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A perturbative calculation of the effect of fluctuations in the nonzero frequency modes of a
weakly interacting Bose gas on the condensation temperature is reviewed. These dynamic modes,
discarded in most of the recent studies, have a temperature-induced energy gap that allows for a
perturbative approach. The simple, yet powerful algorithm consists of a high-temperature expansion
in conjunction with zeta function regularization of infrared divergences. The algorithm is shown
to be reliable by demonstrating that it reproduces known results for a series of examples. With
two-loop contributions properly included, the dynamic modes are seen not to lead to a shift in the

condensation temperature.
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I. INTRODUCTION

The past five years or so have seen numerous stud-
ies aimed to determine the condensation temperature of
a weakly interacting Bose gas (for references and criti-
cal discussions of the various approaches, see Ref. [1]).
These studies, driven by experiments on Bose—Einstein
condensation (BEC), were based on a variety of analytic,
computational, and experimental methods. With only a
few exceptions, however, the theoretical studies took the
same starting point of considering only the static part of
the quantum field describing the bosons. The rationale
is that the dynamic modes have a temperature-induced
energy gap. This makes them irrelevant compared to the
static mode, for which that gap vanishes, when studying
the long-distance critical behaviour of the system close
to the phase transition. With the gapped thermal modes
decoupled, the microscopic quantum theory reduces to
a static, classical theory, assumed to properly describe
this thermal phase transition in equilibrium. Universal
properties, such as the critical exponents can indeed be
computed from this naive theory, as is well known.

Critical temperatures are, however, not universal. Al-
though phase transitions occurring in different systems
may display the same long-distance behavior character-
1zed by the same values of the critical exponents, they in
general take place at different temperatures. For exam-
ple, BEC in a relativistic free Bose gas is in the same uni-
versality class as BEC in its nonrelativistic counterpart,
yet the condensation temperatures differ in both systems
[2]. This difference arises because the critical tempera-
tures of these noninteracting systems are determined en-
tirely by the dynamic modes (see Sec. II B) whose spec-
trum differ for the relativistic and nonrelativistic Bose
gases. The universal properties, on the other hand, are
determined by the static modes, which are similar for
both gases. Whereas universal quantities are largely in-
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dependent of the dynamics and details of the underly-
ing theory, nonuniversal quantities in principle depend
on them. The critical temperatures of lattice models are
even sensitive to such short-distance details as the pre-
cise lattice used.

The proper way to proceed when calculating nonuni-
versal properties is well established. One has to go down
one level and start from the microscopic model describ-
ing the quantum system under consideration and pertur-
batively integrate out the irrelevant degrees of freedom
(the dynamic modes when considering BEC). One thus
obtains an effective theory in terms of the remaining, rel-
evant degree of freedom (the static mode in case of BEC),
with the coefficients being determined by the irrelevant
degrees of freedom that have been integrated out. This
effective field program was carried out for the problem at
hand almost a decade ago [3], with the conclusion that
the dynamic modes lead to a shift in the condensation
temperature of a weakly interacting Bose gas. The pur-
pose of this paper is to revise that finding. Namely [4],
the shift obtained at one loop 1s canceled by a two-loop
contribution not considered in Ref. [3]. There, only the
leading contribution in a high-temperature expansion of
the two-loop Feynman diagrams was considered, whereas
the canceling terms appear in the next order. To show
that 1t is this omission and not, as has recently been
suggested [1], the method used that led to the incorrect
conclusion, we clarify and justify in detail the pertur-
bative approach of Ref. [3]. To appreciate the approach,
we first recall some essentials of finite-temperature field
theory.

A. Finite Temperature

The properties of a quantum system at finite temper-
ature can be studied [6] by going over to imaginary time
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t — —i7t, with 7 restricted to the interval 0 < 7 < Ap,
where § = 1/kgT is the inverse temperature. The time
dimension thus becomes compactified and, consequently,
the energy variable hiky discrete kg — w,, with w, the
so-called Matsubara frequencies,

[ 2mB87In for bosons
huon = { 7371 (2n 4+ 1) for fermions, (1)

where n is a (positive or negative) integer. The difference
between the bosonic and fermionic frequencies arises be-
cause a bosonic field ¢(7,x) satisfies periodic boundary
conditions ¢(hf3,x) = ¢(0,x), whereas a fermionic field
satisfies antiperiodic ones ¥(A5,x) = —¢(0,x). Being
(anti)periodic, the fields can be expanded in a Fourier
series as (with a similar equation for ¢):

d k —zw T+ka¢n( ) (2)

o(m,x) =

where ¢, (k) := ¢(wn, k).

An integral over the energy variable Ak at the abso-
lute zero of temperature becomes a sum over the Ma-
tsubara frequencies at finite temperature:

dk
/—Og k’o

where ¢ is an arbitrary function.

hﬁ Z iwp) (3)

The frequency sums encountered below are typically
evaluated using the identity [6]

1 — 1 1
7Y St O

or because of antisymmetry [7]

z 1
52 wae st 6)

where n(z) is the Bose-Einstein distribution function

n(z) = e@zl_ = é - % +O(3:). (6)

The first term at the right hand of the identity (4) gives
the result for zero temperature, while the second gives
the thermal contribution. Such a splitting is convenient
because the pure quantum 7' = 0 part can often be com-
bined with the bare (zero-loop) theory. In a renormaliz-
able theory, for example, the zero-temperature part leads
to a renormalization of the bare parameters. These con-
tributions are then combined with the bare theory to
dress its parameters.

In this paper, the thermal contributions to the grand
canonical thermodynamic potential €2 of various systems
are expanded in a high-temperature series. According to
standard statistical mechanics, €2 is related to the parti-
tion function 7 via [8]

Q=-p"'InZ (7)

Physically, this potential determines the thermodynamic
pressure p through Q@ = —pV, with V the volume of
the system. High-temperature expansions are an impor-
tant computational tool for studying interacting theories
where usually no exact results can be derived as for free
theories. The standard approach is to use the identity (4)
backwards and to replace the Bose—Einstein distribution
function again with an expression involving a frequency
sum:

n(e) = 5 - ﬁth = ®

where in the first term at the right hand, the n = 0 con-
tribution 1s 1solated. The second term cancels the 7' = 0
contribution contained in the sum. These two terms cor-
respond to the first terms in a Laurent expansion of the
Bose-Einstein distribution function.

The n = 0 contribution, stemming from the ¢q(k)
mode in the Fourier series (2), is of special interest to us.
This zero-frequency mode, specific to bosonic systems, 1s
a thermal mode for which the temperature-induced en-
ergy gap 275~ 'n in the denominator at the left hand of
Eq. (4) vanishes. Tt is related to the static field ® alluded
to above as follows:

@(x):/oﬁﬁ dT(b(T,x):/(;le];d

where use is made of the Fourier series (2). This classi-
cal, zero-frequency mode is the order parameter of BEC
in a weakly interacting Bose gas. It develops a nonzero
value in the ordered state where the U(1) symmetry
¢ — exp(if)¢ (0 being a constant transformation pa-
rameter) is spontaneously broken, with |®|? determining
the average number density of condensed particles. That
is, a nonzero value of the order parameter (a classical
object) implies the presence of a condensate (a quan-
tum phenomenon). Being static, this mode is unaware of
the time dimension and only notes the space dimensions.
Compared to the dynamic modes ¢, (k), with n # 0,
it lives in one dimension less and its contributions are
accordingly different in form from those of the gapped
thermal modes, being typical for a d-dimensional rather
than a (d + 1)-dimensional theory.

