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A perturbative 
al
ulation of the e�e
t of 
u
tuations in the nonzero frequen
y modes of a

weakly intera
ting Bose gas on the 
ondensation temperature is reviewed. These dynami
 modes,

dis
arded in most of the re
ent studies, have a temperature-indu
ed energy gap that allows for a

perturbative approa
h. The simple, yet powerful algorithm 
onsists of a high-temperature expansion

in 
onjun
tion with zeta fun
tion regularization of infrared divergen
es. The algorithm is shown

to be reliable by demonstrating that it reprodu
es known results for a series of examples. With

two-loop 
ontributions properly in
luded, the dynami
 modes are seen not to lead to a shift in the


ondensation temperature.
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I. INTRODUCTION

The past �ve years or so have seen numerous stud-

ies aimed to determine the 
ondensation temperature of

a weakly intera
ting Bose gas (for referen
es and 
riti-


al dis
ussions of the various approa
hes, see Ref. [1℄).

These studies, driven by experiments on Bose{Einstein


ondensation (BEC), were based on a variety of analyti
,


omputational, and experimental methods. With only a

few ex
eptions, however, the theoreti
al studies took the

same starting point of 
onsidering only the stati
 part of

the quantum �eld des
ribing the bosons. The rationale

is that the dynami
 modes have a temperature-indu
ed

energy gap. This makes them irrelevant 
ompared to the

stati
 mode, for whi
h that gap vanishes, when studying

the long-distan
e 
riti
al behaviour of the system 
lose

to the phase transition. With the gapped thermal modes

de
oupled, the mi
ros
opi
 quantum theory redu
es to

a stati
, 
lassi
al theory, assumed to properly des
ribe

this thermal phase transition in equilibrium. Universal

properties, su
h as the 
riti
al exponents 
an indeed be


omputed from this naive theory, as is well known.

Criti
al temperatures are, however, not universal. Al-

though phase transitions o

urring in di�erent systems

may display the same long-distan
e behavior 
hara
ter-

ized by the same values of the 
riti
al exponents, they in

general take pla
e at di�erent temperatures. For exam-

ple, BEC in a relativisti
 free Bose gas is in the same uni-

versality 
lass as BEC in its nonrelativisti
 
ounterpart,

yet the 
ondensation temperatures di�er in both systems

[2℄. This di�eren
e arises be
ause the 
riti
al tempera-

tures of these nonintera
ting systems are determined en-

tirely by the dynami
 modes (see Se
. II B) whose spe
-

trum di�er for the relativisti
 and nonrelativisti
 Bose

gases. The universal properties, on the other hand, are

determined by the stati
 modes, whi
h are similar for

both gases. Whereas universal quantities are largely in-

dependent of the dynami
s and details of the underly-

ing theory, nonuniversal quantities in prin
iple depend

on them. The 
riti
al temperatures of latti
e models are

even sensitive to su
h short-distan
e details as the pre-


ise latti
e used.

The proper way to pro
eed when 
al
ulating nonuni-

versal properties is well established. One has to go down

one level and start from the mi
ros
opi
 model des
rib-

ing the quantum system under 
onsideration and pertur-

batively integrate out the irrelevant degrees of freedom

(the dynami
 modes when 
onsidering BEC). One thus

obtains an e�e
tive theory in terms of the remaining, rel-

evant degree of freedom (the stati
 mode in 
ase of BEC),

with the 
oeÆ
ients being determined by the irrelevant

degrees of freedom that have been integrated out. This

e�e
tive �eld program was 
arried out for the problem at

hand almost a de
ade ago [3℄, with the 
on
lusion that

the dynami
 modes lead to a shift in the 
ondensation

temperature of a weakly intera
ting Bose gas. The pur-

pose of this paper is to revise that �nding. Namely [4℄,

the shift obtained at one loop is 
an
eled by a two-loop


ontribution not 
onsidered in Ref. [3℄. There, only the

leading 
ontribution in a high-temperature expansion of

the two-loop Feynman diagrams was 
onsidered, whereas

the 
an
eling terms appear in the next order. To show

that it is this omission and not, as has re
ently been

suggested [1℄, the method used that led to the in
orre
t


on
lusion, we 
larify and justify in detail the pertur-

bative approa
h of Ref. [3℄. To appre
iate the approa
h,

we �rst re
all some essentials of �nite-temperature �eld

theory.

A. Finite Temperature

The properties of a quantum system at �nite temper-

ature 
an be studied [6℄ by going over to imaginary time
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t ! �i� , with � restri
ted to the interval 0 � � � ~�,

where � = 1=k

B

T is the inverse temperature. The time

dimension thus be
omes 
ompa
ti�ed and, 
onsequently,

the energy variable ~k

0

dis
rete k

0

! i!

n

, with !

n

the

so-
alled Matsubara frequen
ies,

~!

n

=

�

2��

�1

n for bosons

��

�1

(2n+ 1) for fermions;

(1)

where n is a (positive or negative) integer. The di�eren
e

between the bosoni
 and fermioni
 frequen
ies arises be-


ause a bosoni
 �eld �(�;x) satis�es periodi
 boundary


onditions �(~�;x) = �(0;x), whereas a fermioni
 �eld

satis�es antiperiodi
 ones  (~�;x) = � (0;x). Being

(anti)periodi
, the �elds 
an be expanded in a Fourier

series as (with a similar equation for  ):

�(�;x) =

1

~�

1

X

n=�1

Z

d

d

k

(2�)

d

e

�i!

n

�+ik�x

�

n

(k); (2)

where �

n

(k) := �(!

n

;k).

An integral over the energy variable ~k

0

at the abso-

lute zero of temperature be
omes a sum over the Ma-

tsubara frequen
ies at �nite temperature:

Z

dk

0

2�

g(k

0

)!

i

~�

X

n

g(i!

n

); (3)

where g is an arbitrary fun
tion.

The frequen
y sums en
ountered below are typi
ally

evaluated using the identity [6℄

1

�

1

X

n=�1

1

�i~!

n

+ z

=

1

2

+ n(z); (4)

or be
ause of antisymmetry [7℄

1

�

1

X

n=�1

z

~

2

!

2

n

+ z

2

=

1

2

+ n(z); (5)

where n(z) is the Bose{Einstein distribution fun
tion

n(z) =

1

e

�z

� 1

=

1

�z

�

1

2

+O(�z): (6)

The �rst term at the right hand of the identity (4) gives

the result for zero temperature, while the se
ond gives

the thermal 
ontribution. Su
h a splitting is 
onvenient

be
ause the pure quantum T = 0 part 
an often be 
om-

bined with the bare (zero-loop) theory. In a renormaliz-

able theory, for example, the zero-temperature part leads

to a renormalization of the bare parameters. These 
on-

tributions are then 
ombined with the bare theory to

dress its parameters.

In this paper, the thermal 
ontributions to the grand


anoni
al thermodynami
 potential 
 of various systems

are expanded in a high-temperature series. A

ording to

standard statisti
al me
hani
s, 
 is related to the parti-

tion fun
tion Z via [8℄


 = ��

�1

lnZ: (7)

Physi
ally, this potential determines the thermodynami


pressure p through 
 = �pV , with V the volume of

the system. High-temperature expansions are an impor-

tant 
omputational tool for studying intera
ting theories

where usually no exa
t results 
an be derived as for free

theories. The standard approa
h is to use the identity (4)

ba
kwards and to repla
e the Bose{Einstein distribution

fun
tion again with an expression involving a frequen
y

sum:

n(z) =

1

�z

�

1

2

+

2

�

1

X

n=1

z

~

2

!

2

n

+ z

2

; (8)

where in the �rst term at the right hand, the n = 0 
on-

tribution is isolated. The se
ond term 
an
els the T = 0


ontribution 
ontained in the sum. These two terms 
or-

respond to the �rst terms in a Laurent expansion of the

Bose{Einstein distribution fun
tion.

The n = 0 
ontribution, stemming from the �

0

(k)

mode in the Fourier series (2), is of spe
ial interest to us.

This zero-frequen
y mode, spe
i�
 to bosoni
 systems, is

a thermal mode for whi
h the temperature-indu
ed en-

ergy gap 2��

�1

n in the denominator at the left hand of

Eq. (4) vanishes. It is related to the stati
 �eld � alluded

to above as follows:

�(x) =

Z

~�

0

d� �(�;x) =

Z

d

d

k

(2�)

d

e

ik�x

�

0

(k); (9)

where use is made of the Fourier series (2). This 
lassi-


al, zero-frequen
y mode is the order parameter of BEC

in a weakly intera
ting Bose gas. It develops a nonzero

value in the ordered state where the U (1) symmetry

� ! exp(i�)� (� being a 
onstant transformation pa-

rameter) is spontaneously broken, with j�j

2

determining

the average number density of 
ondensed parti
les. That

is, a nonzero value of the order parameter (a 
lassi
al

obje
t) implies the presen
e of a 
ondensate (a quan-

tum phenomenon). Being stati
, this mode is unaware of

the time dimension and only notes the spa
e dimensions.

