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Based on the many-body theory of metals in the third order of the perturbation expansion
in electron—ion interaction pseudopotential, the potentials of pair and three-ion interactions are
calculated in liquid lead, aluminium and beryllium at their melting temperatures. The reducible
and the irreducible three-ion interactions have an attractive nature on distances approximately equal
to an average distance between ions in metals. It results in the shortening of average interatomic
distance in an equilibrium state of metal. The potential landscapes created by a pair of fixed ions
relative to the third ion are constructed. It is shown that with the increasing of an electronic density
the contribution of reducible, as well as irreducible three-ion interaction is increased. It is also shown

that the influence of reducible three-ion interaction on a potential landscape in a cluster of three
ions is considerably larger than the influence of irreducible three-ion interaction.
Key words: liquid metals, pseudopotential perturbation theory, three-ion interaction, potential

landscapes.
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I. INTRODUCTION

The study of a nature of multi-ion interactions, their
influence on different physical properties of metals is now
an urgent problem of condensed matter physics. But it is
very complicated and an insufficiently studied. The main
task for the solution of this problem as a whole is the cal-
culation of multi-ion interaction potentials. A few meth-
ods of calculation of effective multi-ion interactions in
metals now exist. First, this is a microscopic many-body
theory of metals [1], which is grounded on perturbation
theory in electron-ion interaction pseudopotential. Sec-
ond, the embedded atom method [2,3], and the ‘glue po-
tential’ method [4-6], where the multi-parameter poten-
tial functions fitted to experimentally measured physical
properties of metals are used. These two last methods
are widely used, for example, in molecular dynamic sim-
ulations, but in fact are semiempirical methods. Gurskii
and Krawczyk [7-9] proposed recently in a general fash-
ion one new microscopic approach, which is grounded on
density functional theory.

Nowadays the main microscopic method of multi-ion
interaction study is the many-body theory of metals.
Within the framework of this theory, some evaluations
of equilibrium [1,10] and kinetic [11] properties of simple
metals have been already carried out. These evaluations
take into consideration the contributions of the higher
orders of a perturbation theory in powers of pseudopo-
tential, which are multi-ion interactions. However, the
majority of these evaluations are carried out without con-
sidering multi-ion potentials. It means that calculations
of energy are carried out in reciprocating space. This is
a conventional method for a crystalline state of metals,
where generally it is possible not to consider interaction

potentials, and the usage of symmetry of a crystal allows
for considerably simplified evaluations [1,10]. For a ho-
mogeneous liquid state, the evaluations also can be car-
ried out in reciprocating space [11]. However, in this case
there remains opened the question about relative quan-
tity of the so-called reducible and irreducible contribu-
tions in multi-ion potentials and the question about their
influence on the short-range order in a liquid. Therefore,
in amorphous, liquid and inhomogeneous metals the cal-
culations in configuration space are preferable.

Within the framework of the many-body theory of
metals, it is possible to separate irreducible and reducible
contributions into multi-ion potentials correctly. The lat-
ter arise out of the terms of a certain order of perturba-
tion theory in pseudopotential, when coordinates of two
or more ions coincide. Hasegawa for the first time ob-
tained the corresponding formulas for the three-ion inter-
action [12]. However, the numerical computations were
done only for equilateral configurations of three ions in
liquid sodium and potassium. Moriarty carried out com-
putations of three-ion potentials for isosceles ion con-
figurations in some transition metals [13,14]. However,
a systematic analysis of the three-ion potentials within
the framework of the same approaches for a row of met-
als with differing valency and density of electron gas has
not as yet carried out.

It is known that the contributions of the third order
perturbation theory is most essentials for polyvalent sim-
ple metals with high density of electron gas [1,10]. There-
fore, in the present paper for the analysis of three-ion
interactions, we chose quadrivalent lead, trivalent alu-
minium and divalent beryllium. The latter has the largest
density of electron gas from all simple metals. The ob-
jectives of this paper are as follows: a computation of
reducible and irreducible three-ion interactions in these

161



E. V. VASILIU

metals at their melting temperature; a determination of
relative contribution of the three-ion interactions into full
interaction potential of three 1ons; a clarification of the
value dependence of these interactions on density of elec-
tronic subsystem of metal.