The following hierarchy can be identified, with the
pure quantum zero-temperature modes living in d + 1
noncompact spacetime dimensions, the gapped thermal
modes also living in d + 1 spacetime dimensions, but
with a compactified time dimension, and finally the zero-
frequency mode living in d space dimensions, which can
be understood as (d+ 1)-dimensional spacetime with the

e * go(k),  (9)
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compact time dimension shrank to a point by letting
G — 0. Below, the zero-frequency mode contributions
are labeled by a superscript 0 to indicate that they cor-
respond to § = 0, while the zero-temperature (3 = o)
contributions are labeled by a superscript co. The contri-
butions described by the remaining terms in the Laurent
expansion (8), finally, are labeled by a superscript 3. We
will, somewhat loosely, refer to these last contributions
as due to the gapped thermal modes, although they also
encode the 7" = 0 contributions, that are explicitly sub-
tracted by the second term in the Laurent expansion.

Zero-frequency modes can produce nonanalytic behav-
ior, depending on the number of space dimensions. Dolan
and Jackiw [7] in their study of thermal phase transitions
in relativistic quantum systems took a pragmatic ap-
proach toward these nonanalytic terms induced by such
modes and simply discarded them when estimating crit-
ical temperatures. In light of the discussion above, this
approach 1s justified as the critical temperature is to first
order determined by the vanishing of the quadratic term
in the effective theory [9]. Featuring the zero-frequency
mode @, that theory is obtained by integrating out the
gapped thermal modes, which give only analytic contri-
butions. It is only in the next stage, where fluctuations
in ® are studied, that nonanalytic contributions can ap-
pear.

B. Outline

In this paper, regularization techniques routinely ap-
plied to handle ultraviolet divergent integrals are used
to stem infrared divergences instead. Usually, such diver-
gences are regularized by introducing an infrared cutoff.
This type of regularization forms the infrared counter-
part of the momentum cutoff regularization of ultravi-
olet divergences, where integrals are made finite by in-
tegrating only up to a finite momentum. Besides using
momentum cutoff regularization, ultraviolet divergences
can also be rendered finite by means of dimensional reg-
ularization, where the integrals are generalized to arbi-
trary dimension, or analytic regularization, where powers
appearing in the integrands are generalized to take ar-
bitrary values. In the following, these techniques rather
than introducing an infrared cutoff are used to regularize
infrared divergences.

The infrared divergences in this paper arise when
expanding thermodynamic potentials in a high-
temperature series, using the algorithm of Ref. [3]. The
algorithm differs from the standard high-temperature ex-
pansion and focuses on the analytic terms needed for the
study of the critical properties of an interacting system.
A series of examples i1s given to show in detail that this
high-temperature expansion in conjunction with the reg-
ularization techniques used is reliable, by demonstrating
that known results are recovered. The examples include
a nonrelativistic (Secs. IT A and IIB) and a relativistic
(Sec. ITC) free Bose gas, as well as their fermionic coun-
terparts (Secs. IITA-IIIC), and a BCS superconductor
(Sec. TIT D). In Sec. IV A, fluctuations in the nonzero fre-
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quency modes of a weakly interacting Bose gas are con-
sidered by integrating out these gapped thermal modes
in a loop expansion. In particular their effect on the
condensation temperature is studied using the algorithm
advocated here. As mentioned at the beginning of the In-
troduction, although irrelevant for the critical behaviour
itself, these high-energy modes can in principle affect the
value of the condensation temperature, which — unlike
the critical exponents — is nonuniversal and depends on
the details of the underlying quantum theory. Owing to
the temperature-induced energy gaps, the contributions
due to the nonzero frequency modes can be calculated
in perturbation theory. It is shown that the shift in the
condensation temperature found in Ref. [3] at one loop is
canceled by two-loop contributions [4], not only in d = 3
but in arbitrary 2 < d < 4 (Sec. IV B). The advantage
of considering arbitrary dimensions is that BEC in two
dimensions can be studied by taking the limit d — 2. A
discussion of some recent studies on the subject is given
in Sec. IV C followed by conclusions in the last section

(Sec. V).

II. BOSONIC INTEGRALS
A. Bose—Einstein Condensation

As first bosonic system, a free Bose gas above the con-
densation temperature is considered. Being noninteract-
ing, the field ¢, (k) describing the bosons can be inte-
grated out exactly, leading to the thermodynamic po-

tential € [8]

2

QS [ d% , 12k
Sy /W1n<—zhwn+%—ﬂ), (10)

n=—oQ

apart from irrelevant constant terms independent of 3
and p. Here, m and A are the mass and the de Broglie
thermal wavelength A = \/27h?3/m of the particles; and
i < 01s the chemical potential. The argument of the log-
arithm is recognized as the kernel of the time-dependent
Schrodinger equation in the imaginary-time formalism,
describing a particle of mass m at finite temperature in
a constant background potential —p. As indicated by
the single set of frequency sum and momentum integrals,
Eq. (10) is a one-loop result that, because the system is
noninteracting, is exact. The momentum integral 1s best
carried out by using the Schwinger propertime represen-
tation of the logarithm and Poisson’s summation formula

oQ

Dot = N §(a—w) (11)

n=—oQ w=—00

to replace the summation over n by one over w. The inte-
grals over the Schwinger propertime parameter and the
momentum variable are then easily carried out to yield
the familiar fugacity series [8]
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Q 1 Oo -7 _—aw
v = _W Z w” e , (12)
w=1

where 7 = d/2+ 1 and o = —fp > 0. In Eq. (12),
the singular zero-temperature contribution correspond-
ing to w = 0 is omitted. A more careful derivation of the
thermodynamic potential (10) reveals the presence of an
extra convergence factor exp(iwnn) typical for nonrel-
ativistic theories, where 7 is a small positive parameter
that is taken to zero only after the frequency sum is eval-
uated [6]. This convergence factor suppresses the 7' =0
contribution (see below). Physically, the series (12) de-
notes the sum over closed worldlines that wind w times
around the imaginary time axis [10]. The first factor in
the summand measures the configurational entropy of
the loops, while the second, with a being proportional
to the worldline tension, 1s a Boltzmann factor, weighing
loops according to their length measured by w. Loops
with w > 1 correspond to exchange rings of w particles
which are cyclically permuted after an imaginary time
A3, as they appear in Feynman’s theory of the lambda
transition in superfluid *He [11].