Compared to the dynami
 modes �

n

(k), with n 6= 0,

it lives in one dimension less and its 
ontributions are

a

ordingly di�erent in form from those of the gapped

thermal modes, being typi
al for a d-dimensional rather

than a (d+ 1)-dimensional theory.

The following hierar
hy 
an be identi�ed, with the

pure quantum zero-temperature modes living in d + 1

non
ompa
t spa
etime dimensions, the gapped thermal

modes also living in d + 1 spa
etime dimensions, but

with a 
ompa
ti�ed time dimension, and �nally the zero-

frequen
y mode living in d spa
e dimensions, whi
h 
an

be understood as (d+1)-dimensional spa
etime with the
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ompa
t time dimension shrank to a point by letting

� ! 0. Below, the zero-frequen
y mode 
ontributions

are labeled by a supers
ript 0 to indi
ate that they 
or-

respond to � = 0, while the zero-temperature (� = 1)


ontributions are labeled by a supers
ript1. The 
ontri-

butions des
ribed by the remaining terms in the Laurent

expansion (8), �nally, are labeled by a supers
ript �. We

will, somewhat loosely, refer to these last 
ontributions

as due to the gapped thermal modes, although they also

en
ode the T = 0 
ontributions, that are expli
itly sub-

tra
ted by the se
ond term in the Laurent expansion.

Zero-frequen
y modes 
an produ
e nonanalyti
 behav-

ior, depending on the number of spa
e dimensions. Dolan

and Ja
kiw [7℄ in their study of thermal phase transitions

in relativisti
 quantum systems took a pragmati
 ap-

proa
h toward these nonanalyti
 terms indu
ed by su
h

modes and simply dis
arded them when estimating 
rit-

i
al temperatures. In light of the dis
ussion above, this

approa
h is justi�ed as the 
riti
al temperature is to �rst

order determined by the vanishing of the quadrati
 term

in the e�e
tive theory [9℄. Featuring the zero-frequen
y

mode �, that theory is obtained by integrating out the

gapped thermal modes, whi
h give only analyti
 
ontri-

butions. It is only in the next stage, where 
u
tuations

in � are studied, that nonanalyti
 
ontributions 
an ap-

pear.

B. Outline

In this paper, regularization te
hniques routinely ap-

plied to handle ultraviolet divergent integrals are used

to stem infrared divergen
es instead. Usually, su
h diver-

gen
es are regularized by introdu
ing an infrared 
uto�.

This type of regularization forms the infrared 
ounter-

part of the momentum 
uto� regularization of ultravi-

olet divergen
es, where integrals are made �nite by in-

tegrating only up to a �nite momentum. Besides using

momentum 
uto� regularization, ultraviolet divergen
es


an also be rendered �nite by means of dimensional reg-

ularization, where the integrals are generalized to arbi-

trary dimension, or analyti
 regularization, where powers

appearing in the integrands are generalized to take ar-

bitrary values. In the following, these te
hniques rather

than introdu
ing an infrared 
uto� are used to regularize

infrared divergen
es.

The infrared divergen
es in this paper arise when

expanding thermodynami
 potentials in a high-

temperature series, using the algorithm of Ref. [3℄. The

algorithm di�ers from the standard high-temperature ex-

pansion and fo
uses on the analyti
 terms needed for the

study of the 
riti
al properties of an intera
ting system.

A series of examples is given to show in detail that this

high-temperature expansion in 
onjun
tion with the reg-

ularization te
hniques used is reliable, by demonstrating

that known results are re
overed. The examples in
lude

a nonrelativisti
 (Se
s. II A and II B) and a relativisti


(Se
. II C) free Bose gas, as well as their fermioni
 
oun-

terparts (Se
s. III A{III C), and a BCS super
ondu
tor

(Se
. III D). In Se
. IVA, 
u
tuations in the nonzero fre-

quen
y modes of a weakly intera
ting Bose gas are 
on-

sidered by integrating out these gapped thermal modes

in a loop expansion. In parti
ular their e�e
t on the


ondensation temperature is studied using the algorithm

advo
ated here. As mentioned at the beginning of the In-

trodu
tion, although irrelevant for the 
riti
al behaviour

itself, these high-energy modes 
an in prin
iple a�e
t the

value of the 
ondensation temperature, whi
h | unlike

the 
riti
al exponents | is nonuniversal and depends on

the details of the underlying quantum theory. Owing to

the temperature-indu
ed energy gaps, the 
ontributions

due to the nonzero frequen
y modes 
an be 
al
ulated

in perturbation theory. It is shown that the shift in the


ondensation temperature found in Ref. [3℄ at one loop is


an
eled by two-loop 
ontributions [4℄, not only in d = 3

but in arbitrary 2 < d < 4 (Se
. IVB). The advantage

of 
onsidering arbitrary dimensions is that BEC in two

dimensions 
an be studied by taking the limit d! 2. A

dis
ussion of some re
ent studies on the subje
t is given

in Se
. IVC followed by 
on
lusions in the last se
tion

(Se
. V).

II. BOSONIC INTEGRALS

A. Bose{Einstein Condensation

As �rst bosoni
 system, a free Bose gas above the 
on-

densation temperature is 
onsidered. Being nonintera
t-

ing, the �eld �

n

(k) des
ribing the bosons 
an be inte-

grated out exa
tly, leading to the thermodynami
 po-

tential 
 [8℄




V

= �

�1

1

X

n=�1

Z

d

d

k

(2�)

d

ln

�

�i~!

n

+

~

2

k

2

2m

� �

�

; (10)

apart from irrelevant 
onstant terms independent of �

and �. Here, m and � are the mass and the de Broglie

thermal wavelength � =

p

2�~

2

�=m of the parti
les, and

� < 0 is the 
hemi
al potential. The argument of the log-

arithm is re
ognized as the kernel of the time-dependent

S
hr�odinger equation in the imaginary-time formalism,

des
ribing a parti
le of mass m at �nite temperature in

a 
onstant ba
kground potential ��. As indi
ated by

the single set of frequen
y sum and momentum integrals,

Eq. (10) is a one-loop result that, be
ause the system is

nonintera
ting, is exa
t. The momentum integral is best


arried out by using the S
hwinger propertime represen-

tation of the logarithmand Poisson's summation formula

1

X

n=�1

e

2�ina

=

1

X

w=�1

Æ(a� w) (11)

to repla
e the summation over n by one over w. The inte-

grals over the S
hwinger propertime parameter and the

momentum variable are then easily 
arried out to yield

the familiar fuga
ity series [8℄
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V

= �

1

��

d

1

X

w=1

w

��

e

��w

; (12)

where � = d=2 + 1 and � = ��� > 0. In Eq. (12),

the singular zero-temperature 
ontribution 
orrespond-

ing to w = 0 is omitted. A more 
areful derivation of the

thermodynami
 potential (10) reveals the presen
e of an

extra 
onvergen
e fa
tor exp(i!

n

�) typi
al for nonrel-

ativisti
 theories, where � is a small positive parameter

that is taken to zero only after the frequen
y sum is eval-

uated [6℄. This 
onvergen
e fa
tor suppresses the T = 0


ontribution (see below). Physi
ally, the series (12) de-

notes the sum over 
losed worldlines that wind w times

around the imaginary time axis [10℄. The �rst fa
tor in

the summand measures the 
on�gurational entropy of

the loops, while the se
ond, with � being proportional

to the worldline tension, is a Boltzmann fa
tor, weighing

loops a

ording to their length measured by w. Loops

with w > 1 
orrespond to ex
hange rings of w parti
les

whi
h are 
y
li
ally permuted after an imaginary time

~�, as they appear in Feynman's theory of the lambda

transition in super
uid

4

He [11℄.

The expression (10) 
an alternatively be evaluated by

keeping the momentum integral to the end and instead

of the Poisson formula using the identity (4). For nonrel-

ativisti
 free theories, the summand there in
ludes the


onvergen
e fa
tor exp(i!

n

�) that suppresses the T = 0

part [6℄. The thermodynami
 potential then takes the

well-known form [8℄




V

= �

1

��

d

F

d=2+1

(�); (13)

where

F

�

(�) =

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

� 1

(14)

with q the dimensionless loop variable de�ned by q

2

=

�~

2

k

2

=2m.

