + 1

nonompat spaetime dimensions, the gapped thermal

modes also living in d + 1 spaetime dimensions, but

with a ompati�ed time dimension, and �nally the zero-

frequeny mode living in d spae dimensions, whih an

be understood as (d+1)-dimensional spaetime with the
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ompat time dimension shrank to a point by letting

� ! 0. Below, the zero-frequeny mode ontributions

are labeled by a supersript 0 to indiate that they or-

respond to � = 0, while the zero-temperature (� = 1)

ontributions are labeled by a supersript1. The ontri-

butions desribed by the remaining terms in the Laurent

expansion (8), �nally, are labeled by a supersript �. We

will, somewhat loosely, refer to these last ontributions

as due to the gapped thermal modes, although they also

enode the T = 0 ontributions, that are expliitly sub-

trated by the seond term in the Laurent expansion.

Zero-frequeny modes an produe nonanalyti behav-

ior, depending on the number of spae dimensions. Dolan

and Jakiw [7℄ in their study of thermal phase transitions

in relativisti quantum systems took a pragmati ap-

proah toward these nonanalyti terms indued by suh

modes and simply disarded them when estimating rit-

ial temperatures. In light of the disussion above, this

approah is justi�ed as the ritial temperature is to �rst

order determined by the vanishing of the quadrati term

in the e�etive theory [9℄. Featuring the zero-frequeny

mode �, that theory is obtained by integrating out the

gapped thermal modes, whih give only analyti ontri-

butions. It is only in the next stage, where utuations

in � are studied, that nonanalyti ontributions an ap-

pear.

B. Outline

In this paper, regularization tehniques routinely ap-

plied to handle ultraviolet divergent integrals are used

to stem infrared divergenes instead. Usually, suh diver-

genes are regularized by introduing an infrared uto�.

This type of regularization forms the infrared ounter-

part of the momentum uto� regularization of ultravi-

olet divergenes, where integrals are made �nite by in-

tegrating only up to a �nite momentum. Besides using

momentum uto� regularization, ultraviolet divergenes

an also be rendered �nite by means of dimensional reg-

ularization, where the integrals are generalized to arbi-

trary dimension, or analyti regularization, where powers

appearing in the integrands are generalized to take ar-

bitrary values. In the following, these tehniques rather

than introduing an infrared uto� are used to regularize

infrared divergenes.

The infrared divergenes in this paper arise when

expanding thermodynami potentials in a high-

temperature series, using the algorithm of Ref. [3℄. The

algorithm di�ers from the standard high-temperature ex-

pansion and fouses on the analyti terms needed for the

study of the ritial properties of an interating system.

A series of examples is given to show in detail that this

high-temperature expansion in onjuntion with the reg-

ularization tehniques used is reliable, by demonstrating

that known results are reovered. The examples inlude

a nonrelativisti (Ses. II A and II B) and a relativisti

(Se. II C) free Bose gas, as well as their fermioni oun-

terparts (Ses. III A{III C), and a BCS superondutor

(Se. III D). In Se. IVA, utuations in the nonzero fre-

queny modes of a weakly interating Bose gas are on-

sidered by integrating out these gapped thermal modes

in a loop expansion. In partiular their e�et on the

ondensation temperature is studied using the algorithm

advoated here. As mentioned at the beginning of the In-

trodution, although irrelevant for the ritial behaviour

itself, these high-energy modes an in priniple a�et the

value of the ondensation temperature, whih | unlike

the ritial exponents | is nonuniversal and depends on

the details of the underlying quantum theory. Owing to

the temperature-indued energy gaps, the ontributions

due to the nonzero frequeny modes an be alulated

in perturbation theory. It is shown that the shift in the

ondensation temperature found in Ref. [3℄ at one loop is

aneled by two-loop ontributions [4℄, not only in d = 3

but in arbitrary 2 < d < 4 (Se. IVB). The advantage

of onsidering arbitrary dimensions is that BEC in two

dimensions an be studied by taking the limit d! 2. A

disussion of some reent studies on the subjet is given

in Se. IVC followed by onlusions in the last setion

(Se. V).

II. BOSONIC INTEGRALS

A. Bose{Einstein Condensation

As �rst bosoni system, a free Bose gas above the on-

densation temperature is onsidered. Being noninterat-

ing, the �eld �

n

(k) desribing the bosons an be inte-

grated out exatly, leading to the thermodynami po-

tential 
 [8℄




V

= �

�1

1

X

n=�1

Z

d

d

k

(2�)

d

ln

�

�i~!

n

+

~

2

k

2

2m

� �

�

; (10)

apart from irrelevant onstant terms independent of �

and �. Here, m and � are the mass and the de Broglie

thermal wavelength � =

p

2�~

2

�=m of the partiles, and

� < 0 is the hemial potential. The argument of the log-

arithm is reognized as the kernel of the time-dependent

Shr�odinger equation in the imaginary-time formalism,

desribing a partile of mass m at �nite temperature in

a onstant bakground potential ��. As indiated by

the single set of frequeny sum and momentum integrals,

Eq. (10) is a one-loop result that, beause the system is

noninterating, is exat. The momentum integral is best

arried out by using the Shwinger propertime represen-

tation of the logarithmand Poisson's summation formula

1

X

n=�1

e

2�ina

=

1

X

w=�1

Æ(a� w) (11)

to replae the summation over n by one over w. The inte-

grals over the Shwinger propertime parameter and the

momentum variable are then easily arried out to yield

the familiar fugaity series [8℄
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V

= �

1

��

d

1

X

w=1

w

��

e

��w

; (12)

where � = d=2 + 1 and � = ��� > 0. In Eq. (12),

the singular zero-temperature ontribution orrespond-

ing to w = 0 is omitted. A more areful derivation of the

thermodynami potential (10) reveals the presene of an

extra onvergene fator exp(i!

n

�) typial for nonrel-

ativisti theories, where � is a small positive parameter

that is taken to zero only after the frequeny sum is eval-

uated [6℄. This onvergene fator suppresses the T = 0

ontribution (see below). Physially, the series (12) de-

notes the sum over losed worldlines that wind w times

around the imaginary time axis [10℄. The �rst fator in

the summand measures the on�gurational entropy of

the loops, while the seond, with � being proportional

to the worldline tension, is a Boltzmann fator, weighing

loops aording to their length measured by w. Loops

with w > 1 orrespond to exhange rings of w partiles

whih are ylially permuted after an imaginary time

~�, as they appear in Feynman's theory of the lambda

transition in superuid

4

He [11℄.