The expression (10) can alternatively be evaluated by
keeping the momentum integral to the end and instead
of the Poisson formula using the identity (4). For nonrel-
ativistic free theories, the summand there includes the
convergence factor exp(iw,n) that suppresses the T'= 0
part [6]. The thermodynamic potential then takes the
well-known form [8]

Q 1
V = —WFd/2+1(O[), (13)
where
2 [e’e} q27’—1
F; = — dg—— 14
@ =5 | dm— 09
with ¢ the dimensionless loop variable defined by ¢% =
Bh2k2 /2m.

On comparing the two alternative evaluations of the
thermodynamic potential it follows that

27—1

-7 —Oéw: d 1
Soret e | gt 1)

where in the first representation the momentum integral
has been carried out, while in the second it still has to
be performed. The equivalence of both results is easily
established by expanding the integrand in a geometric se-
ries and using the integral representation of the Gamma
function.

B. High-Temperature Expansion

Next, the function F:(a) is expanded in a high-
temperature series. As mentioned in the Introduction,

such an expansion 1s an important computational tool for
interacting theories, where exact results are absent. The
standard approach is to use the identity (4) backwards,
i.e., the Laurent expansion (8) of the Bose-Einstein
distribution function. The zero-frequency mode, corre-
sponding to the first term in the Laurent expansion, gives
the contribution

0 2

E(0) = 575 /OOO deL . — v =), (16)

¢ + o

which for d = 3 leads to a nonanalytic contribution of
the form ~ /2.

As an aside, this contribution due to the zero-
frequency mode can also be obtained from the worldline
loop representation by replacing the sum over w in Fr(«)
by an integral:

Zw_Te_o‘w %/ dww e Y
w=1 0
=a™ (1 = 7) = F(a). (17)

The zero-frequency mode ¢q(k) is important for our
purposes as 1t determines the critical properties of the
free Bose gas. To illustrate this, we differentiate the zero-
frequency mode contribution twice with respect to the
chemical potential g to obtain the known result that
the compressibility & of an ideal Bose gas diverges as
k ~ (—p)"~% when the condensation temperature T
is approached from above, where p vanishes as pu ~
—(T = Tp)*(4=2) For d = 3, this implies that

ko< (=)~ (T =), (18)

and gives as value for the specific-heat critical exponent
ace = —1 [12]. Describing a free theory, this one-loop
result is exact.

Despite being noninteracting, a free Bose gas is not in
the universality class of the Gaussian model, but in that
of the spherical model [12]. The nontrival exponents de-
rive from the constraint that the total number of parti-
cles be fixed. Without this constraint, the chemical po-
tential would vanish instead as p ~ Ty —T irrespective of
the dimension. This would result in Gaussian exponents
describing BEC in a free Bose gas at constant pressure
[12]. In four space dimensions, corresponding to the up-
per critical dimension, and above (i.e., d > 4), the expo-
nents of the spherical and Gaussian model coincide.

As mentioned before, the zero-temperature contribu-
tion vanishes because of the presence of a convergence
factor in nonrelativistic free theories. More in line with
the present approach, it vanishes even without including
this factor,

o) = 71 | Tat=0, ()
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because integrals over polynomials give zero within the
dimensional regularization scheme [13].

The rest of the terms in the high-temperature expan-
sion, corresponding to the last terms in the Laurent ex-
pansion (8), are analytic. These contributions are ob-
tained in the standard approach by expanding the sum-
mand in a high-temperature Taylor series before carrying
out the momentum integral and the frequency sum, with
each term giving a Riemann zeta function

(= (20)

Specifically, one finds [14]
- ¢r=10) l
Fl(a) = (—a), (21)
=0 F(l + 1)

with o the dimensionless expansion parameter. The con-
densation temperature is determined by these contribu-
tions due to the gapped thermal modes. At that tem-
perature, the chemical potential vanishes, so that the
equation for the particle number density n,

1090

with F,(a) in Eq. (13) replaced with Ff(a), gives the
condensation temperature

—— <<<5/2>)Z/d' (23)

In other words, although the critical exponents of BEC
in a free Bose gas are determined entirely by the static,
zero-frequency mode, the condensation temperature, be-
ing nonuniversal, is determined entirely by the dynamic,
gapped thermal modes.

It is natural to ask whether the series (21) can also be
extracted directly from the integral representation given
in Eq. (14), where the frequency sum has already been
carried out, without returning to a representation involv-
ing such a sum. To show that the answer is affirmative,
we expand the integrand there in a high-temperature se-
ries. Each term thus generated contains an integral of

the form
00 d 2t
[ 25— 24)
o g ert —1

and derivatives thereof with respect to the parameter p
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(which is set to unity at the end). For t < 1, these loop
integrals diverge in the infrared. We handle the diver-
gences using zeta function regularization, by analytically
continuing the following equation

) / T gy, (25)

g oer?® —1

with ¢ initially chosen large enough so that the integral
converges, to arbitrary values of ¢{. With this regulariza-
tion scheme, the high-temperature expansion (21) easily
follows,

2 o° QZT_l Taylor > C(T - l) l
s dg—3 S\TTY
r(r)/o Terta_1 ;r(z“)( @)

= Fﬁ(a), (26)

T

showing that the contributions due to the gapped ther-
mal modes can indeed (when properly regularized) be
extracted directly from the function F:(a) in Eq. (14)
without the need to return to the representation involv-
ing a frequency sum. This result is quite general and will
in the next subsection be illustrated for a relativistic sys-
tem.

C. Relativistic Free Bose Gas

To show that the conclusions of the previous section by
no means hinge on the form of the nonrelativistic spec-
trum, leading to the specific structure of the integrand in
Eq. (14), the same analysis for a relativistic free Bose gas
is given in this section. The system is considered at zero
chemical potential ¢z = 0. It has no phase transition then,
but the algebra is simpler than with a chemical potential
included [15], without losing any of the generalities we
wish to point out.

The analog of expression (10) for the nonrelativistic
Bose gas reads [16]

Q_ 1 < 'k 2.2 | 32 272 2 4
V_%Z (QF)dln(hwn—l—hck +m?c*), (27)

— 00

with ¢ the speed of light. The argument of the logarithm
is now recognized as the kernel of the Klein—Gordon
equation in the imaginary-time formalism, describing a
relativistic free scalar particle of mass m at finite tem-
perature. Being a noninteracting system, the one-loop
result (27) is exact. With the help of the identity (4),
the thermodynamic potential becomes
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Q d%k

%

i

(he)~45~(+Y
(dm)d/2

1
d/2

),

where the new integration variable is ¢ = Shck and the
thermal part of the thermodynamic potential is deter-
mined by the function

27—1
q

1
r2r) J, [P+ 2 N _

H:(y) =

(29)

with 7 = d/2 4+ 1. This function [16] is the relativistic
analog of the function F:(a) in Eq. (14).