On 
omparing the two alternative evaluations of the

thermodynami
 potential it follows that

1

X

w=1

w

��

e

��w

=

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

� 1

; (15)

where in the �rst representation the momentum integral

has been 
arried out, while in the se
ond it still has to

be performed. The equivalen
e of both results is easily

established by expanding the integrand in a geometri
 se-

ries and using the integral representation of the Gamma

fun
tion.

B. High-Temperature Expansion

Next, the fun
tion F

�

(�) is expanded in a high-

temperature series. As mentioned in the Introdu
tion,

su
h an expansion is an important 
omputational tool for

intera
ting theories, where exa
t results are absent. The

standard approa
h is to use the identity (4) ba
kwards,

i. e., the Laurent expansion (8) of the Bose{Einstein

distribution fun
tion. The zero-frequen
y mode, 
orre-

sponding to the �rst term in the Laurent expansion, gives

the 
ontribution

F

0

�

(�) =

2

�(� )

Z

1

0

dq

q

2��1

q

2

+ �

= �

��1

�(1� � ); (16)

whi
h for d = 3 leads to a nonanalyti
 
ontribution of

the form � �

3=2

.

As an aside, this 
ontribution due to the zero-

frequen
y mode 
an also be obtained from the worldline

loop representation by repla
ing the sum over w in F

�

(�)

by an integral:

1

X

w=1

w

��

e

��w

!

Z

1

0

dww

��

e

��w

= �

��1

�(1� � ) = F

0

�

(�): (17)

The zero-frequen
y mode �

0

(k) is important for our

purposes as it determines the 
riti
al properties of the

free Bose gas. To illustrate this, we di�erentiate the zero-

frequen
y mode 
ontribution twi
e with respe
t to the


hemi
al potential � to obtain the known result that

the 
ompressibility � of an ideal Bose gas diverges as

� � (��)

��3

when the 
ondensation temperature T

0

is approa
hed from above, where � vanishes as � �

�(T � T

0

)

2=(d�2)

. For d = 3, this implies that

� / (��)

�1=2

� (T � T

0

)

�1

; (18)

and gives as value for the spe
i�
-heat 
riti
al exponent

�


e

= �1 [12℄. Des
ribing a free theory, this one-loop

result is exa
t.

Despite being nonintera
ting, a free Bose gas is not in

the universality 
lass of the Gaussian model, but in that

of the spheri
al model [12℄. The nontrival exponents de-

rive from the 
onstraint that the total number of parti-


les be �xed. Without this 
onstraint, the 
hemi
al po-

tential would vanish instead as � � T

0

�T irrespe
tive of

the dimension. This would result in Gaussian exponents

des
ribing BEC in a free Bose gas at 
onstant pressure

[12℄. In four spa
e dimensions, 
orresponding to the up-

per 
riti
al dimension, and above (i. e., d � 4), the expo-

nents of the spheri
al and Gaussian model 
oin
ide.

As mentioned before, the zero-temperature 
ontribu-

tion vanishes be
ause of the presen
e of a 
onvergen
e

fa
tor in nonrelativisti
 free theories. More in line with

the present approa
h, it vanishes even without in
luding

this fa
tor,

�F

1

�

(�) =

1

�(� )

Z

1

0

dq q

2��1

= 0; (19)
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be
ause integrals over polynomials give zero within the

dimensional regularization s
heme [13℄.

The rest of the terms in the high-temperature expan-

sion, 
orresponding to the last terms in the Laurent ex-

pansion (8), are analyti
. These 
ontributions are ob-

tained in the standard approa
h by expanding the sum-

mand in a high-temperature Taylor series before 
arrying

out the momentum integral and the frequen
y sum, with

ea
h term giving a Riemann zeta fun
tion

�(s) =

1

X

m=1

1

m

s

: (20)

Spe
i�
ally, one �nds [14℄

F

�

�

(�) =

1

X

l=0

�(� � l)

�(l + 1)

(��)

l

; (21)

with � the dimensionless expansion parameter. The 
on-

densation temperature is determined by these 
ontribu-

tions due to the gapped thermal modes. At that tem-

perature, the 
hemi
al potential vanishes, so that the

equation for the parti
le number density n,

n = �

1

V

�


��

; (22)

with F

�

(�) in Eq. (13) repla
ed with F

�

�

(�), gives the


ondensation temperature

k

B

T

0

=

2�~

2

m

�

n

�(d=2)

�

2=d

: (23)

In other words, although the 
riti
al exponents of BEC

in a free Bose gas are determined entirely by the stati
,

zero-frequen
y mode, the 
ondensation temperature, be-

ing nonuniversal, is determined entirely by the dynami
,

gapped thermal modes.

It is natural to ask whether the series (21) 
an also be

extra
ted dire
tly from the integral representation given

in Eq. (14), where the frequen
y sum has already been


arried out, without returning to a representation involv-

ing su
h a sum. To show that the answer is aÆrmative,

we expand the integrand there in a high-temperature se-

ries. Ea
h term thus generated 
ontains an integral of

the form

Z

1

0

dq

q

q

2t

e

pq

2

� 1

(24)

and derivatives thereof with respe
t to the parameter p

(whi
h is set to unity at the end). For t � 1, these loop

integrals diverge in the infrared. We handle the diver-

gen
es using zeta fun
tion regularization, by analyti
ally


ontinuing the following equation

2

Z

1

0

dq

q

q

2t

e

pq

2

� 1

= �(t)�(t)p

�t

; (25)

with t initially 
hosen large enough so that the integral


onverges, to arbitrary values of t. With this regulariza-

tion s
heme, the high-temperature expansion (21) easily

follows,

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

� 1

Taylor

�!

1

X

l=0

�(� � l)

�(l + 1)

(��)

l

= F

�

�

(�); (26)

showing that the 
ontributions due to the gapped ther-

mal modes 
an indeed (when properly regularized) be

extra
ted dire
tly from the fun
tion F

�

(�) in Eq. (14)

without the need to return to the representation involv-

ing a frequen
y sum. This result is quite general and will

in the next subse
tion be illustrated for a relativisti
 sys-

tem.

C. Relativisti
 Free Bose Gas

To show that the 
on
lusions of the previous se
tion by

no means hinge on the form of the nonrelativisti
 spe
-

trum, leading to the spe
i�
 stru
ture of the integrand in

Eq. (14), the same analysis for a relativisti
 free Bose gas

is given in this se
tion. The system is 
onsidered at zero


hemi
al potential � = 0. It has no phase transition then,

but the algebra is simpler than with a 
hemi
al potential

in
luded [15℄, without losing any of the generalities we

wish to point out.

The analog of expression (10) for the nonrelativisti


Bose gas reads [16℄




V

=

1

2�

1

X

n=�1

Z

d

d

k

(2�)

d

ln

�

~

2

!

2

n

+ ~

2




2

k

2

+m

2




4

�

; (27)

with 
 the speed of light. The argument of the logarithm

is now re
ognized as the kernel of the Klein{Gordon

equation in the imaginary-time formalism, des
ribing a

relativisti
 free s
alar parti
le of mass m at �nite tem-

perature. Being a nonintera
ting system, the one-loop

result (27) is exa
t. With the help of the identity (4),

the thermodynami
 potential be
omes
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V

=

Z

d

d

k

(2�)

d

�

1

2

p

~

2




2

k

2

+m

2




4

+ �

�1

ln

�

1� e

��

p

~

2




2

k

2

+m

2




4

�

�

=

(~
)

�d

�

�(d+1)

(4�)

d=2

�

1

�(d=2)

Z

1

0

dq q

d�1

p

q

2

+ (�m


2

)

2

�

�(2� )

�(� )

H

�

(�m


2

)

�

; (28)

where the new integration variable is q = �~
k and the

thermal part of the thermodynami
 potential is deter-

mined by the fun
tion

H

�

(y) =

1

�(2� )

Z

1

0

dq

p

q

2

+ y

2

q

2��1

e

p

q

2

+y

2

� 1

; (29)

with � = d=2 + 1. This fun
tion [16℄ is the relativisti


analog of the fun
tion F

�

(�) in Eq. (14).