The expression (10) an alternatively be evaluated by

keeping the momentum integral to the end and instead

of the Poisson formula using the identity (4). For nonrel-

ativisti free theories, the summand there inludes the

onvergene fator exp(i!

n

�) that suppresses the T = 0

part [6℄. The thermodynami potential then takes the

well-known form [8℄




V

= �

1

��

d

F

d=2+1

(�); (13)

where

F

�

(�) =

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

� 1

(14)

with q the dimensionless loop variable de�ned by q

2

=

�~

2

k

2

=2m.

On omparing the two alternative evaluations of the

thermodynami potential it follows that

1

X

w=1

w

��

e

��w

=

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

� 1

; (15)

where in the �rst representation the momentum integral

has been arried out, while in the seond it still has to

be performed. The equivalene of both results is easily

established by expanding the integrand in a geometri se-

ries and using the integral representation of the Gamma

funtion.

B. High-Temperature Expansion

Next, the funtion F

�

(�) is expanded in a high-

temperature series. As mentioned in the Introdution,

suh an expansion is an important omputational tool for

interating theories, where exat results are absent. The

standard approah is to use the identity (4) bakwards,

i. e., the Laurent expansion (8) of the Bose{Einstein

distribution funtion. The zero-frequeny mode, orre-

sponding to the �rst term in the Laurent expansion, gives

the ontribution

F

0

�

(�) =

2

�(� )

Z

1

0

dq

q

2��1

q

2

+ �

= �

��1

�(1� � ); (16)

whih for d = 3 leads to a nonanalyti ontribution of

the form � �

3=2

.

As an aside, this ontribution due to the zero-

frequeny mode an also be obtained from the worldline

loop representation by replaing the sum over w in F

�

(�)

by an integral:

1

X

w=1

w

��

e

��w

!

Z

1

0

dww

��

e

��w

= �

��1

�(1� � ) = F

0

�

(�): (17)

The zero-frequeny mode �

0

(k) is important for our

purposes as it determines the ritial properties of the

free Bose gas. To illustrate this, we di�erentiate the zero-

frequeny mode ontribution twie with respet to the

hemial potential � to obtain the known result that

the ompressibility � of an ideal Bose gas diverges as

� � (��)

��3

when the ondensation temperature T

0

is approahed from above, where � vanishes as � �

�(T � T

0

)

2=(d�2)

. For d = 3, this implies that

� / (��)

�1=2

� (T � T

0

)

�1

; (18)

and gives as value for the spei�-heat ritial exponent

�

e

= �1 [12℄. Desribing a free theory, this one-loop

result is exat.

Despite being noninterating, a free Bose gas is not in

the universality lass of the Gaussian model, but in that

of the spherial model [12℄. The nontrival exponents de-

rive from the onstraint that the total number of parti-

les be �xed. Without this onstraint, the hemial po-

tential would vanish instead as � � T

0

�T irrespetive of

the dimension. This would result in Gaussian exponents

desribing BEC in a free Bose gas at onstant pressure

[12℄. In four spae dimensions, orresponding to the up-

per ritial dimension, and above (i. e., d � 4), the expo-

nents of the spherial and Gaussian model oinide.

As mentioned before, the zero-temperature ontribu-

tion vanishes beause of the presene of a onvergene

fator in nonrelativisti free theories. More in line with

the present approah, it vanishes even without inluding

this fator,

�F

1

�

(�) =

1

�(� )

Z

1

0

dq q

2��1

= 0; (19)
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beause integrals over polynomials give zero within the

dimensional regularization sheme [13℄.

The rest of the terms in the high-temperature expan-

sion, orresponding to the last terms in the Laurent ex-

pansion (8), are analyti. These ontributions are ob-

tained in the standard approah by expanding the sum-

mand in a high-temperature Taylor series before arrying

out the momentum integral and the frequeny sum, with

eah term giving a Riemann zeta funtion

�(s) =

1

X

m=1

1

m

s

: (20)

Spei�ally, one �nds [14℄

F

�

�

(�) =

1

X

l=0

�(� � l)

�(l + 1)

(��)

l

; (21)

with � the dimensionless expansion parameter. The on-

densation temperature is determined by these ontribu-

tions due to the gapped thermal modes. At that tem-

perature, the hemial potential vanishes, so that the

equation for the partile number density n,

n = �

1

V

�


��

; (22)

with F

�

(�) in Eq. (13) replaed with F

�

�

(�), gives the

ondensation temperature

k

B

T

0

=

2�~

2

m

�

n

�(d=2)

�

2=d

: (23)

In other words, although the ritial exponents of BEC

in a free Bose gas are determined entirely by the stati,

zero-frequeny mode, the ondensation temperature, be-

ing nonuniversal, is determined entirely by the dynami,

gapped thermal modes.

It is natural to ask whether the series (21) an also be

extrated diretly from the integral representation given

in Eq. (14), where the frequeny sum has already been

arried out, without returning to a representation involv-

ing suh a sum. To show that the answer is aÆrmative,

we expand the integrand there in a high-temperature se-

ries. Eah term thus generated ontains an integral of

the form

Z

1

0

dq

q

q

2t

e

pq

2

� 1

(24)

and derivatives thereof with respet to the parameter p

(whih is set to unity at the end). For t � 1, these loop

integrals diverge in the infrared. We handle the diver-

genes using zeta funtion regularization, by analytially

ontinuing the following equation

2

Z

1

0

dq

q

q

2t

e

pq

2

� 1

= �(t)�(t)p

�t

; (25)

with t initially hosen large enough so that the integral

onverges, to arbitrary values of t. With this regulariza-

tion sheme, the high-temperature expansion (21) easily

follows,

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

� 1

Taylor

�!

1

X

l=0

�(� � l)

�(l + 1)

(��)

l

= F

�

�

(�); (26)

showing that the ontributions due to the gapped ther-

mal modes an indeed (when properly regularized) be

extrated diretly from the funtion F

�

(�) in Eq. (14)

without the need to return to the representation involv-

ing a frequeny sum. This result is quite general and will

in the next subsetion be illustrated for a relativisti sys-

tem.

C. Relativisti Free Bose Gas

To show that the onlusions of the previous setion by

no means hinge on the form of the nonrelativisti spe-

trum, leading to the spei� struture of the integrand in

Eq. (14), the same analysis for a relativisti free Bose gas

is given in this setion. The system is onsidered at zero

hemial potential � = 0. It has no phase transition then,

but the algebra is simpler than with a hemial potential

inluded [15℄, without losing any of the generalities we

wish to point out.

The analog of expression (10) for the nonrelativisti

Bose gas reads [16℄




V

=

1

2�

1

X

n=�1

Z

d

d

k

(2�)

d

ln

�

~

2

!