The high-temperature expansion of the function H,(y)
in d = 3 was computed by Dolan and Jackiw [7]. To
deal with logarithmic divergences that arise because four
spacetime dimensions corresponds to the upper critical
dimension, dimensional regularization was used by con-
sidering d = 3 — €, with € taken to zero at the end. For
convenience, 7 = 5/2 — ¢/2 was only used in the inte-
grand, whereas € was set to zero from the start in the
prefactor in Eq. (29). These authors used Eq. (5) back-
wards, i.e., Eq. (8), expanded the summand in a Taylor
series, integrated term by term, and finally carried out
the remaining frequency sum in each term, with the re-
sult [7]:

4 2

m T
Hg,/z(y)—%—%y +48
1 31 4 6
+ﬁ[ln(4ﬂ)+7 4]3/ +0(y"),  (30)

where ~ is Euler’s constant and y = #mc? the dimension-
less expansion parameter. The nonanalytic cubic contri-
bution is due to the zero-frequency mode represented
by the first term in the Laurent expansion of the Bose—

R ) (S S |

I'(2
P OmeT - g (28)
I
Einstein distribution function in Eq. (29):
1 e q* T
0 = dg—— = —y° 31

where analytic regularization is used to handle the ul-
traviolet divergence. The second term in the Laurent ex-
pansion of the Bose—Einstein distribution function gives

(o]
5/2

(v) = - / m

1 1 Yy T 4
=—|—=+In(= — 2
128[e+n(2)+12]y’ (82)
while the gapped thermal modes yield
4 2
oy T T
s129) = 350~ g6
1 [1 4] ;
tiog |7~ m@m) +y = 5|y O, (33)
so that Hg/o(y) = Hg/z(y) - HE"X/’Z( y) + Hs/z( y). An ex-

tra minus sign is included in the left hand of Eq. (32),
so that Hs/z is the T" = 0 contribution that has to be

subtracted from H?(a) to arrive at the purely thermal
contributions Hr(«).

We next rederive this result using the algorithm given
above and extract it directly from the integral represen-
tation (29), by expanding the integrand in a Taylor se-
ries. Applying zeta function regularization to handle the
infrared divergences as before [see Eq. (25)], we obtain

4—6 4 2
Taylor T T 1 1 4 4
A — 9 _ =
/ \/q +y e\/q e 360 96Y "o ¢ T O+ 3
((=2) 6, ¢(=1) s ¢(=6) 1o 12
o 34
e VT Sse Y T tmasee? TOW) (34)
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where this series 1s carried out to higher order. To show
that this expression coincides with Hg/z(y), we differen-
tiate the identity [17]

((s) = 2°7* " tsin (37s) D(1 — s)¢(1 — s), (35)
to obtain for s a (positive or negative) even integer:

(s) = 25118 cos (%7‘(’8) (1 —s)¢(1 = s), (36)

or specifically

C(0) =~ n@n), (-2) = 7 5¢6)
()= 5CB) (-8 = —oC(T). (3)

It now immediately follows that Eq. (34) gives the con-
tributions due to the gapped thermal modes, so that the
results obtained in the standard manner and the one used
here indeed coincide.

Given that also the zero-frequency mode contribution
as well as the 7" = 0 part can be extracted from the in-
tegral representation (29), by identifying them with the
first two terms in the Laurent expansion of the Bose—
Einstein distribution function, it follows that no back-
tracking to a representation involving a frequency sum
is required, provided zeta function regularization is ap-
plied. Moreover, the simple, yet powerful algorithm dis-
cussed here is easily implemented using an algebraic ma-
nipulation program to generate large orders in a high-
temperature expansion for a wide class of problems, in-
cluding fermionic systems (with the obvious changes), as
will now be demonstrated.

III. FERMIONIC INTEGRALS
A. Free Fermi Gas

In this subsection, a nonrelativistic free, spinless Fermi
gas 1s considered. The thermodynamic potential is given
by the one-loop expression (10) for a Bose gas with an ex-
tra minus sign included to account for the antisymmetry
of the fermionic field. Using Poisson’s summation for-
mula (11), the thermodynamic potential is readily writ-
ten as a fugacity series [8]

Q 1 - w -7 _—Qw
V:_W Z(—l) e , (38)
w=1

where 7 = d/2+ 1 and a« = —ppu > 0 again. As for a
Bose gas, this series can be understood as representing
a sum over closed worldlines winding around the imagi-
nary time axis w times, with each winding accompanied
by a factor (—1) typical for fermions.
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Alternatively, the thermodynamic potential can be
evaluated using the identity [6]

I o 1 1
Bn;wm—i—f(z)a (39)
where w, = 7371(2n + 1) are the fermionic Matsub-

ara frequencies and f(z) is the Fermi-Dirac distribution
function

1 1
() = g = 5+ 0(82). (40)
The first term at the right hand of the identity (39) gives
the result for zero temperature, while the second gives
the thermal contribution. Nonrelativistic free theories in-
clude again a convergence factor which suppresses the
T = 0 part. The thermodynamic potential then takes
the same form (13) as for a Bose gas with the function
F-(a) replaced with the function

G 2 [Tt a1
T(Of)—m/o QW~ (41)

The equivalence of the two representations, implying

Z(_l)w-l-lw—fe—ocw — 2 /00 dqgm—;’ (42)
— r(r) Jq |

is easily established.

B. High-Temperature Expansion

As for a bosonic system, the standard high-
temperature series expansion of the function G, («a) is
to use the identity (39) backwards and to replace the
Fermi-Dirac distribution function again with an expres-
sion involving a frequency sum:

6 =55 7o s (43)

RPwl + 2%

where the first term at the right hand subtracts the
T = 0 part encoded in the sum. Unlike bosonic systems,
fermionic systems do not have a zero-frequency mode as
none of the Matsubara frequencies (1) vanishes.

Following the algorithm advocated here, we instead
derive this expansion directly from the integral repre-
sentation of the function G, («) given in Eq. (41) with-
out first returning to an expression involving a frequency
sum. Expanding the integrand in Eq. (41) in a Taylor se-
ries, we encounter loop integrals of the form

[e’e} 2t
/ dg ¢ (44)
0

g er?® £ 1
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which for ¢ < 0 are infrared divergent. These diver-
gences are handled again using zeta function regulariza-
tion, where the following equation

2/“@@7”:
0o g erT 41

with ¢ initially chosen large enough so that the integral
converges, 1s analytically continued to arbitrary values
of t. The high-temperature expansion now follows as:

2 [e’e} 27—1
2 / dg—L
r(r) Jq et +1

TL]OI‘ i<1_

=0

L) (L=2")¢p™,  (45)

This result can be checked by substituting Eq. (42)
and differentiating the resulting equation arbitrary many
times with respect to the dimensionless expansion pa-

(e)~45~+Y
(4m)dl?

where the thermal part is determined by the function
q27’—1

1
F(QT) 0 1/(]2_|_y2 61/q2+y2+1~

For 7 = 5/2, it has the high-temperature expansion [7]

I(y) = (49)

4 2
T ™

2880 ~ 1927
i ()

where because of the absence of a zero-frequency mode,
all terms are analytic in the dimensionless expansion pa-

15/2(3/) =

+v - Z] vt +0@°), (50)

1 QZT_l Taylor 771'4 7T2
T27) Jo /@ + 2 NP+ 4| 2880 1927
—ﬁc (—

1 ~ d—1_/3 2 T
[rw/z)/o d0g Ve (Bmet) = ey

) 6

rameter o and setting that parameter to zero at the end,
leading to

271 (), (47)

> o(=nettet = (1 -

which 1s an identity.