The high-temperature expansion of the fun
tionH

�

(y)

in d = 3 was 
omputed by Dolan and Ja
kiw [7℄. To

deal with logarithmi
 divergen
es that arise be
ause four

spa
etime dimensions 
orresponds to the upper 
riti
al

dimension, dimensional regularization was used by 
on-

sidering d = 3� �, with � taken to zero at the end. For


onvenien
e, � = 5=2 � �=2 was only used in the inte-

grand, whereas � was set to zero from the start in the

prefa
tor in Eq. (29). These authors used Eq. (5) ba
k-

wards, i. e., Eq. (8), expanded the summand in a Taylor

series, integrated term by term, and �nally 
arried out

the remaining frequen
y sum in ea
h term, with the re-

sult [7℄:

H

5=2

(y) =

�

4

360

�

�

2

96

y

2

+

�

48

y

3

+

1

128

�

ln

�

y

4�

�

+ 
 �

3

4

�

y

4

+ O(y

6

); (30)

where 
 is Euler's 
onstant and y = �m


2

the dimension-

less expansion parameter. The nonanalyti
 
ubi
 
ontri-

bution is due to the zero-frequen
y mode represented

by the �rst term in the Laurent expansion of the Bose{

Einstein distribution fun
tion in Eq. (29):

H

0

5=2

(y) =

1

�(5)

Z

1

0

dq

q

4

q

2

+ y

2

=

�

48

y

3

; (31)

where analyti
 regularization is used to handle the ul-

traviolet divergen
e. The se
ond term in the Laurent ex-

pansion of the Bose{Einstein distribution fun
tion gives

�H

1

5=2

(y) = �

1

2

1

�(5)

Z

1

0

dq

q

4��

p

q

2

+ y

2

=

1

128

�

�

1

�

+ ln

�

y

2

�

+

7

12

�

y

4

; (32)

while the gapped thermal modes yield

H

�

5=2

(y) =

�

4

360

�

�

2

96

y

2

+

1

128

�

1

�

� ln(2�) + 
 �

4

3

�

y

4

+O(y

6

); (33)

so that H

5=2

(y) = H

0

5=2

(y) �H

1

5=2

(y) +H

�

5=2

(y). An ex-

tra minus sign is in
luded in the left hand of Eq. (32),

so that H

0

5=2

is the T = 0 
ontribution that has to be

subtra
ted from H

�

�

(�) to arrive at the purely thermal


ontributions H

�

(�).

We next rederive this result using the algorithm given

above and extra
t it dire
tly from the integral represen-

tation (29), by expanding the integrand in a Taylor se-

ries. Applying zeta fun
tion regularization to handle the

infrared divergen
es as before [see Eq. (25)℄, we obtain

1

�(5)

Z

1

0

dq

p

q

2

+ y

2

q

4��

e

p

q

2

+y

2

� 1

Taylor

�!

�

4

360

�

�

2

96

y

2

+

1

128

�

1

�

+ 2�

0

(0) + 
 �

4

3

�

y

4

+

�

0

(�2)

768

y

6

+

�

0

(�4)

24576

y

8

+

�

0

(�6)

1474560

y

10

+O(y

12

); (34)
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where this series is 
arried out to higher order. To show

that this expression 
oin
ides with H

�

5=2

(y), we di�eren-

tiate the identity [17℄

�(s) = 2

s

�

s�1

sin

�

1

2

�s

�

�(1� s)�(1 � s); (35)

to obtain for s a (positive or negative) even integer:

�

0

(s) = 2

s�1

�

s


os

�

1

2

�s

�

�(1� s)�(1 � s); (36)

or spe
i�
ally

�

0

(0) = �

1

2

ln(2�); �

0

(�2) = �

1

4�

2

�(3);

�

0

(�4) =

3

4�

4

�(5); �

0

(�6) = �

45

8�

6

�(7): (37)

It now immediately follows that Eq. (34) gives the 
on-

tributions due to the gapped thermal modes, so that the

results obtained in the standard manner and the one used

here indeed 
oin
ide.

Given that also the zero-frequen
y mode 
ontribution

as well as the T = 0 part 
an be extra
ted from the in-

tegral representation (29), by identifying them with the

�rst two terms in the Laurent expansion of the Bose{

Einstein distribution fun
tion, it follows that no ba
k-

tra
king to a representation involving a frequen
y sum

is required, provided zeta fun
tion regularization is ap-

plied. Moreover, the simple, yet powerful algorithm dis-


ussed here is easily implemented using an algebrai
 ma-

nipulation program to generate large orders in a high-

temperature expansion for a wide 
lass of problems, in-


luding fermioni
 systems (with the obvious 
hanges), as

will now be demonstrated.

III. FERMIONIC INTEGRALS

A. Free Fermi Gas

In this subse
tion, a nonrelativisti
 free, spinless Fermi

gas is 
onsidered. The thermodynami
 potential is given

by the one-loop expression (10) for a Bose gas with an ex-

tra minus sign in
luded to a

ount for the antisymmetry

of the fermioni
 �eld. Using Poisson's summation for-

mula (11), the thermodynami
 potential is readily writ-

ten as a fuga
ity series [8℄




V

= �

1

��

d

1

X

w=1

(�1)

w+1

w

��

e

��w

; (38)

where � = d=2 + 1 and � = ��� > 0 again. As for a

Bose gas, this series 
an be understood as representing

a sum over 
losed worldlines winding around the imagi-

nary time axis w times, with ea
h winding a

ompanied

by a fa
tor (�1) typi
al for fermions.

Alternatively, the thermodynami
 potential 
an be

evaluated using the identity [6℄

1

�

1

X

n=�1

1

�i~!

n

+ z

=

1

2

� f(z); (39)

where !

n

= ��

�1

(2n + 1) are the fermioni
 Matsub-

ara frequen
ies and f(z) is the Fermi{Dira
 distribution

fun
tion

f(z) =

1

e

�z

+ 1

=

1

2

+ O(�z): (40)

The �rst term at the right hand of the identity (39) gives

the result for zero temperature, while the se
ond gives

the thermal 
ontribution. Nonrelativisti
 free theories in-


lude again a 
onvergen
e fa
tor whi
h suppresses the

T = 0 part. The thermodynami
 potential then takes

the same form (13) as for a Bose gas with the fun
tion

F

�

(�) repla
ed with the fun
tion

G

�

(�) =

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

+ 1

: (41)

The equivalen
e of the two representations, implying

1

X

w=1

(�1)

w+1

w

��

e

��w

=

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

+ 1

; (42)

is easily established.

B. High-Temperature Expansion

As for a bosoni
 system, the standard high-

temperature series expansion of the fun
tion G

�

(�) is

to use the identity (39) ba
kwards and to repla
e the

Fermi{Dira
 distribution fun
tion again with an expres-

sion involving a frequen
y sum:

f(z) =

1

2

�

2

�

1

X

n=0

z

~

2

!

2

n

+ z

2

; (43)

where the �rst term at the right hand subtra
ts the

T = 0 part en
oded in the sum. Unlike bosoni
 systems,

fermioni
 systems do not have a zero-frequen
y mode as

none of the Matsubara frequen
ies (1) vanishes.

Following the algorithm advo
ated here, we instead

derive this expansion dire
tly from the integral repre-

sentation of the fun
tion G

�

(�) given in Eq. (41) with-

out �rst returning to an expression involving a frequen
y

sum. Expanding the integrand in Eq. (41) in a Taylor se-

ries, we en
ounter loop integrals of the form

Z

1

0

dq

q

q

2t

e

pq

2

+ 1

; (44)
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whi
h for t � 0 are infrared divergent. These diver-

gen
es are handled again using zeta fun
tion regulariza-

tion, where the following equation

2

Z

1

0

dq

q

q

2t

e

pq

2

+ 1

= �(t)

�

1� 2

1�t

�

�(t)p

�t

; (45)

with t initially 
hosen large enough so that the integral


onverges, is analyti
ally 
ontinued to arbitrary values

of t. The high-temperature expansion now follows as:

2

�(� )

Z

1

0

dq

q

2��1

e

q

2

+�

+ 1

Taylor

�!

1

X

l=0

�

1� 2

1��+l

�

�(� � l)

�(l + 1)

(��)

l

= G

�

�

(�): (46)

This result 
an be 
he
ked by substituting Eq. (42)

and di�erentiating the resulting equation arbitrary many

times with respe
t to the dimensionless expansion pa-

rameter � and setting that parameter to zero at the end,

leading to

1

X

w=1

(�1)

w+1

w

�t

=

�

1� 2

1�t

�

�(t); (47)

whi
h is an identity.