2

n

+ ~

2



2

k

2

+m

2



4

�

; (27)

with  the speed of light. The argument of the logarithm

is now reognized as the kernel of the Klein{Gordon

equation in the imaginary-time formalism, desribing a

relativisti free salar partile of mass m at �nite tem-

perature. Being a noninterating system, the one-loop

result (27) is exat. With the help of the identity (4),

the thermodynami potential beomes
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V

=

Z

d

d

k

(2�)

d

�

1

2

p

~

2



2

k

2

+m

2



4

+ �

�1

ln

�

1� e

��

p

~

2



2

k

2

+m

2



4

�

�

=

(~)

�d

�

�(d+1)

(4�)

d=2

�

1

�(d=2)

Z

1

0

dq q

d�1

p

q

2

+ (�m

2

)

2

�

�(2� )

�(� )

H

�

(�m

2

)

�

; (28)

where the new integration variable is q = �~k and the

thermal part of the thermodynami potential is deter-

mined by the funtion

H

�

(y) =

1

�(2� )

Z

1

0

dq

p

q

2

+ y

2

q

2��1

e

p

q

2

+y

2

� 1

; (29)

with � = d=2 + 1. This funtion [16℄ is the relativisti

analog of the funtion F

�

(�) in Eq. (14).

The high-temperature expansion of the funtionH

�

(y)

in d = 3 was omputed by Dolan and Jakiw [7℄. To

deal with logarithmi divergenes that arise beause four

spaetime dimensions orresponds to the upper ritial

dimension, dimensional regularization was used by on-

sidering d = 3� �, with � taken to zero at the end. For

onveniene, � = 5=2 � �=2 was only used in the inte-

grand, whereas � was set to zero from the start in the

prefator in Eq. (29). These authors used Eq. (5) bak-

wards, i. e., Eq. (8), expanded the summand in a Taylor

series, integrated term by term, and �nally arried out

the remaining frequeny sum in eah term, with the re-

sult [7℄:

H

5=2

(y) =

�

4

360

�

�

2

96

y

2

+

�

48

y

3

+

1

128

�

ln

�

y

4�

�

+  �

3

4

�

y

4

+ O(y

6

); (30)

where  is Euler's onstant and y = �m

2

the dimension-

less expansion parameter. The nonanalyti ubi ontri-

bution is due to the zero-frequeny mode represented

by the �rst term in the Laurent expansion of the Bose{

Einstein distribution funtion in Eq. (29):

H

0

5=2

(y) =

1

�(5)

Z

1

0

dq

q

4

q

2

+ y

2

=

�

48

y

3

; (31)

where analyti regularization is used to handle the ul-

traviolet divergene. The seond term in the Laurent ex-

pansion of the Bose{Einstein distribution funtion gives

�H

1

5=2

(y) = �

1

2

1

�(5)

Z

1

0

dq

q

4��

p

q

2

+ y

2

=

1

128

�

�

1

�

+ ln

�

y

2

�

+

7

12

�

y

4

; (32)

while the gapped thermal modes yield

H

�

5=2

(y) =

�

4

360

�

�

2

96

y

2

+

1

128

�

1

�

� ln(2�) +  �

4

3

�

y

4

+O(y

6

); (33)

so that H

5=2

(y) = H

0

5=2

(y) �H

1

5=2

(y) +H

�

5=2

(y). An ex-

tra minus sign is inluded in the left hand of Eq. (32),

so that H

0

5=2

is the T = 0 ontribution that has to be

subtrated from H

�

�

(�) to arrive at the purely thermal

ontributions H

�

(�).

We next rederive this result using the algorithm given

above and extrat it diretly from the integral represen-

tation (29), by expanding the integrand in a Taylor se-

ries. Applying zeta funtion regularization to handle the

infrared divergenes as before [see Eq. (25)℄, we obtain

1

�(5)

Z

1

0

dq

p

q

2

+ y

2

q

4��

e

p

q

2

+y

2

� 1

Taylor

�!

�

4

360

�

�

2

96

y

2

+

1

128

�

1

�

+ 2�

0

(0) +  �

4

3

�

y

4

+

�

0

(�2)

768

y

6

+

�

0

(�4)

24576

y

8

+

�

0

(�6)

1474560

y

10

+O(y

12

); (34)
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where this series is arried out to higher order. To show

that this expression oinides with H

�

5=2

(y), we di�eren-

tiate the identity [17℄

�(s) = 2

s

�

s�1

sin

�

1

2

�s

�

�(1� s)�(1 � s); (35)

to obtain for s a (positive or negative) even integer:

�

0

(s) = 2

s�1

�

s

os

�

1

2

�s

�

�(1� s)�(1 � s); (36)

or spei�ally

�

0

(0) = �

1

2

ln(2�); �

0

(�2) = �

1

4�

2

�(3);

�

0

(�4) =

3

4�

4

�(5); �

0

(�6) = �

45

8�

6

�(7): (37)

It now immediately follows that Eq. (34) gives the on-

tributions due to the gapped thermal modes, so that the

results obtained in the standard manner and the one used

here indeed oinide.

Given that also the zero-frequeny mode ontribution

as well as the T = 0 part an be extrated from the in-

tegral representation (29), by identifying them with the

�rst two terms in the Laurent expansion of the Bose{

Einstein distribution funtion, it follows that no bak-

traking to a representation involving a frequeny sum

is required, provided zeta funtion regularization is ap-

plied. Moreover, the simple, yet powerful algorithm dis-

ussed here is easily implemented using an algebrai ma-

nipulation program to generate large orders in a high-

temperature expansion for a wide lass of problems, in-

luding fermioni systems (with the obvious hanges), as

will now be demonstrated.

III. FERMIONIC INTEGRALS

A. Free Fermi Gas

In this subsetion, a nonrelativisti free, spinless Fermi

gas is onsidered. The thermodynami potential is given

by the one-loop expression (10) for a Bose gas with an ex-

tra minus sign inluded to aount for the antisymmetry

of the fermioni �eld. Using Poisson's summation for-

mula (11), the thermodynami potential is readily writ-

ten as a fugaity series [8℄




V

= �

1

��

d

1

X

w=1

(�1)

w+1

w

��

e

��w

; (38)

where � = d=2 + 1 and � = ��� > 0 again. As for a

Bose gas, this series an be understood as representing

a sum over losed worldlines winding around the imagi-

nary time axis w times, with eah winding aompanied

by a fator (�1) typial for fermions.

Alternatively, the thermodynami potential an be

evaluated using the identity [6℄

1

�

1

X

n=�1

1

�i~!

n

+ z

=

1

2

� f(z); (39)

where !

n

= ��

�1

(2n + 1) are the fermioni Matsub-

ara frequenies and f(z) is the Fermi{Dira distribution

funtion

f(z) =

1

e

�z

+ 1

=

1

2

+ O(�z): (40)

The �rst term at the right hand of the identity (39) gives

the result for zero temperature, while the seond gives

the thermal ontribution. Nonrelativisti free theories in-

lude again a onvergene fator whih suppresses the

T = 0 part. The thermodynami potential then takes

the same form (13) as for a Bose gas with the funtion

F

�

(�) replaed with the funtion

G

�

(�) =

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

+ 1

: (41)

The equivalene of the two representations, implying

1

X

w=1

(�1)

w+1

w

��

e

��w

=

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

+ 1

; (42)

is easily established.