C. Relativistic Free Fermi Gas

As last noninteracting example, a relativistic free
Fermi gas at zero chemical potential is considered, con-
sisting of particles (but no antiparticles, which would
lead to an extra degeneracy factor) with half-integer spin
o. The thermodynamic potential is given by the expres-
sion (27) for the Bose gas with an extra spin multiplica-
tion factor and a minus sign, i.e., —(2¢ + 1), included.
With w, now denoting fermionic Matsubara frequencies,
the one-loop expression is readily cast in the form

rameter y = fmc?.
Apart from a minus sign, the 7" = 0 contribution is
the same as that for a Bose gas given in Eq. (32):

1575 (y)

/ \/q +y°
1 {1 J T 4
T 18 [__ln(i)_ﬁ]y’

where again an extra minus sign is included in the left
hand of this definition, so that Ig/z gives the T'= 0 con-
tribution (and not its negative).

Using the algorithm discussed here, we expand the in-
tegrand of Eq. (49) in a Taylor series to obtain as con-
tribution due to the gapped thermal modes:

(51)

1T 1 41,
+ﬁ —E—C()_’Y_QIH(Q)‘Fg Yy
31, g 12T 1o 12
ga576s Y = e (FOy T O, (52)

24576
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which, with the help of the identities (37) and together
with I?/’z(y), reproduces the result (50) (expanded to
higher order).

These last two examples illustrate that the high-
temperature expansion we use in conjunction with zeta
function regularization of infrared divergences is also

valid for fermionic systems.

D. High-Temperature Expansion of BCS Theory

In Ref. [3], the BCS theory was considered at finite
temperature using the approach advocated here. This ex-
ample 1s included to point out a shift in approach when
going from a noninteracting to an interacting system.
The main difference with a noninteracting system is of
course that one-loop results no longer are exact, mean-
ing that not all the degrees of freedom can be integrated
out in an exact manner to obtain the thermodynamic
potential as a known function of the thermodynamic pa-
rameters o and 3. Instead, irrelevant degrees of freedom
are integrated out (usually only perturbatively) to arrive
at an effective theory of the Landau form expressed in
terms of an order parameter describing the phase tran-
sition. The order parameter, whose value is zero in the
symmetric, disordered state and nonzero in the ordered
state with spontaneously broken symmetry, determines
the critical properties of the system close to the phase
transition, where 1t disappears.

After linearizing the quartic interaction of the BCS
theory by a suitable Hubbard—Stratonovich transforma-
tion, the fermionic degrees of freedom can be integrated
out exactly in a one-loop calculation to yield for a uni-
form BCS superconductor:

+ 7 m (14 PO (53)

Here, the frequency sum has been carried out and

E(k) = VE(k) + A% (54)

is the BCS spectrum with the order parameter A provid-
ing an energy gap at the Fermi surface. This spectrum
replaces the excitation spectrum &(k) = h%k?/2m — p of
the elementary fermionic excitations of mass m in the
normal state, where the energy is measured relative to
the chemical potential p, which, contrary to a dilute free
Fermi gas, 1s positive in the weak-coupling BCS limit and
given by the Fermi energy p = h*k/2m, with hkp the
Fermi momentum. The prefactor 2 in Eq. (53) arises be-
cause the fermions come in two species, with spin up and
down. The true grand canonical potential 2, depending
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only on the thermodynamic parameters o and 3, is ob-
tained from Q(A) by integrating out A. This can only
be done perturbatively, with the simplest approximation
corresponding to the saddle point of the integral, where
the order parameter is considered to be a nonfluctuating

field.

To the one-loop expression (53), the tree contribution
is to be added

2

o(8) __|AP, )

4 98B

where gp < 0 is the (bare) coupling constant of the

local BCS interaction term, representing the effective

attraction between fermions. The pure quantum zero-

temperature term in Eq. (53) gives, among other contri-

butions, a quadratic term which can be combined with

the tree contributions to yield the renormalized coupling

constant g,

1 1 1 d3k 1
= w1 GrEmE (56)

The integral diverges in the ultraviolet, to regularize it
we introduce a momentum cutoff AA to obtain

1_1+ m
g gp 2m2h2

A+ O(AY), (57)
where the irrelevant finite part of the integral is omit-
ted. The weak-coupling BCS limit corresponds to taking
g — 0 from below.

With the loop integration approximated by

/ (;PT’;B S 0(0) /_O; d, (58)

where v(0) = mkp/27?h? is the density of states per
spin degree of freedom at the Fermi level, the thermal
part of the thermodynamic potential (53) becomes of
a form encountered in a relativistic free Fermi gas [7],
with the dimensionless integration variable ¢ = 8¢. The
approximation consists of extending the range of the ¢
integration from —p < € < o0 to —oo < £ < oo. The
problem thus reduces to one in a single space dimension
(d = 1), corresponding to the value 7 = 3/2. To handle
logarithmic divergences that arise, we again dimensional
regularize the integral and consider the problem in (1—¢)
dimensions instead. We proceed in the same way as be-
fore and rather than returning to an expression involv-
ing a frequency sum by using Eq. (39) backwards, we
expand the integrand in Eq. (29) in a high-temperature
series and apply zeta function regularization to handle
infrared divergences. This gives as contributions due to
the gapped thermal modes: [3]
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3 2
/ &k In (1 + e—ﬁ\/§2(k)+|A|2) =6"1u(0) {% +

1
(27)3 2

Because the order parameter appears only in the di-
mensionless expansion parameter y = 3|A|, the high-
temperature expansion is tantamount to a Landau ex-
pansion in |A|. Contact with the standard approach is
established through the identities (37) and the substitu-
tion

% — In (fhwp) , (60)

where the Debye energy Awp, being a measure of the

Q0(A) +2:(A) i

%

featuring the renormalized coupling constant g. Being
a static field, the order parameter is the zero-frequency
mode of the problem at hand. The critical temperature
T: 1s determined by the condition that the coefficient of
the quadratic term changes sign, yielding the standard
result [24]

2
kpT. = —ehwp el/”(o)g, (62)
T

with ¢ < 0. Using this expression for the critical temper-
ature, we can put Eq. (61) in the canonical form [18]

AR - [T (5) v

- Tecelaar . (63

valid close to the critical temperature.