C. Relativisti
 Free Fermi Gas

As last nonintera
ting example, a relativisti
 free

Fermi gas at zero 
hemi
al potential is 
onsidered, 
on-

sisting of parti
les (but no antiparti
les, whi
h would

lead to an extra degenera
y fa
tor) with half-integer spin

�. The thermodynami
 potential is given by the expres-

sion (27) for the Bose gas with an extra spin multipli
a-

tion fa
tor and a minus sign, i. e., �(2� + 1), in
luded.

With !

n

now denoting fermioni
 Matsubara frequen
ies,

the one-loop expression is readily 
ast in the form




V

= �(2� + 1)

(~
)

�d

�

�(d+1)

(4�)

d=2

�

1

�(d=2)

Z

1

0

dq q

d�1

p

q

2

+ (�m


2

)

2

�

�(2� )

�(� )

I

�

(�m


2

)

�

; (48)

where the thermal part is determined by the fun
tion

I

�

(y) =

1

�(2� )

Z

1

0

dq

p

q

2

+ y

2

q

2��1

e

p

q

2

+y

2

+ 1

: (49)

For � = 5=2, it has the high-temperature expansion [7℄

I

5=2

(y) =

7�

4

2880

�

�

2

192

y

2

�

1

128

�

ln

�

y

�

�

+ 
 �

3

4

�

y

4

+ O(y

6

); (50)

where be
ause of the absen
e of a zero-frequen
y mode,

all terms are analyti
 in the dimensionless expansion pa-

rameter y = �m


2

.

Apart from a minus sign, the T = 0 
ontribution is

the same as that for a Bose gas given in Eq. (32):

�I

1

5=2

(y) =

1

2

1

�(5)

Z

1

0

dq

q

4��

p

q

2

+ y

2

=

1

128

�

1

�

� ln

�

y

2

�

�

7

12

�

y

4

; (51)

where again an extra minus sign is in
luded in the left

hand of this de�nition, so that I

0

5=2

gives the T = 0 
on-

tribution (and not its negative).

Using the algorithm dis
ussed here, we expand the in-

tegrand of Eq. (49) in a Taylor series to obtain as 
on-

tribution due to the gapped thermal modes:

1

�(2� )

Z

1

0

dq

p

q

2

+ y

2

q

2��1

e

p

q

2

+y

2

+ 1

Taylor

�!

7�

4

2880

�

�

2

192

y

2

+

1

128

�

�

1

�

� 2�

0

(0)� 
 � 2 ln(2) +

4

3

�

y

4

�

7

768

�

0

(�2)y

6

�

31

24576

�

0

(�4)y

8

�

127

1474560

�

0

(�6)y

10

+ O(y

12

); (52)
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whi
h, with the help of the identities (37) and together

with I

1

5=2

(y), reprodu
es the result (50) (expanded to

higher order).

These last two examples illustrate that the high-

temperature expansion we use in 
onjun
tion with zeta

fun
tion regularization of infrared divergen
es is also

valid for fermioni
 systems.

D. High-Temperature Expansion of BCS Theory

In Ref. [3℄, the BCS theory was 
onsidered at �nite

temperature using the approa
h advo
ated here. This ex-

ample is in
luded to point out a shift in approa
h when

going from a nonintera
ting to an intera
ting system.

The main di�eren
e with a nonintera
ting system is of


ourse that one-loop results no longer are exa
t, mean-

ing that not all the degrees of freedom 
an be integrated

out in an exa
t manner to obtain the thermodynami


potential as a known fun
tion of the thermodynami
 pa-

rameters � and �. Instead, irrelevant degrees of freedom

are integrated out (usually only perturbatively) to arrive

at an e�e
tive theory of the Landau form expressed in

terms of an order parameter des
ribing the phase tran-

sition. The order parameter, whose value is zero in the

symmetri
, disordered state and nonzero in the ordered

state with spontaneously broken symmetry, determines

the 
riti
al properties of the system 
lose to the phase

transition, where it disappears.

After linearizing the quarti
 intera
tion of the BCS

theory by a suitable Hubbard{Stratonovi
h transforma-

tion, the fermioni
 degrees of freedom 
an be integrated

out exa
tly in a one-loop 
al
ulation to yield for a uni-

form BCS super
ondu
tor:




1

(�)

V

= �2

Z

d

3

k

(2�)

3

�

1

2

E(k)

+ �

�1

ln

�

1 + e

��E(k)

�i

: (53)

Here, the frequen
y sum has been 
arried out and

E(k) =

p

�

2

(k) + j�j

2

; (54)

is the BCS spe
trum with the order parameter � provid-

ing an energy gap at the Fermi surfa
e. This spe
trum

repla
es the ex
itation spe
trum �(k) = ~

2

k

2

=2m� � of

the elementary fermioni
 ex
itations of mass m in the

normal state, where the energy is measured relative to

the 
hemi
al potential �, whi
h, 
ontrary to a dilute free

Fermi gas, is positive in the weak-
oupling BCS limit and

given by the Fermi energy � = ~

2

k

2

F

=2m, with ~k

F

the

Fermi momentum. The prefa
tor 2 in Eq. (53) arises be-


ause the fermions 
ome in two spe
ies, with spin up and

down. The true grand 
anoni
al potential 
, depending

only on the thermodynami
 parameters � and �, is ob-

tained from 
(�) by integrating out �. This 
an only

be done perturbatively, with the simplest approximation


orresponding to the saddle point of the integral, where

the order parameter is 
onsidered to be a non
u
tuating

�eld.

To the one-loop expression (53), the tree 
ontribution

is to be added




0

(�)

V

= �

j�j

2

g

B

; (55)

where g

B

< 0 is the (bare) 
oupling 
onstant of the

lo
al BCS intera
tion term, representing the e�e
tive

attra
tion between fermions. The pure quantum zero-

temperature term in Eq. (53) gives, among other 
ontri-

butions, a quadrati
 term whi
h 
an be 
ombined with

the tree 
ontributions to yield the renormalized 
oupling


onstant g,

1

g

=

1

g

B

+

1

2

Z

d

3

k

(2�)

3

1

j�(k)j

: (56)

The integral diverges in the ultraviolet, to regularize it

we introdu
e a momentum 
uto� ~� to obtain

1

g

=

1

g

B

+

m

2�

2

~

2

�+ O(�

0

); (57)

where the irrelevant �nite part of the integral is omit-

ted. The weak-
oupling BCS limit 
orresponds to taking

g

B

! 0 from below.

With the loop integration approximated by

Z

d

3

k

(2�)

3

! �(0)

Z

1

�1

d�; (58)

where �(0) = mk

F

=2�

2

~

2

is the density of states per

spin degree of freedom at the Fermi level, the thermal

part of the thermodynami
 potential (53) be
omes of

a form en
ountered in a relativisti
 free Fermi gas [7℄,

with the dimensionless integration variable q = ��. The

approximation 
onsists of extending the range of the �

integration from �� � � < 1 to �1 < � < 1. The

problem thus redu
es to one in a single spa
e dimension

(d = 1), 
orresponding to the value � = 3=2. To handle

logarithmi
 divergen
es that arise, we again dimensional

regularize the integral and 
onsider the problem in (1��)

dimensions instead. We pro
eed in the same way as be-

fore and rather than returning to an expression involv-

ing a frequen
y sum by using Eq. (39) ba
kwards, we

expand the integrand in Eq. (29) in a high-temperature

series and apply zeta fun
tion regularization to handle

infrared divergen
es. This gives as 
ontributions due to

the gapped thermal modes: [3℄
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Z

d

3

k

(2�)

3

ln

�

1 + e

��

p

�

2

(k)+j�j

2

�

= �

�1

�(0)

�

�

2

6

+

1

2

�

1

�

+ 2�

0

(0) + 
 + 2 ln(2)

�

y

2

+

7

8

�

0

(�2)y

4

+ O(y

6

)

�

: (59)

Be
ause the order parameter appears only in the di-

mensionless expansion parameter y = �j�j, the high-

temperature expansion is tantamount to a Landau ex-

pansion in j�j. Conta
t with the standard approa
h is

established through the identities (37) and the substitu-

tion

1

�

! ln (�~!

D

) ; (60)

where the Debye energy ~!

D

, being a measure of the

inverse latti
e spa
ing, is the physi
al ultraviolet 
uto�

and the temperature �

�1

is the relevant infrared s
ale.

This 
orresponden
e between the pole 1=� of dimensional

regularization and the logarithm ln(�) appearing in mo-

mentum 
uto� regularization is 
ommonly used in the


ontext of quantum �eld theory, and 
an be veri�ed ex-

pli
itly here by working with the Debye energy as a 
uto�

from the beginning instead of using dimensional regular-

ization. Adding the tree and the one-loop 
ontributions,

we then �nd




0

(�) + 


1

(�)

V

= ��

�2

�(0)

�

�

2

3

+

�

ln (�~!