B. High-Temperature Expansion

As for a bosoni system, the standard high-

temperature series expansion of the funtion G

�

(�) is

to use the identity (39) bakwards and to replae the

Fermi{Dira distribution funtion again with an expres-

sion involving a frequeny sum:

f(z) =

1

2

�

2

�

1

X

n=0

z

~

2

!

2

n

+ z

2

; (43)

where the �rst term at the right hand subtrats the

T = 0 part enoded in the sum. Unlike bosoni systems,

fermioni systems do not have a zero-frequeny mode as

none of the Matsubara frequenies (1) vanishes.

Following the algorithm advoated here, we instead

derive this expansion diretly from the integral repre-

sentation of the funtion G

�

(�) given in Eq. (41) with-

out �rst returning to an expression involving a frequeny

sum. Expanding the integrand in Eq. (41) in a Taylor se-

ries, we enounter loop integrals of the form

Z

1

0

dq

q

q

2t

e

pq

2

+ 1

; (44)
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whih for t � 0 are infrared divergent. These diver-

genes are handled again using zeta funtion regulariza-

tion, where the following equation

2

Z

1

0

dq

q

q

2t

e

pq

2

+ 1

= �(t)

�

1� 2

1�t

�

�(t)p

�t

; (45)

with t initially hosen large enough so that the integral

onverges, is analytially ontinued to arbitrary values

of t. The high-temperature expansion now follows as:

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

+ 1

Taylor

�!

1

X

l=0

�

1� 2

1��+l

�

�(� � l)

�(l + 1)

(��)

l

= G

�

�

(�): (46)

This result an be heked by substituting Eq. (42)

and di�erentiating the resulting equation arbitrary many

times with respet to the dimensionless expansion pa-

rameter � and setting that parameter to zero at the end,

leading to

1

X

w=1

(�1)

w+1

w

�t

=

�

1� 2

1�t

�

�(t); (47)

whih is an identity.

C. Relativisti Free Fermi Gas

As last noninterating example, a relativisti free

Fermi gas at zero hemial potential is onsidered, on-

sisting of partiles (but no antipartiles, whih would

lead to an extra degeneray fator) with half-integer spin

�. The thermodynami potential is given by the expres-

sion (27) for the Bose gas with an extra spin multiplia-

tion fator and a minus sign, i. e., �(2� + 1), inluded.

With !

n

now denoting fermioni Matsubara frequenies,

the one-loop expression is readily ast in the form




V

= �(2� + 1)

(~)

�d

�

�(d+1)

(4�)

d=2

�

1

�(d=2)

Z

1

0

dq q
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p

q

2

+ (�m

2

)

2

�

�(2� )

�(� )

I

�

(�m

2

)

�

; (48)

where the thermal part is determined by the funtion

I

�

(y) =

1

�(2� )

Z

1

0

dq

p

q

2

+ y

2

q

2��1

e

p

q

2

+y

2

+ 1

: (49)

For � = 5=2, it has the high-temperature expansion [7℄

I

5=2

(y) =

7�

4

2880

�

�

2

192

y

2

�

1

128

�

ln

�

y

�

�

+  �

3

4

�

y

4

+ O(y

6

); (50)

where beause of the absene of a zero-frequeny mode,

all terms are analyti in the dimensionless expansion pa-

rameter y = �m

2

.

Apart from a minus sign, the T = 0 ontribution is

the same as that for a Bose gas given in Eq. (32):

�I

1

5=2

(y) =

1

2

1

�(5)

Z

1

0

dq

q

4��

p

q

2

+ y

2

=

1

128

�

1

�

� ln

�

y

2

�

�

7

12

�

y

4

; (51)

where again an extra minus sign is inluded in the left

hand of this de�nition, so that I

0

5=2

gives the T = 0 on-

tribution (and not its negative).

Using the algorithm disussed here, we expand the in-

tegrand of Eq. (49) in a Taylor series to obtain as on-

tribution due to the gapped thermal modes:

1

�(2� )

Z
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0

dq
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q

2

+ y

2

q

2��1

e

p

q

2

+y

2

+ 1

Taylor
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1

�
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+ O(y

12

); (52)
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whih, with the help of the identities (37) and together

with I

1

5=2

(y), reprodues the result (50) (expanded to

higher order).

These last two examples illustrate that the high-

temperature expansion we use in onjuntion with zeta

funtion regularization of infrared divergenes is also

valid for fermioni systems.

D. High-Temperature Expansion of BCS Theory

In Ref. [3℄, the BCS theory was onsidered at �nite

temperature using the approah advoated here. This ex-

ample is inluded to point out a shift in approah when

going from a noninterating to an interating system.

The main di�erene with a noninterating system is of

ourse that one-loop results no longer are exat, mean-

ing that not all the degrees of freedom an be integrated

out in an exat manner to obtain the thermodynami

potential as a known funtion of the thermodynami pa-

rameters � and �. Instead, irrelevant degrees of freedom

are integrated out (usually only perturbatively) to arrive

at an e�etive theory of the Landau form expressed in

terms of an order parameter desribing the phase tran-

sition. The order parameter, whose value is zero in the

symmetri, disordered state and nonzero in the ordered

state with spontaneously broken symmetry, determines

the ritial properties of the system lose to the phase

transition, where it disappears.

After linearizing the quarti interation of the BCS

theory by a suitable Hubbard{Stratonovih transforma-

tion, the fermioni degrees of freedom an be integrated

out exatly in a one-loop alulation to yield for a uni-

form BCS superondutor:




1

(�)

V

= �2

Z

d

3

k

(2�)

3

�

1

2

E(k)

+ �

�1

ln

�

1 + e

��E(k)

�i

: (53)

Here, the frequeny sum has been arried out and

E(k) =

p

�

2

(k) + j�j

2

; (54)

is the BCS spetrum with the order parameter � provid-

ing an energy gap at the Fermi surfae. This spetrum

replaes the exitation spetrum �(k) = ~

2

k

2

=2m� � of

the elementary fermioni exitations of mass m in the

normal state, where the energy is measured relative to

the hemial potential �, whih, ontrary to a dilute free

Fermi gas, is positive in the weak-oupling BCS limit and

given by the Fermi energy � = ~

2

k

2

F

=2m, with ~k

F

the

Fermi momentum. The prefator 2 in Eq. (53) arises be-

ause the fermions ome in two speies, with spin up and

down. The true grand anonial potential 
, depending

only on the thermodynami parameters � and �, is ob-

tained from 
(�) by integrating out �. This an only

be done perturbatively, with the simplest approximation

orresponding to the saddle point of the integral, where

the order parameter is onsidered to be a nonutuating

�eld.