II. MANY-BODY THEORY OF METALS

In the context of many-body theory of non-transition
metals, the energy of a metal is being calculated with
using the adiabatic approximation for the electron—ion
system. The energy of electronic subsystem FE., if ion
positions are fixed, is written as a series in terms of pow-
ers of electron—ion pseudopotential [1]:

E.=E®+EM+> EM. (1)

n>2

Here Eéo) is the energy of homogeneous electron gas,
Eél) 1s the contribution of the first order due to undot-
o
structure. In (1) one can separate the contributions in-
dependent of ion positions, dependent on the locations
of separate ions, ion pairs, triplets, etc. Then [1]:
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Each term of series (2) describes indirect interactions
of ion groups through the surrounding electron gas. Us-
ing (1) @2, 3, etc. can be represented as a series in terms
of powers of pseudopotential:

Rl, R2 Z q)(; Rla R2 (3)
v3(R1,Ro, R3) = Z <I>§,“(R1, R, R3), (4)

1=3
where &) (Rq,...,Ry) represents the indirect interac-

tion of the n ions through electron gas in the k-order
perturbation theory in electron—ion interaction. So, pair
interaction in the third order is the sum of a direct
Coulomb repulsion of ions (we neglect by the overlap-
ping of ion shells), indirect interaction in the second or-

der <I>(22) and indirect interaction in the third order <I>(23)
(the latter is called as reducible three-ion interaction):

where z is the ion charge.
For simple metals good approximation is a local form
of electron—ion pseudopotential. Then

(6)
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Here T'(2 )( ) and ré )(ql, 2, q3) are the sums of two- and three-pole diagrams, respectively; W (q) is a form-factor

of the local pseudopotential; g3 = (g7 + ¢2 + 2q1q2x)1/2

The first term in series (4) is the irreducible three-ion interaction in the third order of perturbation theory. It is

described by expression [12]:
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where Jy(z) is the Bessel function of the zero-order;
Ri2, Ra3 and Ri3 are the distances between the vertices
of a triangle formed by the ions.

III. COMPUTATION RESULTS

The pair and the three-ion interaction potentials were
calculated at the melting points of lead, aluminium
and beryllium. The corresponding values of Wigner—
Seitz radii are (r;)p, = 2.3560, (rs),, = 2.1677 and
(rs)p. = 1.9185 (all the values in atomic units). For all
the metals we use local two-parameter Animalu—Heine
pseudopotential with the form-factor

Are?z

sin (¢ Ro)
7?0

q o

X exp (—0.03 (ﬁy) . (9)

The permittivity function in the Vashishta—Singwi
form was also used [15]. Tt provides a good description of
exchange-correlation effects in an electron gas at small
values of r;. The parameters of the pseudopotential (9)
for lead and aluminium are taken from [10], where they
were fitted in the fourth order perturbation theory on re-
quirements p = 0 and Cyy = Cyg(exp) (p is the pressure,
Cyq is the shear modulus). For beryllium the suitable
data in the literature are absent, only the position of
the first zero of pseudopotential form-factor it is known
[16]. The aim of this paper was not an examination of
the three-ion potential dependence from a choice of the
pseudopotential form. Therefore, for beryllium we did
not carry out the precise parameter adjustment proce-
dure. The parameter Ry was taken as equal to the 1onic
radius, and the second parameter U was fitted with use
of condition W (¢p) = 0.

Fig. 1 shows computed potential ¢5(R) (5) and its
components. For all three metals reducible three-ion in-
teraction <I>(23)(R) has an attractive nature at short dis-
tances between two ions; therefore, the pair interatomic
potential is strongly renormalized. In the first place, the
first minimum position shifts towards shorter distances.
This effect is almost identical for all three metals. Sec-
ondly, a minimum depth is largely increased. This effect
is already unequal: it least for lead, slightly more for alu-
minium and most for beryllium. In beryllium at taking
into account only the second order of the perturbation
theory, the depth of the first minimum of pair potential
is smaller than that the second minimum. Taking into

Wi(q)=— [(1 + U)cos(qRy) = U

account a reducible three-ion interaction <I>(23)(R) leads
to an increase of depth of the first minimum almost by
five times. As a result, the potential ¢5(R) in beryllium
takes the form typical for simple metals (see Fig. 1(c)).

In the row of metals: lead, aluminium, beryllium, the
values of r; decrease while the contribution of <I>(23) n-
creases. Consequently, one can conclude that the impor-

(3)

tance of @, consideration increases with a decrease of

rs. We note that this conclusion is in accordance with
computations of pair interproton interaction in metallic
hydrogen [17]. In this system at 7, = 1.65 pair potentials
in the second order have not the minimum at all and
only taking into account of <I>(23) leads to its formation.
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Fig. 1. Pair interaction potential and its components cor-
responding to (a) lead, (b) aluminium, and (c) beryllium.

The irreducible three-ion interaction potential
@gB)(Rlz,Rzg,ng) 1s the three-dimensional function
and can be represented either as the table or graph-
ically as the ‘sections’: surfaces or curves for certain
configurations of ions. So, for example, Moriarty has
presented the results of three-ion potential calculations
in transition metals for isosceles ion configurations as a
function of a vertex angle of an isosceles triangle [13,14].