This illustrates first of all that our method of comput-
ing the contributions due to the gapped thermal modes in
a high-temperature series expansion in conjunction with
zeta function regularization of infrared divergences is also
valid for an interacting system. In addition, it highlights
the general approach to critical phenomena, which is to
integrate out the irrelevant degrees of freedom (which in-
clude the gapped thermal and thus all fermionic modes)
to determine the coefficients of the effective theory ex-
pressed in terms of the order parameter. Although irrele-
vant for the critical behaviour itself, the gapped thermal
modes can influence the value of the critical tempera-

= —320(0) {% + [m (Bhwp) + 7 — In(r/2) + ——

(2200 47+ 2m@)] v+ Lot 0w 69)

inverse lattice spacing, is the physical ultraviolet cutoff
and the temperature 871 is the relevant infrared scale.
This correspondence between the pole 1/¢ of dimensional
regularization and the logarithm In(A) appearing in mo-
mentum cutoff regularization is commonly used in the
context of quantum field theory, and can be verified ex-
plicitly here by working with the Debye energy as a cutoff
from the beginning instead of using dimensional regular-
ization. Adding the tree and the one-loop contributions,
we then find

1 , Tm? 4
] AR - Tewisarf, e

ture through their contributions to the coefficient of the
quadratic term. The critical temperature (62), which is
a one-loop result, is exclusively determined by the high-
energy dynamic modes as none of the Matsubara fre-
quencies of the fermionic fields that have been integrated
out vanishes. Unlike critical exponents, the critical tem-
perature is not universal and can depend on the details
of these high-energy gapped modes.

IV. CONDENSATION TEMPERATURE OF
WEAKLY INTERACTING BOSE GAS

A. Effective Theory

We next consider the condensation temperature of a
uniform, weakly interacting Bose gas. Specifically, we are
interested in how fluctuations in the irrelevant degrees of
freedom influence this temperature. To determine this,
we need, according to the effective field program (see the
discussion in the preceding section), to calculate the co-
efficients of the effective theory expressed in terms of the
order parameter by integrating out the irrelevant degrees
of freedom. For BEC the irrelevant degrees of freedom
are the gapped thermal modes, whose contributions are
conveniently computed using the algorithm advocated
here. The order parameter & of BEC in a weakly in-
teracting Bose gas, introduced in Eq. (9), denoting the
expectation value of the quantum field ¢ describing the
bosons, is the zero-frequency mode. A nonzero ® implies
the presence of a condensate, with |®|? giving the average
number density nysc of condensed particles. This effec-
tive field program is the field-theoretic generalization of
the effective classical potential introduced by Feynman
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and Kleinert [19] in their path-integral study of thermal
fluctuations via a final integral over the zero-frequency
component of the path variable. (See the textbook [20]
for extensive applications.) Here we are left with a final
functional integral over the purely space-dependent field
d(x).

Whereas the condensation temperature of a free Bose
gas is determined from within the normal, i.e., the high-
temperature state, we determine 7. for the weakly inter-
acting gas instead from within the low-temperature state
with a nonzero condensate |®|.

The one-loop contribution to the thermodynamic po-
tential of a weakly interacting uniform Bose gas i1s given

by [3]

0 [ 2 [

+ 4 'In (1 - e—@EWH , (64)

where F(k) is the spectrum of the elementary excitation
in the superfluid state expressed in terms of the order
parameter @

E(k) = \/(h2k2/2m — B + 4gB|®[2)° — 4¢3 |4, (65)

where pp and gp are the bare parameters of the the-
ory, with gg > 0 the coupling constant of the repul-
sive two-particle contact interaction. The true thermo-
dynamic potential Q(«, ) is obtained by integrating out
the remaining degree of freedom, which in a first approx-
imation is done by evaluating the integral in the saddle
point, corresponding to extremizing Q(®P).

Written in the form (65), the spectrum is the bosonic
analog of the fermionic BCS spectrum (54) given in terms
of the superconducting order parameter A. The spec-
trum (65) reduces to the T = 0 Bogoliubov spectrum
[21] when the lowest-order value |®|*(= ny.c) = up/298
for @ is inserted. This value is obtained from minimizing
the tree contribution

Qy (D)
V

= —ug|®|* + g8|®|". (66)

It is important to note that the chemical potential ug =
2gBNvac 18 positive here (so that the coefficient of the
quadratic term is negative, leading to a potential of a
form resembling a Mexican hat), setting a weakly inter-
acting Bose gas apart from a free Bose gas which has a
nonpositive chemical potential.

The pure quantum zero-temperature term in Eq. (64)
gives, among other contributions, two terms of the form
contained in the bare theory (66). They can be combined
to yield the renormalized parameters [22]:
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1

p=pm = sggsh’ (67)
m

g=9B— Wﬂ%/\, (68)

with AA the momentum cutoff. In addition, it gives a
nonanalytic contribution o m3/?(g|®|?)%/? induced by
the gapless Goldstone mode. This one-loop contribution,
which is irrelevant for our present purposes and will sub-
sequently be ignored, is typical for a gapless contribu-
tion in five spacetime dimensions. The effective number
of spacetime dimensions is five here because in nonrela-
tivistic quantum theories, where time derivatives appear
in combination with two space derivatives, the time di-
mension counts double compared to the (three) space
dimensions.

Since Eq. (64) is already a one-loop result, it is consis-
tent to this order to replace the bare parameters ug, g
there with the (one-loop) renormalized ones. The renor-
malized coupling constant g is related to the s-wave scat-
tering length a via [23,24]

2rhia
9= : (69)
m

The zero-temperature relation between the renormalized,
physical chemical potential and the average number den-
Sity nyac = |®|? of condensed particles then reads [6]

A7 h?
w(T =0) = 2gnyae = T an, (70)

m

where in the last step we ignored the so-called depletion
of the condensate [21] and replaced nya. with the total
particle number density, which is justified because the
term is already of order g¢.

Next, the thermal part in Eq. (64) is expanded in a
high-temperature series using the algorithm discussed
above. Writing

/%ln (1 — e_ﬁE(k))

2 1 [ _
= g [, et (1= )

with ¢ the same loop variable as used for a free Bose gas,

defined by ¢ = h%k?/2m, and

BE@) = /(@ +a+49) =42, (72)

where y = Bg|®|?, we arrive at [3]
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/ dgq®In (1 — e‘ﬁE(q)) Tavior
0

2

~ 2 _ e _r _
/0 dqlq ln(l e )+eq2_1(a—|—4y)

= 503 [

rj ot

Contrary to the previous cases, we now have two dimen-
sionless expansion parameters « and y, both being pro-
portional to 5.

At two loop, we consider the class of bubble diagrams
(see Fig. 4 of Ref. [3]) giving the following contributions
to the thermodynamic potential due to the gapped ther-
mal modes:

22(9P)

= —%(3112 312+ 211 1), (74)
where 7 is the one-loop integral
I :/ d3k 1 h2k%/2m — pu+ 2g|®|? (75)
! (27)3 E(k) ePER) — 1 ’

and a similar equation for /5 with 2¢ replaced with 6g
in the numerator. Expanding the integrals in a high-
temperature expansion, we obtain as two-loop contribu-
tions

(76)

the leading term of which was considered in Ref. [3], but
not the rest.