To the one-loop expression (53), the tree ontribution

is to be added




0

(�)

V

= �

j�j

2

g

B

; (55)

where g

B

< 0 is the (bare) oupling onstant of the

loal BCS interation term, representing the e�etive

attration between fermions. The pure quantum zero-

temperature term in Eq. (53) gives, among other ontri-

butions, a quadrati term whih an be ombined with

the tree ontributions to yield the renormalized oupling

onstant g,

1

g

=

1

g

B

+

1

2

Z

d

3

k

(2�)

3

1

j�(k)j

: (56)

The integral diverges in the ultraviolet, to regularize it

we introdue a momentum uto� ~� to obtain

1

g

=

1

g

B

+

m

2�

2

~

2

�+ O(�

0

); (57)

where the irrelevant �nite part of the integral is omit-

ted. The weak-oupling BCS limit orresponds to taking

g

B

! 0 from below.

With the loop integration approximated by

Z

d

3

k

(2�)

3

! �(0)

Z

1

�1

d�; (58)

where �(0) = mk

F

=2�

2

~

2

is the density of states per

spin degree of freedom at the Fermi level, the thermal

part of the thermodynami potential (53) beomes of

a form enountered in a relativisti free Fermi gas [7℄,

with the dimensionless integration variable q = ��. The

approximation onsists of extending the range of the �

integration from �� � � < 1 to �1 < � < 1. The

problem thus redues to one in a single spae dimension

(d = 1), orresponding to the value � = 3=2. To handle

logarithmi divergenes that arise, we again dimensional

regularize the integral and onsider the problem in (1��)

dimensions instead. We proeed in the same way as be-

fore and rather than returning to an expression involv-

ing a frequeny sum by using Eq. (39) bakwards, we

expand the integrand in Eq. (29) in a high-temperature

series and apply zeta funtion regularization to handle

infrared divergenes. This gives as ontributions due to

the gapped thermal modes: [3℄
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Z

d
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k
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3
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1 + e
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p

�

2

(k)+j�j

2

�
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�1
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+

1

2
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1
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+ 2�

0

(0) +  + 2 ln(2)

�

y

2

+

7

8

�

0

(�2)y

4

+ O(y

6

)

�

: (59)

Beause the order parameter appears only in the di-

mensionless expansion parameter y = �j�j, the high-

temperature expansion is tantamount to a Landau ex-

pansion in j�j. Contat with the standard approah is

established through the identities (37) and the substitu-

tion

1

�

! ln (�~!

D

) ; (60)

where the Debye energy ~!

D

, being a measure of the

inverse lattie spaing, is the physial ultraviolet uto�

and the temperature �

�1

is the relevant infrared sale.

This orrespondene between the pole 1=� of dimensional

regularization and the logarithm ln(�) appearing in mo-

mentum uto� regularization is ommonly used in the

ontext of quantum �eld theory, and an be veri�ed ex-

pliitly here by working with the Debye energy as a uto�

from the beginning instead of using dimensional regular-

ization. Adding the tree and the one-loop ontributions,

we then �nd
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(�) + 


1

(�)

V
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�2

�(0)
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�

2

3

+

�

ln (�~!

D

) +  � ln(�=2) +

1

�(0)g

�

j��j

2

�

7�

2

16

�(3)j��j

4

�

; (61)

featuring the renormalized oupling onstant g. Being

a stati �eld, the order parameter is the zero-frequeny

mode of the problem at hand. The ritial temperature

T



is determined by the ondition that the oeÆient of

the quadrati term hanges sign, yielding the standard

result [24℄

k

B

T



=

2

�

e



~!

D

e

1=�(0)g

; (62)

with g < 0. Using this expression for the ritial temper-

ature, we an put Eq. (61) in the anonial form [18℄
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1
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2
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� ln
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�

�

j��j

2

�

7�

2

16

�(3)j��j

4

�

; (63)

valid lose to the ritial temperature.

This illustrates �rst of all that our method of omput-

ing the ontributions due to the gapped thermalmodes in

a high-temperature series expansion in onjuntion with

zeta funtion regularization of infrared divergenes is also

valid for an interating system. In addition, it highlights

the general approah to ritial phenomena, whih is to

integrate out the irrelevant degrees of freedom (whih in-

lude the gapped thermal and thus all fermioni modes)

to determine the oeÆients of the e�etive theory ex-

pressed in terms of the order parameter. Although irrele-

vant for the ritial behaviour itself, the gapped thermal

modes an inuene the value of the ritial tempera-

ture through their ontributions to the oeÆient of the

quadrati term. The ritial temperature (62), whih is

a one-loop result, is exlusively determined by the high-

energy dynami modes as none of the Matsubara fre-

quenies of the fermioni �elds that have been integrated

out vanishes. Unlike ritial exponents, the ritial tem-

perature is not universal and an depend on the details

of these high-energy gapped modes.

IV. CONDENSATION TEMPERATURE OF

WEAKLY INTERACTING BOSE GAS

A. E�etive Theory

We next onsider the ondensation temperature of a

uniform, weakly interating Bose gas. Spei�ally, we are

interested in how utuations in the irrelevant degrees of

freedom inuene this temperature. To determine this,

we need, aording to the e�etive �eld program (see the

disussion in the preeding setion), to alulate the o-

eÆients of the e�etive theory expressed in terms of the

order parameter by integrating out the irrelevant degrees

of freedom. For BEC the irrelevant degrees of freedom

are the gapped thermal modes, whose ontributions are

onveniently omputed using the algorithm advoated

here. The order parameter � of BEC in a weakly in-

terating Bose gas, introdued in Eq. (9), denoting the

expetation value of the quantum �eld � desribing the

bosons, is the zero-frequeny mode. A nonzero � implies

the presene of a ondensate, with j�j

2

giving the average

number density n

va

of ondensed partiles. This e�e-

tive �eld program is the �eld-theoreti generalization of

the e�etive lassial potential introdued by Feynman
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and Kleinert [19℄ in their path-integral study of thermal

utuations via a �nal integral over the zero-frequeny

omponent of the path variable. (See the textbook [20℄

for extensive appliations.) Here we are left with a �nal

funtional integral over the purely spae-dependent �eld

�(x).

Whereas the ondensation temperature of a free Bose

gas is determined from within the normal, i. e., the high-

temperature state, we determine T



for the weakly inter-

ating gas instead from within the low-temperature state

with a nonzero ondensate j�j.