D

) + 
 � ln(�=2) +

1

�(0)g

�

j��j

2

�

7�

2

16

�(3)j��j

4

�

; (61)

featuring the renormalized 
oupling 
onstant g. Being

a stati
 �eld, the order parameter is the zero-frequen
y

mode of the problem at hand. The 
riti
al temperature

T




is determined by the 
ondition that the 
oeÆ
ient of

the quadrati
 term 
hanges sign, yielding the standard

result [24℄

k

B

T




=

2

�

e




~!

D

e

1=�(0)g

; (62)

with g < 0. Using this expression for the 
riti
al temper-

ature, we 
an put Eq. (61) in the 
anoni
al form [18℄




0

(�) + 


1

(�)

V

= ��

�2

�(0)

�

�

2

3

� ln

�

�




�

�

j��j

2

�

7�

2

16

�(3)j��j

4

�

; (63)

valid 
lose to the 
riti
al temperature.

This illustrates �rst of all that our method of 
omput-

ing the 
ontributions due to the gapped thermalmodes in

a high-temperature series expansion in 
onjun
tion with

zeta fun
tion regularization of infrared divergen
es is also

valid for an intera
ting system. In addition, it highlights

the general approa
h to 
riti
al phenomena, whi
h is to

integrate out the irrelevant degrees of freedom (whi
h in-


lude the gapped thermal and thus all fermioni
 modes)

to determine the 
oeÆ
ients of the e�e
tive theory ex-

pressed in terms of the order parameter. Although irrele-

vant for the 
riti
al behaviour itself, the gapped thermal

modes 
an in
uen
e the value of the 
riti
al tempera-

ture through their 
ontributions to the 
oeÆ
ient of the

quadrati
 term. The 
riti
al temperature (62), whi
h is

a one-loop result, is ex
lusively determined by the high-

energy dynami
 modes as none of the Matsubara fre-

quen
ies of the fermioni
 �elds that have been integrated

out vanishes. Unlike 
riti
al exponents, the 
riti
al tem-

perature is not universal and 
an depend on the details

of these high-energy gapped modes.

IV. CONDENSATION TEMPERATURE OF

WEAKLY INTERACTING BOSE GAS

A. E�e
tive Theory

We next 
onsider the 
ondensation temperature of a

uniform, weakly intera
ting Bose gas. Spe
i�
ally, we are

interested in how 
u
tuations in the irrelevant degrees of

freedom in
uen
e this temperature. To determine this,

we need, a

ording to the e�e
tive �eld program (see the

dis
ussion in the pre
eding se
tion), to 
al
ulate the 
o-

eÆ
ients of the e�e
tive theory expressed in terms of the

order parameter by integrating out the irrelevant degrees

of freedom. For BEC the irrelevant degrees of freedom

are the gapped thermal modes, whose 
ontributions are


onveniently 
omputed using the algorithm advo
ated

here. The order parameter � of BEC in a weakly in-

tera
ting Bose gas, introdu
ed in Eq. (9), denoting the

expe
tation value of the quantum �eld � des
ribing the

bosons, is the zero-frequen
y mode. A nonzero � implies

the presen
e of a 
ondensate, with j�j

2

giving the average

number density n

va


of 
ondensed parti
les. This e�e
-

tive �eld program is the �eld-theoreti
 generalization of

the e�e
tive 
lassi
al potential introdu
ed by Feynman
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and Kleinert [19℄ in their path-integral study of thermal


u
tuations via a �nal integral over the zero-frequen
y


omponent of the path variable. (See the textbook [20℄

for extensive appli
ations.) Here we are left with a �nal

fun
tional integral over the purely spa
e-dependent �eld

�(x).

Whereas the 
ondensation temperature of a free Bose

gas is determined from within the normal, i. e., the high-

temperature state, we determine T




for the weakly inter-

a
ting gas instead from within the low-temperature state

with a nonzero 
ondensate j�j.

The one-loop 
ontribution to the thermodynami
 po-

tential of a weakly intera
ting uniform Bose gas is given

by [3℄




1

(�)

V

=

Z

d

3

k

(2�)

3

�

1

2

E(k)

+ �

�1

ln

�

1� e

��E(k)

�i

; (64)

where E(k) is the spe
trum of the elementary ex
itation

in the super
uid state expressed in terms of the order

parameter �

E(k) =

q

(~

2

k

2

=2m � �

B

+ 4g

B

j�j

2

)

2

� 4g

2

B

j�j

4

; (65)

where �

B

and g

B

are the bare parameters of the the-

ory, with g

B

> 0 the 
oupling 
onstant of the repul-

sive two-parti
le 
onta
t intera
tion. The true thermo-

dynami
 potential 
(�; �) is obtained by integrating out

the remaining degree of freedom, whi
h in a �rst approx-

imation is done by evaluating the integral in the saddle

point, 
orresponding to extremizing 
(�).

Written in the form (65), the spe
trum is the bosoni


analog of the fermioni
 BCS spe
trum (54) given in terms

of the super
ondu
ting order parameter �. The spe
-

trum (65) redu
es to the T = 0 Bogoliubov spe
trum

[21℄ when the lowest-order value j�j

2

(= n

va


) = �

B

=2g

B

for � is inserted. This value is obtained from minimizing

the tree 
ontribution




0

(�)

V

= ��

B

j�j

2

+ g

B

j�j

4

: (66)

It is important to note that the 
hemi
al potential �

B

=

2g

B

n

va


is positive here (so that the 
oeÆ
ient of the

quadrati
 term is negative, leading to a potential of a

form resembling a Mexi
an hat), setting a weakly inter-

a
ting Bose gas apart from a free Bose gas whi
h has a

nonpositive 
hemi
al potential.

The pure quantum zero-temperature term in Eq. (64)

gives, among other 
ontributions, two terms of the form


ontained in the bare theory (66). They 
an be 
ombined

to yield the renormalized parameters [22℄:

� = �

B

�

1

6�

2

g

B

�

3

(67)

g = g

B

�

m

�

2

~

2

g

2

B

�; (68)

with ~� the momentum 
uto�. In addition, it gives a

nonanalyti
 
ontribution / m

3=2

(gj�j

2

)

5=2

indu
ed by

the gapless Goldstone mode. This one-loop 
ontribution,

whi
h is irrelevant for our present purposes and will sub-

sequently be ignored, is typi
al for a gapless 
ontribu-

tion in �ve spa
etime dimensions. The e�e
tive number

of spa
etime dimensions is �ve here be
ause in nonrela-

tivisti
 quantum theories, where time derivatives appear

in 
ombination with two spa
e derivatives, the time di-

mension 
ounts double 
ompared to the (three) spa
e

dimensions.

Sin
e Eq. (64) is already a one-loop result, it is 
onsis-

tent to this order to repla
e the bare parameters �

B

; g

B

there with the (one-loop) renormalized ones. The renor-

malized 
oupling 
onstant g is related to the s-wave s
at-

tering length a via [23,24℄

g =

2�~

2

a

m

: (69)

The zero-temperature relation between the renormalized,

physi
al 
hemi
al potential and the average number den-

sity n

va


= j�j

2

of 
ondensed parti
les then reads [6℄

�(T = 0) = 2gn

va


=

4�~

2

a

m

n; (70)

where in the last step we ignored the so-
alled depletion

of the 
ondensate [21℄ and repla
ed n

va


with the total

parti
le number density, whi
h is justi�ed be
ause the

term is already of order g.

Next, the thermal part in Eq. (64) is expanded in a

high-temperature series using the algorithm dis
ussed

above. Writing

Z

d

3

k

(2�)

3

ln

�

1� e

��E(k)

�

=

32�

(4�)

3=2

1

�

3

Z

1

0

dq q

2

ln

�

1� e

��E(q)

�

; (71)

with q the same loop variable as used for a free Bose gas,

de�ned by q

2

= �~

2

k

2

=2m, and

�E(q) =

q

(q

2

+ �+ 4y)

2

� 4y

2

; (72)

where y = �gj�j

2

, we arrive at [3℄
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Z
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1� e
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�

+
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e
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�
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e
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e
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�
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�

�+ 4y
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�

1

2

1

e

q

2

� 1

4y

2

+ O

�

�

3

�

#

= �

1

2

�(

3

2

)

h

�(

5

2

)� �(

3

2

)

�

�+ 4y

�

+

1

2

�(

1

2

)

�

�+ 4y

�

2

+ �(

1

2

)4y

2

+O

�

�

3

�

i

: (73)

Contrary to the previous 
ases, we now have two dimen-

sionless expansion parameters � and y, both being pro-

portional to �.