Adding the contributions together, we arrive at

Q0(@) + D (D) + Qs(P)

= co — c|® + ca @, (77)
v
with
00 = = {C(3) 229
A3 2 2
= ((R)a[1-4¢(3)5] + 5¢(3)a’} (78)
a ®-independent term, with expansion parameter
§=gB/\3 =a/\. (79)

For 6 — 0, Eq. (78) is analogous to the first contribu-
tions due to the gapped thermal modes of a free Bose
gas given by Eq. (13) with Eq. (21), albeit with o > 0

)= ()0 +4y) + 5 ( +49)" + (D + 0 (5)]

20" 11
EEERRR s TG
(73)
I
now. Furthermore,
~fes = [a+40(2)8] [1 - 4¢(3)d] (80a)
ca =g [1 - 12((%)6] . (80b)

It is important to note that one cannot naively set ®
to zero in Eq. (77) [with Q2(®) omitted], as was done
by Baym et al. [1] to argue that the zeta function reg-
ularization of infrared divergences used to obtain that
result 1s flawed, and hope to retrieve the correct critical
behavior of the compressibility, say, of a noninteracting
Bose gas. As explained in Sec. (IIB), universal proper-
ties are determined exclusively by the fluctuations in the
zero-frequency mode. These fluctuations are, however,
not considered in this section. We are interested here in
the condensation temperature — a nonuniversal quan-
tity. As argued in the Introduction, nonuniversal quan-
tities in principle also depend on the gapped thermal
modes. It is the effect of fluctuations in these dynamic
modes that is summarized by Eq. (77). More specifically,
the coefficients given in Eqs. (80) express the dressing of
the parameters p and g by these thermal fluctuations.
The one-loop corrections, first calculated in Ref. [3], have
recently been rederived in Ref. [5], apparently in igno-
rance of the existing literature on the subject.

The condensation temperature is determined by the
vanishing of the coefficient ¢s, yielding

ae = —4¢(3)9, (81)

which gives T, in terms of p. Experimentally, it is more
realistic to consider the system at fixed particle num-
ber density and therefore take n rather than p as inde-
pendent variable. The particle number density is easily
obtained from Eq. (77) at T'= T, where ® vanishes:

109 1 3 1
S 7 M T L
— ((3)ac} (82)

Together with Eq. (81) this reduces to the free Bose gas
expression:
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n=((3)/A (83)

so that to this order the dynamic modes do not lead to
a shift in the condensation temperature. This conclusion
differs from our previous one in Ref. [3], where the two-
loop contributions were not properly included [4]. The
additional two-loop contributions cancel the shift due to
the gapped thermal modes found in Ref. [3] at one loop.

With the expression (83) for n, the chemical potential
at 7. can be written as

8rhia

fe = 4gn = n, (84)

which is nothing but the Hugenholtz—Pines relation [25]
between the chemical potential and the self-energy at the
condensation temperature where ® disappears. It is iden-
tical to the zero-temperature relation (70) apart from a
subtle factor of 2 that can be understood by examining
the Hugenholtz—Pines relation, which is an exact result,
at both temperatures. It follows from Eq. (84) that the
chemical potential remains positive at the condensation
temperature of a weakly interacting Bose gas. This is in
contrast to a free Bose gas (obtained by letting a — 0),
where the chemical potential vanishes when the conden-
sation temperature is approached from above. Whereas
the chemical potential in a free Bose gas remains zero all
the way down to zero temperature, in a weakly interact-
ing Bose gas it decreases from 4gn at T, to 2gn at zero
temperature.

To justify the high-temperature expansion used, note
that to lowest nontrivial order, the coefficient ¢ is given
by —fBcs = a + 4{’(%)(5 The condition e; = 0 then gives
the condensation temperature in terms of u to lowest
order as [3]

)2/3 , (35)

which is a one-loop result. Since this temperature is large
for g small, the high-temperature expansion is consistent
with the weak-coupling assumption of perturbation the-
ory. Using the Hugenholtz—Pines relation (which is also
satisfied at this lowest nontrivial order) to replace p with
n, Eq. (85) takes the standard form (23) for a noninter-
acting Bose gas, independent of g. As for a free Bose
gas, this result is determined entirely by the nonzero fre-
quency modes.

Because o, x § x g, the coefficients (80a) and (80b) of
the effective theory are close to 1. calculated up to the
order g?. In the first coefficient (78), the term oc §? is
missing. This term, given by the leading contribution in
the high-temperature expansion of the third-order bub-
ble diagram, is independent of the chemical potential and
therefore irrelevant for our purposes.
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B. BEC in two dimensions

For arbitrary dimension 2 < d < 4, Egs. (81) and (83)
generalize to:

o = —4¢(d/2)d, n=((d/2)/AL, (86)

where now d = gf3/A?. The limiting case, d = 2, is spe-
cial because ((d/2) diverges when d — 2. To investigate
this limit, we dimensional regularize the last equation by
considering the problem in d = 2 4 €, where

(87)

n=-——.
2
A e

Asin Eq. (60), the pole in dimensional regularization can
be connected with the logarithm appearing in the regu-
larization with a momentum cutoff, provided the ultra-
violet momentum cutoff and the relevant infrared scale
are identified. Here, they are given by the inverse range
of the potential 1/a and the square root of the chemical
potential, respectively [26], i.e.,

1 o h 1 1 8mna’
N Y — " nf 22"
13 a/mp 2 In(1/87na?)

%ln[ln(l/Sﬂ'naz)] (88)

X

for In[ln(1/87na?)] > 1. In deriving this use is made of
the two-dimensional relation between the chemical po-
tential and the particle number density at the condensa-
tion temperature,

8Thn

mlIn(1/8mna?)’ (89)

He =

With this correspondence, Eq. (87) leads to the well-
known expression for the critical temperature [27,26]

_ 2rh*n
~ mln[ln(1/87na?)]’

kpT. (90)

Together with the relation p. = 4gn, Eq. (89) gives
for the coupling constant

2rh?

mIn(h?/mua?)’ (o1)

g:

To understand this result, recall that the time dimen-
sion counts double compared to the space dimensions in
a nonrelativistic quantum theory. The quantum critical
behaviour of the theory was first investigated by Uzunov
[28], who showed that d = 2 (implying a total of four ef-
fective spacetime dimensions) corresponds to the upper
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critical dimension, below which a nontrivial infrared sta-
ble fixed point exists, with g > 0. For d > 2, the theory
has a trivial infrared stable fixed point at ¢ = 0. The log-
arithm in Eq. (91) arises because d = 2 separates these
two different cases, with the chemical potential providing
an infrared cutoff, so that a finite value for ¢ and ulti-
mately for T obtains. In other words, the finite value for
the condensation temperature in two dimensions hinges
on the presence of quantum fluctuations.

As an aside, we note that at zero temperature, the rela-
tion between the chemical potential and particle number
density differs again a subtle factor of 2 from the relation
He = 4gn we used to derive the critical temperature (90).
As in d = 3, this factor is needed for the Hugenholtz—
Pines relation to be satisfied at both temperatures. It
implies that the analog of Eq. (89) at zero temperature
also differs a factor of 2, which is indeed what is found

by Fisher and Hohenberg [26].