The one-loop ontribution to the thermodynami po-

tential of a weakly interating uniform Bose gas is given

by [3℄




1

(�)

V

=

Z

d

3

k

(2�)

3

�

1

2

E(k)

+ �

�1

ln

�

1� e

��E(k)

�i

; (64)

where E(k) is the spetrum of the elementary exitation

in the superuid state expressed in terms of the order

parameter �

E(k) =

q

(~

2

k

2

=2m � �

B

+ 4g

B

j�j

2

)

2

� 4g

2

B

j�j

4

; (65)

where �

B

and g

B

are the bare parameters of the the-

ory, with g

B

> 0 the oupling onstant of the repul-

sive two-partile ontat interation. The true thermo-

dynami potential 
(�; �) is obtained by integrating out

the remaining degree of freedom, whih in a �rst approx-

imation is done by evaluating the integral in the saddle

point, orresponding to extremizing 
(�).

Written in the form (65), the spetrum is the bosoni

analog of the fermioni BCS spetrum (54) given in terms

of the superonduting order parameter �. The spe-

trum (65) redues to the T = 0 Bogoliubov spetrum

[21℄ when the lowest-order value j�j

2

(= n

va

) = �

B

=2g

B

for � is inserted. This value is obtained from minimizing

the tree ontribution




0

(�)

V

= ��

B

j�j

2

+ g

B

j�j

4

: (66)

It is important to note that the hemial potential �

B

=

2g

B

n

va

is positive here (so that the oeÆient of the

quadrati term is negative, leading to a potential of a

form resembling a Mexian hat), setting a weakly inter-

ating Bose gas apart from a free Bose gas whih has a

nonpositive hemial potential.

The pure quantum zero-temperature term in Eq. (64)

gives, among other ontributions, two terms of the form

ontained in the bare theory (66). They an be ombined

to yield the renormalized parameters [22℄:

� = �

B

�

1

6�

2

g

B

�

3

(67)

g = g

B

�

m

�

2

~

2

g

2

B

�; (68)

with ~� the momentum uto�. In addition, it gives a

nonanalyti ontribution / m

3=2

(gj�j

2

)

5=2

indued by

the gapless Goldstone mode. This one-loop ontribution,

whih is irrelevant for our present purposes and will sub-

sequently be ignored, is typial for a gapless ontribu-

tion in �ve spaetime dimensions. The e�etive number

of spaetime dimensions is �ve here beause in nonrela-

tivisti quantum theories, where time derivatives appear

in ombination with two spae derivatives, the time di-

mension ounts double ompared to the (three) spae

dimensions.

Sine Eq. (64) is already a one-loop result, it is onsis-

tent to this order to replae the bare parameters �

B

; g

B

there with the (one-loop) renormalized ones. The renor-

malized oupling onstant g is related to the s-wave sat-

tering length a via [23,24℄

g =

2�~

2

a

m

: (69)

The zero-temperature relation between the renormalized,

physial hemial potential and the average number den-

sity n

va

= j�j

2

of ondensed partiles then reads [6℄

�(T = 0) = 2gn

va

=

4�~

2

a

m

n; (70)

where in the last step we ignored the so-alled depletion

of the ondensate [21℄ and replaed n

va

with the total

partile number density, whih is justi�ed beause the

term is already of order g.

Next, the thermal part in Eq. (64) is expanded in a

high-temperature series using the algorithm disussed

above. Writing

Z

d

3

k

(2�)

3

ln

�

1� e

��E(k)

�

=

32�

(4�)

3=2

1

�

3

Z

1

0

dq q

2

ln

�

1� e

��E(q)

�

; (71)

with q the same loop variable as used for a free Bose gas,

de�ned by q

2

= �~

2

k

2

=2m, and

�E(q) =

q

(q

2

+ �+ 4y)

2

� 4y

2

; (72)

where y = �gj�j

2

, we arrive at [3℄
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Z

1

0

dq q

2

ln

�

1� e

��E(q)

�

Taylor

�!

Z

1

0

dq

"

q

2

ln

�

1� e

�q

2

�

+

q

2

e

q

2

� 1

�

�+ 4y

�

�

1

2

q

2

e

q

2

�

e

q

2

� 1

�

2

�

�+ 4y

�

2

�

1

2

1

e

q

2

� 1

4y

2

+ O

�

�

3

�

#

= �

1

2

�(

3

2

)

h

�(

5

2

)� �(

3

2

)

�

�+ 4y

�

+

1

2

�(

1

2

)

�

�+ 4y

�

2

+ �(

1

2

)4y

2

+O

�

�

3

�

i

: (73)

Contrary to the previous ases, we now have two dimen-

sionless expansion parameters � and y, both being pro-

portional to �.

At two loop, we onsider the lass of bubble diagrams

(see Fig. 4 of Ref. [3℄) giving the following ontributions

to the thermodynami potential due to the gapped ther-

mal modes:




2

(�)

V

= �

g

4

(3I

2

1

+ 3I

2

2

+ 2I

1

I

2

); (74)

where I

1

is the one-loop integral

I

1

=

Z

d

3

k

(2�)

3

1

E(k)

~

2

k

2

=2m� �+ 2gj�j

2

e

�E(k)

� 1

; (75)

and a similar equation for I

2

with 2g replaed with 6g

in the numerator. Expanding the integrals in a high-

temperature expansion, we obtain as two-loop ontribu-

tions




2

(�)

V

=

2g

�

6

�

�

2

(

3

2

)� 2�(

1

2

)�(

3

2

)(�+ 4y)

�

; (76)

the leading term of whih was onsidered in Ref. [3℄, but

not the rest.

Adding the ontributions together, we arrive at




0

(�) + 


1

(�) + 


2

(�)

V

= 

0

� 

2

j�j

2

+ 

4

j�j

4

; (77)

with



0

= �

1

��

3

�

�(

5

2

) � 2�

2

(

3

2

)Æ

� �(

3

2

)�

�

1� 4�(

1

2

)Æ

�

+

1

2

�(

1

2

)�

2

	

; (78)

a �-independent term, with expansion parameter

Æ = g�=�

3

= a=�: (79)

For Æ ! 0, Eq. (78) is analogous to the �rst ontribu-

tions due to the gapped thermal modes of a free Bose

gas given by Eq. (13) with Eq. (21), albeit with � > 0

now. Furthermore,

��

2

=

�

�+ 4�(

3

2

)Æ

� �

1� 4�(

1

2

)Æ

�

; (80a)



4

= g

�

1� 12�(

1

2

)Æ

�

: (80b)

It is important to note that one annot naively set �

to zero in Eq. (77) [with 


2

(�) omitted℄, as was done

by Baym et al. [1℄ to argue that the zeta funtion reg-

ularization of infrared divergenes used to obtain that

result is awed, and hope to retrieve the orret ritial

behavior of the ompressibility, say, of a noninterating

Bose gas. As explained in Se. (II B), universal proper-

ties are determined exlusively by the utuations in the

zero-frequeny mode. These utuations are, however,

not onsidered in this setion. We are interested here in

the ondensation temperature | a nonuniversal quan-

tity. As argued in the Introdution, nonuniversal quan-

tities in priniple also depend on the gapped thermal

modes. It is the e�et of utuations in these dynami

modes that is summarized by Eq. (77). More spei�ally,

the oeÆients given in Eqs. (80) express the dressing of

the parameters � and g by these thermal utuations.