At two loop, we 
onsider the 
lass of bubble diagrams

(see Fig. 4 of Ref. [3℄) giving the following 
ontributions

to the thermodynami
 potential due to the gapped ther-

mal modes:




2

(�)

V

= �

g

4

(3I

2

1

+ 3I

2

2

+ 2I

1

I

2

); (74)

where I

1

is the one-loop integral

I

1

=

Z

d

3

k

(2�)

3

1

E(k)

~

2

k

2

=2m� �+ 2gj�j

2

e

�E(k)

� 1

; (75)

and a similar equation for I

2

with 2g repla
ed with 6g

in the numerator. Expanding the integrals in a high-

temperature expansion, we obtain as two-loop 
ontribu-

tions




2

(�)

V

=

2g

�

6

�

�

2

(

3

2

)� 2�(

1

2

)�(

3

2

)(�+ 4y)

�

; (76)

the leading term of whi
h was 
onsidered in Ref. [3℄, but

not the rest.

Adding the 
ontributions together, we arrive at




0

(�) + 


1

(�) + 


2

(�)

V

= 


0

� 


2

j�j

2

+ 


4

j�j

4

; (77)

with




0

= �

1

��

3

�

�(

5

2

) � 2�

2

(

3

2

)Æ

� �(

3

2

)�

�

1� 4�(

1

2

)Æ

�

+

1

2

�(

1

2

)�

2

	

; (78)

a �-independent term, with expansion parameter

Æ = g�=�

3

= a=�: (79)

For Æ ! 0, Eq. (78) is analogous to the �rst 
ontribu-

tions due to the gapped thermal modes of a free Bose

gas given by Eq. (13) with Eq. (21), albeit with � > 0

now. Furthermore,

��


2

=

�

�+ 4�(

3

2

)Æ

� �

1� 4�(

1

2

)Æ

�

; (80a)




4

= g

�

1� 12�(

1

2

)Æ

�

: (80b)

It is important to note that one 
annot naively set �

to zero in Eq. (77) [with 


2

(�) omitted℄, as was done

by Baym et al. [1℄ to argue that the zeta fun
tion reg-

ularization of infrared divergen
es used to obtain that

result is 
awed, and hope to retrieve the 
orre
t 
riti
al

behavior of the 
ompressibility, say, of a nonintera
ting

Bose gas. As explained in Se
. (II B), universal proper-

ties are determined ex
lusively by the 
u
tuations in the

zero-frequen
y mode. These 
u
tuations are, however,

not 
onsidered in this se
tion. We are interested here in

the 
ondensation temperature | a nonuniversal quan-

tity. As argued in the Introdu
tion, nonuniversal quan-

tities in prin
iple also depend on the gapped thermal

modes. It is the e�e
t of 
u
tuations in these dynami


modes that is summarized by Eq. (77). More spe
i�
ally,

the 
oeÆ
ients given in Eqs. (80) express the dressing of

the parameters � and g by these thermal 
u
tuations.

The one-loop 
orre
tions, �rst 
al
ulated in Ref. [3℄, have

re
ently been rederived in Ref. [5℄, apparently in igno-

ran
e of the existing literature on the subje
t.

The 
ondensation temperature is determined by the

vanishing of the 
oeÆ
ient 


2

, yielding

�




= �4�(

3

2

)Æ; (81)

whi
h gives T




in terms of �. Experimentally, it is more

realisti
 to 
onsider the system at �xed parti
le num-

ber density and therefore take n rather than � as inde-

pendent variable. The parti
le number density is easily

obtained from Eq. (77) at T = T




where � vanishes:

n = �

1

V

�


��

�

�

�

�

�

T=T




=

1

�

3




�

�(

3

2

)

�

1� 4�(

1

2

)Æ

�

� �(

1

2

)�




	

: (82)

Together with Eq. (81) this redu
es to the free Bose gas

expression:
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n = �(

3

2

)=�

3




; (83)

so that to this order the dynami
 modes do not lead to

a shift in the 
ondensation temperature. This 
on
lusion

di�ers from our previous one in Ref. [3℄, where the two-

loop 
ontributions were not properly in
luded [4℄. The

additional two-loop 
ontributions 
an
el the shift due to

the gapped thermal modes found in Ref. [3℄ at one loop.

With the expression (83) for n, the 
hemi
al potential

at T





an be written as

�




= 4gn =

8�~

2

a

m

n; (84)

whi
h is nothing but the Hugenholtz{Pines relation [25℄

between the 
hemi
al potential and the self-energy at the


ondensation temperature where � disappears. It is iden-

ti
al to the zero-temperature relation (70) apart from a

subtle fa
tor of 2 that 
an be understood by examining

the Hugenholtz{Pines relation, whi
h is an exa
t result,

at both temperatures. It follows from Eq. (84) that the


hemi
al potential remains positive at the 
ondensation

temperature of a weakly intera
ting Bose gas. This is in


ontrast to a free Bose gas (obtained by letting a! 0),

where the 
hemi
al potential vanishes when the 
onden-

sation temperature is approa
hed from above. Whereas

the 
hemi
al potential in a free Bose gas remains zero all

the way down to zero temperature, in a weakly intera
t-

ing Bose gas it de
reases from 4gn at T




to 2gn at zero

temperature.

To justify the high-temperature expansion used, note

that to lowest nontrivial order, the 
oeÆ
ient 


2

is given

by ��


2

= � + 4�(

3

2

)Æ. The 
ondition 


2

= 0 then gives

the 
ondensation temperature in terms of � to lowest

order as [3℄

k

B

T

0

=

2�~

2

m

�

�

4g�(

3

2

)

�

2=3

; (85)

whi
h is a one-loop result. Sin
e this temperature is large

for g small, the high-temperature expansion is 
onsistent

with the weak-
oupling assumption of perturbation the-

ory. Using the Hugenholtz{Pines relation (whi
h is also

satis�ed at this lowest nontrivial order) to repla
e � with

n, Eq. (85) takes the standard form (23) for a noninter-

a
ting Bose gas, independent of g. As for a free Bose

gas, this result is determined entirely by the nonzero fre-

quen
y modes.

Be
ause �




/ Æ / g, the 
oeÆ
ients (80a) and (80b) of

the e�e
tive theory are 
lose to T





al
ulated up to the

order g

2

. In the �rst 
oeÆ
ient (78), the term / Æ

2

is

missing. This term, given by the leading 
ontribution in

the high-temperature expansion of the third-order bub-

ble diagram, is independent of the 
hemi
al potential and

therefore irrelevant for our purposes.

B. BEC in two dimensions

For arbitrary dimension 2 < d < 4, Eqs. (81) and (83)

generalize to:

�




= �4�(d=2)Æ; n = �(d=2)=�

d




; (86)

where now Æ = g�=�

d

. The limiting 
ase, d = 2, is spe-


ial be
ause �(d=2) diverges when d! 2. To investigate

this limit, we dimensional regularize the last equation by


onsidering the problem in d = 2+ �, where

n =

2

�

2




1

�

: (87)

As in Eq. (60), the pole in dimensional regularization 
an

be 
onne
ted with the logarithm appearing in the regu-

larization with a momentum 
uto�, provided the ultra-

violet momentum 
uto� and the relevant infrared s
ale

are identi�ed. Here, they are given by the inverse range

of the potential 1=a and the square root of the 
hemi
al

potential, respe
tively [26℄, i. e.,

1

�

! ln

�

~

a

p

m�

�

= �

1

2

ln

�

8�na

2

ln(1=8�na

2

)

�

�

1

2

ln[ln(1=8�na

2

)℄ (88)

for ln[ln(1=8�na

2

)℄ � 1. In deriving this use is made of

the two-dimensional relation between the 
hemi
al po-

tential and the parti
le number density at the 
ondensa-

tion temperature,

�




=

8�~

2

n

m ln(1=8�na

2

)

: (89)

With this 
orresponden
e, Eq. (87) leads to the well-

known expression for the 
riti
al temperature [27,26℄

k

B

T




=

2�~

2

n

m ln[ln(1=8�na

2

)℄

: (90)

Together with the relation �




= 4gn, Eq. (89) gives

for the 
oupling 
onstant

g =

2�~

2

m ln(~

2

=m�a

2

)

: (91)

To understand this result, re
all that the time dimen-

sion 
ounts double 
ompared to the spa
e dimensions in

a nonrelativisti
 quantum theory. The quantum 
riti
al

behaviour of the theory was �rst investigated by Uzunov

[28℄, who showed that d = 2 (implying a total of four ef-

fe
tive spa
etime dimensions) 
orresponds to the upper
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riti
al dimension, below whi
h a nontrivial infrared sta-

ble �xed point exists, with g > 0. For d > 2, the theory

has a trivial infrared stable �xed point at g = 0. The log-

arithm in Eq. (91) arises be
ause d = 2 separates these

two di�erent 
ases, with the 
hemi
al potential providing

an infrared 
uto�, so that a �nite value for g and ulti-

mately for T




obtains. In other words, the �nite value for

the 
ondensation temperature in two dimensions hinges

on the presen
e of quantum 
u
tuations.