C. Discussion

Path-integral Monte Carlo simulations by Gruter,
Ceperley, and Laloé [29] of the microscopic model de-
scribing a weakly interacting Bose gas restricted to rela-
tively few (up to 216) particles in three dimensions found
an increase in the condensation temperature linear in the
scattering length,

Te—To = Can'/?, (92)
Ty

with C' = 0.34 4 0.06. Since the dynamic modes do not
contribute to the shift linear in a, the coefficient C' can
also be calculated in the static, classical theory. Recent
Monte-Carlo simulations [30] of that static theory gave
larger values: C' = 1.32 & 0.02 and 1.29 & 0.05, respec-
tively. An intuitive understanding of the increase in 7¢
was given in Ref. [29], where it was pointed out that a
moderate repulsive interaction suppresses density fluctu-
ations. This results in a more homogeneous system and
facilitates the formation of large exchange rings neces-
sary for BEC, which then takes place already at a higher
temperature than in a free Bose gas. When the repulsive
interaction increases further, the exchange is obstructed
because it becomes more difficult for the particles to
move. This leads to a lowering of the critical temperature
as seen, for example, in liquid *He. A free gas with *He
parameters at vapor pressure would have a condensation
temperature of about 3 K, whereas liquid *He becomes
superfluid at the lower temperature of 2.17 K.

The full thermodynamic potential of an interacting
Bose system can close to 7. be written in terms of the
exchange rings by slightly generalizing Eq. (38) for a free
Bose gas [31]:

<|®

% Z wTe (e (93)
w=1

where now the exponent 7 has the general form

d
=—+41 94
T D + ) ( )
with D the fractal dimension of the worldlines, which 1is
D = 2 for a free Bose gas. The worldline tension deter-
mined by o — a. vanishes when the condensation tem-
perature is reached from above as

oz—ozcoc(T—TC)l/g, (95)

where o i1s a second exponent, which for a free Bose gas
takes the value ¢ = d/2 — 1 [see above Eq. (18)]. The
two exponents ¢ and 7 determine all the critical expo-
nents characterizing the phase transition through scaling
relations [31]. BEC in a weakly interacting Bose gas is in
the same universality class as the lambda transition of
liquid *He, so that the critical exponents describing BEC
are accurately known. In going from a free Bose gas to
strongly interacting *He, the value of the fractal dimen-
sion D of the worldlines changes only slightly from D = 2
to D &~ 1.96, with most of the interaction effects enter-
ing o, which changes from ¢ = 1/2 to ¢ & 0.76 [31]. The
value of the fractal dimension follows from the relation
[31] D = 2 —1n, with 7 the Fisher exponent, determining
the anomalous dimension of the order parameter ®.

For an ideal Bose gas, the value D = 2 derives from the
quadratic form of the energy spectrum E(k) = h*k?/2m.
A different value is obtained by modifying the free spec-
trum to E(k) ~ kP, with D # 2. It was noticed by Gun-
ton and Buckingham [12] that an ideal gas with D = 3/2,
so that E(k) ~ k3/2, produces a value of the specific-heat
critical exponent a.. = 0 close to the experimental value
ace &7 —0.01 for *He [32]. However, this is a somewhat
fortuitous and at the same time deceptive coincidence
as other exponents come out incorrectly, and the actual
value of the fractal dimension is close to 2, D = 1.96 [31].
Describing the critical behaviour of an interacting Bose
gas, using quasiparticles with the spectrum

E(k) ~ k32, (96)

as was done by Baym el al. [33], can therefore not be
Justified.

In addition to numerical studies of the static, clas-
sical theory, the coefficient C' has also been estimated
by analytical studies of that theory (for a summary, see
Ref. [1]), such as the 1/N expansion [34] and variational
perturbation theory [35].

Although the dynamic modes do not, due to cancel-
lations, contribute to the shift in the condensation tem-
perature linear in a, they do determine the coefficient of
the next term ~ a’n?/3In(an'/3) in that shift [5].
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V. CONCLUSIONS

In this paper, the effect of fluctuations in the nonzero
frequency modes of a weakly interacting Bose gas on
the condensation temperature was studied in detail.
The simple algorithm used to perturbatively calculate
the effect in a high-temperature expansion in conjunc-
tion with zeta function regularization of infrared diver-
gences was demonstrated to be reliable by showing that
a host of known results are recovered. The presence
of temperature-induced energy gaps for these dynamic
modes were argued to allow for a perturbative approach.
It was shown that the shift in the condensation temper-
ature of the form (92) with

_ 8 ¢y
C= ~3anE 2.83, (97)

we had obtained earlier at one loop [3] is canceled by
two-loop contributions [4].
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ZETA FUNCTION REGULARIZATION OF INFRARED DIVERGENCES IN BOSE-EINSTEIN CONDENSATION

PEI'VJISIPU3AIISI IHOPAUEPBOHUX PO3BI2KHOCTEM ¥ KOHJIEHCAIIIT
BO3E-AMHIINITAVUHA 3A JOIIOMOTOIO ¢(-PYHKIIII

A. lMMakesrs
Inemumym meopemuvror dizuxu
Aprim-aancee, 14, Bepain, 14195, Himewwuna

3pobJteHo ordn 069YnC/IeHHsI MeTOIOM Teopil 30ypeHb BILIUBY GJIYKTyalllil Ha TeMIeparypy KOHIeHCalll y He-
HYJIBOBUX YaCTOTHHX MofaX ciaabKoBzaeMomitodoro 6o3e-rasy. LI nuHaMIuHI MomM, AKUMHI HEXTYIOTH ¥ G1ABITOCTI
CyYacCHUX ITOCJII/KEHb, MalOTh TeMIEPaTyPHO-CIPUYTHEHY eHepPreTUuIHY IMIJIMHY, 10 BUIIPABIOBY€E MepTypOaThB-
i maxig. OnparpoBaHo MPOCTHH, aje MOTYKHUA aJrOPUTM IJIA PO3PAXYHKY IHOTO eeKTy MPU BUCOKOTEMITe-
paTypHOMY PO3BHMHEHHI B IIOEIHAHHI 3 peryJidpm3aliero iHdpadeBoHUX po3biKHOCTel 3a momomororo (-pyHKII.
[leit anroputM BUABIAETHCA HaMIHUM, OCKIJIBKHA BIH BIITBOPIOE BIIOMI pe3yJIbTaTl IJId HU3KK MMpUKJIamis. [Ipu
BpPaXOBaHUX IBOIMETJIEBUX BHECKaX TOKa3aHO, IO JAMHAMIYHI MOJIM He CIPUYUHAIOTH 3CYyBY B TeMIEpaTypi KOH-
nencari. lle mae mgcraBy meperiasiHyTH HalIl HOMEpeTHl pe3yabTaTh, OTPUMAaHI /15 OIHIE] TTeTJIl.
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