The one-loop orretions, �rst alulated in Ref. [3℄, have

reently been rederived in Ref. [5℄, apparently in igno-

rane of the existing literature on the subjet.

The ondensation temperature is determined by the

vanishing of the oeÆient 

2

, yielding

�



= �4�(

3

2

)Æ; (81)

whih gives T



in terms of �. Experimentally, it is more

realisti to onsider the system at �xed partile num-

ber density and therefore take n rather than � as inde-

pendent variable. The partile number density is easily

obtained from Eq. (77) at T = T



where � vanishes:

n = �

1

V

�


��

�

�

�

�

�

T=T



=

1

�

3



�

�(

3

2

)

�

1� 4�(

1

2

)Æ

�

� �(

1

2

)�



	

: (82)

Together with Eq. (81) this redues to the free Bose gas

expression:
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n = �(

3

2

)=�

3



; (83)

so that to this order the dynami modes do not lead to

a shift in the ondensation temperature. This onlusion

di�ers from our previous one in Ref. [3℄, where the two-

loop ontributions were not properly inluded [4℄. The

additional two-loop ontributions anel the shift due to

the gapped thermal modes found in Ref. [3℄ at one loop.

With the expression (83) for n, the hemial potential

at T



an be written as

�



= 4gn =

8�~

2

a

m

n; (84)

whih is nothing but the Hugenholtz{Pines relation [25℄

between the hemial potential and the self-energy at the

ondensation temperature where � disappears. It is iden-

tial to the zero-temperature relation (70) apart from a

subtle fator of 2 that an be understood by examining

the Hugenholtz{Pines relation, whih is an exat result,

at both temperatures. It follows from Eq. (84) that the

hemial potential remains positive at the ondensation

temperature of a weakly interating Bose gas. This is in

ontrast to a free Bose gas (obtained by letting a! 0),

where the hemial potential vanishes when the onden-

sation temperature is approahed from above. Whereas

the hemial potential in a free Bose gas remains zero all

the way down to zero temperature, in a weakly interat-

ing Bose gas it dereases from 4gn at T



to 2gn at zero

temperature.

To justify the high-temperature expansion used, note

that to lowest nontrivial order, the oeÆient 

2

is given

by ��

2

= � + 4�(

3

2

)Æ. The ondition 

2

= 0 then gives

the ondensation temperature in terms of � to lowest

order as [3℄

k

B

T

0

=

2�~

2

m

�

�

4g�(

3

2

)

�

2=3

; (85)

whih is a one-loop result. Sine this temperature is large

for g small, the high-temperature expansion is onsistent

with the weak-oupling assumption of perturbation the-

ory. Using the Hugenholtz{Pines relation (whih is also

satis�ed at this lowest nontrivial order) to replae � with

n, Eq. (85) takes the standard form (23) for a noninter-

ating Bose gas, independent of g. As for a free Bose

gas, this result is determined entirely by the nonzero fre-

queny modes.

Beause �



/ Æ / g, the oeÆients (80a) and (80b) of

the e�etive theory are lose to T



alulated up to the

order g

2

. In the �rst oeÆient (78), the term / Æ

2

is

missing. This term, given by the leading ontribution in

the high-temperature expansion of the third-order bub-

ble diagram, is independent of the hemial potential and

therefore irrelevant for our purposes.

B. BEC in two dimensions

For arbitrary dimension 2 < d < 4, Eqs. (81) and (83)

generalize to:

�



= �4�(d=2)Æ; n = �(d=2)=�

d



; (86)

where now Æ = g�=�

d

. The limiting ase, d = 2, is spe-

ial beause �(d=2) diverges when d! 2. To investigate

this limit, we dimensional regularize the last equation by

onsidering the problem in d = 2+ �, where

n =

2

�

2



1

�

: (87)

As in Eq. (60), the pole in dimensional regularization an

be onneted with the logarithm appearing in the regu-

larization with a momentum uto�, provided the ultra-

violet momentum uto� and the relevant infrared sale

are identi�ed. Here, they are given by the inverse range

of the potential 1=a and the square root of the hemial

potential, respetively [26℄, i. e.,

1

�

! ln

�

~

a

p

m�

�

= �

1

2

ln

�

8�na

2

ln(1=8�na

2

)

�

�

1

2

ln[ln(1=8�na

2

)℄ (88)

for ln[ln(1=8�na

2

)℄ � 1. In deriving this use is made of

the two-dimensional relation between the hemial po-

tential and the partile number density at the ondensa-

tion temperature,

�



=

8�~

2

n

m ln(1=8�na

2

)

: (89)

With this orrespondene, Eq. (87) leads to the well-

known expression for the ritial temperature [27,26℄

k

B

T



=

2�~

2

n

m ln[ln(1=8�na

2

)℄

: (90)

Together with the relation �



= 4gn, Eq. (89) gives

for the oupling onstant

g =

2�~

2

m ln(~

2

=m�a

2

)

: (91)

To understand this result, reall that the time dimen-

sion ounts double ompared to the spae dimensions in

a nonrelativisti quantum theory. The quantum ritial

behaviour of the theory was �rst investigated by Uzunov

[28℄, who showed that d = 2 (implying a total of four ef-

fetive spaetime dimensions) orresponds to the upper
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ritial dimension, below whih a nontrivial infrared sta-

ble �xed point exists, with g > 0. For d > 2, the theory

has a trivial infrared stable �xed point at g = 0. The log-

arithm in Eq. (91) arises beause d = 2 separates these

two di�erent ases, with the hemial potential providing

an infrared uto�, so that a �nite value for g and ulti-

mately for T



obtains. In other words, the �nite value for

the ondensation temperature in two dimensions hinges

on the presene of quantum utuations.

As an aside, we note that at zero temperature, the rela-

tion between the hemial potential and partile number

density di�ers again a subtle fator of 2 from the relation

�



= 4gn we used to derive the ritial temperature (90).