As an aside, we note that at zero temperature, the rela-

tion between the 
hemi
al potential and parti
le number

density di�ers again a subtle fa
tor of 2 from the relation

�




= 4gn we used to derive the 
riti
al temperature (90).

As in d = 3, this fa
tor is needed for the Hugenholtz{

Pines relation to be satis�ed at both temperatures. It

implies that the analog of Eq. (89) at zero temperature

also di�ers a fa
tor of 2, whi
h is indeed what is found

by Fisher and Hohenberg [26℄.

C. Dis
ussion

Path-integral Monte Carlo simulations by Gr�uter,

Ceperley, and Lalo�e [29℄ of the mi
ros
opi
 model de-

s
ribing a weakly intera
ting Bose gas restri
ted to rela-

tively few (up to 216) parti
les in three dimensions found

an in
rease in the 
ondensation temperature linear in the

s
attering length,

T




� T

0

T

0

= Can

1=3

; (92)

with C = 0:34� 0:06. Sin
e the dynami
 modes do not


ontribute to the shift linear in a, the 
oeÆ
ient C 
an

also be 
al
ulated in the stati
, 
lassi
al theory. Re
ent

Monte-Carlo simulations [30℄ of that stati
 theory gave

larger values: C = 1:32 � 0:02 and 1:29 � 0:05, respe
-

tively. An intuitive understanding of the in
rease in T




was given in Ref. [29℄, where it was pointed out that a

moderate repulsive intera
tion suppresses density 
u
tu-

ations. This results in a more homogeneous system and

fa
ilitates the formation of large ex
hange rings ne
es-

sary for BEC, whi
h then takes pla
e already at a higher

temperature than in a free Bose gas. When the repulsive

intera
tion in
reases further, the ex
hange is obstru
ted

be
ause it be
omes more diÆ
ult for the parti
les to

move. This leads to a lowering of the 
riti
al temperature

as seen, for example, in liquid

4

He. A free gas with

4

He

parameters at vapor pressure would have a 
ondensation

temperature of about 3 K, whereas liquid

4

He be
omes

super
uid at the lower temperature of 2.17 K.

The full thermodynami
 potential of an intera
ting

Bose system 
an 
lose to T




be written in terms of the

ex
hange rings by slightly generalizing Eq. (38) for a free

Bose gas [31℄:




V

/

1

X

w=1

w

��

e

�(���




)w

; (93)

where now the exponent � has the general form

� =

d

D

+ 1; (94)

with D the fra
tal dimension of the worldlines, whi
h is

D = 2 for a free Bose gas. The worldline tension deter-

mined by � � �




vanishes when the 
ondensation tem-

perature is rea
hed from above as

�� �




/ (T � T




)

1=�

; (95)

where � is a se
ond exponent, whi
h for a free Bose gas

takes the value � = d=2 � 1 [see above Eq. (18)℄. The

two exponents � and � determine all the 
riti
al expo-

nents 
hara
terizing the phase transition through s
aling

relations [31℄. BEC in a weakly intera
ting Bose gas is in

the same universality 
lass as the lambda transition of

liquid

4

He, so that the 
riti
al exponents des
ribing BEC

are a

urately known. In going from a free Bose gas to

strongly intera
ting

4

He, the value of the fra
tal dimen-

sionD of the worldlines 
hanges only slightly fromD = 2

to D � 1:96, with most of the intera
tion e�e
ts enter-

ing �, whi
h 
hanges from � = 1=2 to � � 0:76 [31℄. The

value of the fra
tal dimension follows from the relation

[31℄ D = 2� �, with � the Fisher exponent, determining

the anomalous dimension of the order parameter �.

For an ideal Bose gas, the valueD = 2 derives from the

quadrati
 form of the energy spe
trum E(k) = ~

2

k

2

=2m.

A di�erent value is obtained by modifying the free spe
-

trum to E(k) � k

D

, with D 6= 2. It was noti
ed by Gun-

ton and Bu
kingham [12℄ that an ideal gas withD = 3=2,

so that E(k) � k

3=2

, produ
es a value of the spe
i�
-heat


riti
al exponent �


e

= 0 
lose to the experimental value

�


e

� �0:01 for

4

He [32℄. However, this is a somewhat

fortuitous and at the same time de
eptive 
oin
iden
e

as other exponents 
ome out in
orre
tly, and the a
tual

value of the fra
tal dimension is 
lose to 2,D � 1:96 [31℄.

Des
ribing the 
riti
al behaviour of an intera
ting Bose

gas, using quasiparti
les with the spe
trum

E(k) � k

3=2

; (96)

as was done by Baym et al. [33℄, 
an therefore not be

justi�ed.

In addition to numeri
al studies of the stati
, 
las-

si
al theory, the 
oeÆ
ient C has also been estimated

by analyti
al studies of that theory (for a summary, see

Ref. [1℄), su
h as the 1=N expansion [34℄ and variational

perturbation theory [35℄.

Although the dynami
 modes do not, due to 
an
el-

lations, 
ontribute to the shift in the 
ondensation tem-

perature linear in a, they do determine the 
oeÆ
ient of

the next term � a

2

n

2=3

ln(an

1=3

) in that shift [5℄.
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V. CONCLUSIONS

In this paper, the e�e
t of 
u
tuations in the nonzero

frequen
y modes of a weakly intera
ting Bose gas on

the 
ondensation temperature was studied in detail.

The simple algorithm used to perturbatively 
al
ulate

the e�e
t in a high-temperature expansion in 
onjun
-

tion with zeta fun
tion regularization of infrared diver-

gen
es was demonstrated to be reliable by showing that

a host of known results are re
overed. The presen
e

of temperature-indu
ed energy gaps for these dynami


modes were argued to allow for a perturbative approa
h.

It was shown that the shift in the 
ondensation temper-

ature of the form (92) with

C = �

8

3

�(

1

2

)

�

1=3

(

3

2

)

� 2:83; (97)

we had obtained earlier at one loop [3℄ is 
an
eled by

two-loop 
ontributions [4℄.
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ZETA FUNCTION REGULARIZATION OF INFRARED DIVERGENCES IN BOSE{EINSTEIN CONDENSATION

RE�UL�RIZAC�� �NFRAQERVONIH ROZB��NOSTE� U KONDENSAC�Õ

BOZE{A�NXTA�NA ZA DOPOMOGO� �-FUNKC�Õ

A. Xakel~

�nstitut teoretiqnoÝ f�ziki

Arn�m-all

, 14, Berl�n, 14195, N�meqqina

Zrobleno ogl�d obqislenn� metodom teor�Ý zburen~ vplivu fluktua
�� na temperaturu kondensa
�Ý u ne-

nul~ovih qastotnih modah slabkovza
mod��qogo boze-gazu. C� dinam�qn� modi, �kimi nehtu�t~ u b�l~xost�

suqasnih dosl�d�en~, ma�t~ temperaturno-spriqinenu ener�etiqnu w�linu, wo vipravdovu
 perturbativ-

ni� p�dh�d. Opra
~ovano prosti�, ale potu�ni� al�oritm dl� rozrahunku 
~ogo efektu pri visokotempe-

raturnomu rozvinenn� v po
dnann� z re�ul�riza
�
� �nfraqevonih rozb��noste� za dopomogo� �-funk
�Ý.

Ce� al�oritm vi�vl�
t~s� nad��nim, osk�l~ki v�n v�dtvor�
 v�dom� rezul~tati dl� nizki priklad�v. Pri

vrahovanih dvopetlevih vneskah pokazano, wo dinam�qn� modi ne spriqin��t~ zsuvu v temperatur� kon-

densa
�Ý. Ce da
 p�dstavi peregl�nuti nax� poperedn� rezul~tati, otriman� dl� odn�
Ý petl�.
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