As in d = 3, this fator is needed for the Hugenholtz{

Pines relation to be satis�ed at both temperatures. It

implies that the analog of Eq. (89) at zero temperature

also di�ers a fator of 2, whih is indeed what is found

by Fisher and Hohenberg [26℄.

C. Disussion

Path-integral Monte Carlo simulations by Gr�uter,

Ceperley, and Lalo�e [29℄ of the mirosopi model de-

sribing a weakly interating Bose gas restrited to rela-

tively few (up to 216) partiles in three dimensions found

an inrease in the ondensation temperature linear in the

sattering length,

T



� T

0

T

0

= Can

1=3

; (92)

with C = 0:34� 0:06. Sine the dynami modes do not

ontribute to the shift linear in a, the oeÆient C an

also be alulated in the stati, lassial theory. Reent

Monte-Carlo simulations [30℄ of that stati theory gave

larger values: C = 1:32 � 0:02 and 1:29 � 0:05, respe-

tively. An intuitive understanding of the inrease in T



was given in Ref. [29℄, where it was pointed out that a

moderate repulsive interation suppresses density utu-

ations. This results in a more homogeneous system and

failitates the formation of large exhange rings nees-

sary for BEC, whih then takes plae already at a higher

temperature than in a free Bose gas. When the repulsive

interation inreases further, the exhange is obstruted

beause it beomes more diÆult for the partiles to

move. This leads to a lowering of the ritial temperature

as seen, for example, in liquid

4

He. A free gas with

4

He

parameters at vapor pressure would have a ondensation

temperature of about 3 K, whereas liquid

4

He beomes

superuid at the lower temperature of 2.17 K.

The full thermodynami potential of an interating

Bose system an lose to T



be written in terms of the

exhange rings by slightly generalizing Eq. (38) for a free

Bose gas [31℄:




V

/

1

X

w=1

w

��

e

�(���



)w

; (93)

where now the exponent � has the general form

� =

d

D

+ 1; (94)

with D the fratal dimension of the worldlines, whih is

D = 2 for a free Bose gas. The worldline tension deter-

mined by � � �



vanishes when the ondensation tem-

perature is reahed from above as

�� �



/ (T � T



)

1=�

; (95)

where � is a seond exponent, whih for a free Bose gas

takes the value � = d=2 � 1 [see above Eq. (18)℄. The

two exponents � and � determine all the ritial expo-

nents haraterizing the phase transition through saling

relations [31℄. BEC in a weakly interating Bose gas is in

the same universality lass as the lambda transition of

liquid

4

He, so that the ritial exponents desribing BEC

are aurately known. In going from a free Bose gas to

strongly interating

4

He, the value of the fratal dimen-

sionD of the worldlines hanges only slightly fromD = 2

to D � 1:96, with most of the interation e�ets enter-

ing �, whih hanges from � = 1=2 to � � 0:76 [31℄. The

value of the fratal dimension follows from the relation

[31℄ D = 2� �, with � the Fisher exponent, determining

the anomalous dimension of the order parameter �.

For an ideal Bose gas, the valueD = 2 derives from the

quadrati form of the energy spetrum E(k) = ~

2

k

2

=2m.

A di�erent value is obtained by modifying the free spe-

trum to E(k) � k

D

, with D 6= 2. It was notied by Gun-

ton and Bukingham [12℄ that an ideal gas withD = 3=2,

so that E(k) � k

3=2

, produes a value of the spei�-heat

ritial exponent �

e

= 0 lose to the experimental value

�

e

� �0:01 for

4

He [32℄. However, this is a somewhat

fortuitous and at the same time deeptive oinidene

as other exponents ome out inorretly, and the atual

value of the fratal dimension is lose to 2,D � 1:96 [31℄.

Desribing the ritial behaviour of an interating Bose

gas, using quasipartiles with the spetrum

E(k) � k

3=2

; (96)

as was done by Baym et al. [33℄, an therefore not be

justi�ed.

In addition to numerial studies of the stati, las-

sial theory, the oeÆient C has also been estimated

by analytial studies of that theory (for a summary, see

Ref. [1℄), suh as the 1=N expansion [34℄ and variational

perturbation theory [35℄.

Although the dynami modes do not, due to anel-

lations, ontribute to the shift in the ondensation tem-

perature linear in a, they do determine the oeÆient of

the next term � a

2

n

2=3

ln(an

1=3

) in that shift [5℄.
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V. CONCLUSIONS

In this paper, the e�et of utuations in the nonzero

frequeny modes of a weakly interating Bose gas on

the ondensation temperature was studied in detail.

The simple algorithm used to perturbatively alulate

the e�et in a high-temperature expansion in onjun-

tion with zeta funtion regularization of infrared diver-

genes was demonstrated to be reliable by showing that

a host of known results are reovered. The presene

of temperature-indued energy gaps for these dynami

modes were argued to allow for a perturbative approah.

It was shown that the shift in the ondensation temper-

ature of the form (92) with

C = �

8

3

�(

1

2

)

�

1=3

(

3

2

)

� 2:83; (97)

we had obtained earlier at one loop [3℄ is aneled by

two-loop ontributions [4℄.
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ZETA FUNCTION REGULARIZATION OF INFRARED DIVERGENCES IN BOSE{EINSTEIN CONDENSATION

RE�UL�RIZAC�� �NFRAQERVONIH ROZB��NOSTE� U KONDENSAC�Õ

BOZE{A�NXTA�NA ZA DOPOMOGO� �-FUNKC�Õ

A. Xakel~

�nstitut teoretiqnoÝ f�ziki

Arn�m-all, 14, Berl�n, 14195, N�meqqina

Zrobleno ogl�d obqislenn� metodom teor�Ý zburen~ vplivu fluktua�� na temperaturu kondensa�Ý u ne-

nul~ovih qastotnih modah slabkovzamod��qogo boze-gazu. C� dinam�qn� modi, �kimi nehtu�t~ u b�l~xost�

suqasnih dosl�d�en~, ma�t~ temperaturno-spriqinenu ener�etiqnu w�linu, wo vipravdovu perturbativ-

ni� p�dh�d. Opra~ovano prosti�, ale potu�ni� al�oritm dl� rozrahunku ~ogo efektu pri visokotempe-

raturnomu rozvinenn� v podnann� z re�ul�riza�� �nfraqevonih rozb��noste� za dopomogo� �-funk�Ý.

Ce� al�oritm vi�vl�t~s� nad��nim, osk�l~ki v�n v�dtvor� v�dom� rezul~tati dl� nizki priklad�v. Pri

vrahovanih dvopetlevih vneskah pokazano, wo dinam�qn� modi ne spriqin��t~ zsuvu v temperatur� kon-

densa�Ý. Ce da p�dstavi peregl�nuti nax� poperedn� rezul~tati, otriman� dl� odn�Ý petl�.
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