For the application purposes the potential <I>g3) should
be tabulated or should be approximated by simple an-
alytic function, however, for qualitative consideration
preferably to present i1t as a potential landscape for a

cluster of three ions (the table of <I>g3) values for any
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ion configurations and its analytic approximation will be
given elsewhere). We consider that such a form of result
representation is visual and informative as it allows to
clear up the behaviour of the potential and its influence
on the potential landscape in a cluster.

Fig. 2 shows the irreducible three-ion interaction po-
tential for a special case where three ions form a regular
triangle. The dotted line in this figure corresponds to lig-
uid sodium at melting point. It was computed for com-
paring (the data for computation was taken from [12]).
As well as the reducible three-ion interaction potential
<I>(23)(R), the potential <I>g3)(R, R, R) has an attractive
nature on short distances between ions and oscillates on
large ones.
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Fig. 2. The three-ion interaction potential for a regular
triangle of ions.

In Figs. 3 and 4, two ions are located on an ordinate
axis on fixed distance one from the other and a third ion
1s sited in the XY -plane. The potential landscapes in all
these figures are shown only in one coordinate quarter, as
they are symmetrical concerning the axes X and Y. The
distance between two fixed ions for each metal is selected
accordingly to the position of the first minimum of the
pair potential ¢%(R). This is 6.3 a.u. for lead, 5.16 a. u.
for aluminium and 4.3 a. u. for beryllium (see Fig. 1). We
note that these positions of the first minimum of ¢%(R)
are in good accordance with the corresponding exper-
imental values of most probable distances between the
neighbouring atoms.

(3)

The potential of irreducible three-ion interaction @3
is similar for all three metals (see Figs. 2-4). It has a suf-
ficiently deep potential well (in beryllium it has even two
potential wells which are separated by a saddle point).
On large distances, the potential <I>g3) has the damping
oscillations. These oscillations are determined by Fridel’s
oscillations of electronic density. The distance from a
bottom location of a potential well up to the fixed ions
approximately equal an average interatomic distance for
each of the metals.

Fig. 4 shows a potential landscape which is created by
the ions pair and taking into account pair- and three-
ion interactions. We do not show in this figure a po-
tential landscape for lead, as here the potential <I>g3)
almost does not influence the landscape and the lat-

ter cannot be drawn in a reasonable scale. The drawing
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has been executed on radial directions from the origin
of coordinates. A solid line corresponds to pair inter-
action in the third order taken into account that de-
scribed by the function ¢%(Ra3) + ¢5(Ri3). A dotted
line corresponds to pair and irreducible three-ion inter-
action taken into account that described by the function
05 (Ras) + ¢5(Ri3) + <I>§,3)(Rmin, Ras, Ri3). In these for-
mulas indices 1 and 2 corresponds to the fixed ions and
index 3 correspond to the free ion. The R, are the po-
sitions of ¢%(R) first minimum for each of the metals (see
above).

(a)

(b) /

Fig. 3. Irreducible three-ion interaction potential corre-
sponding to (a) lead, (b) aluminium, and (c) beryllium.

(3)

As noted above, the potential &5’ almost does not
influence a potential landscape in lead, it only increases
insignificantly (~ 1%) a minimum depth in some di-
rections. In aluminium (see Fig. 4(a)), an effect of
irreducible three-ion interaction is something higher,
but it shown is also small: ~ 4% deepening the min-
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imum on the X-axis (minimum A). In beryllium (see

Fig. 4(b)) the contribution of <I>g3) is rather significant
that is especially noticeable in the direction of X-axis.
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Fig. 4. A potential landscape created by two fixed ions for
the third ion corresponding to (a) aluminium and (b) beryl-
lium.

A
X

In this direction, the <I>g3) potential taking into account
results in the increase of the depth of the first mini-
mum approximately twofold (minimum A) and in some

increase of the depth of the second minimum. Thus in
beryllium the effect of irreducible three-ion interaction
is spread evenly to the second coordination shell.

IV. DISCUSSION OF THE RESULTS

There is an apparent tendency in a row of simple lig-
uid metals with varied density of electron gas: with the
increasing of density (decreasing of r,) the contribution
of both reducible and irreducible three-ion interactions
increases.

Both reducible and irreducible three-ion interactions
have an attractive nature on distances approximately
equal to the equilibrium distance between ions. We note
that the same nature has also indirect pair interatomic
interaction in the second order <I>(22). Thus, the attractive
nature of all indirect interactions (in the second and in
third order) leads to the shortening of an average inter-
atomic distance in an equilibrium state of metal.

It is well known that the nature of pair interatomic in-
teraction in the second order is identical for all of simple
metals [18]. Our computations and the computations for
liquid sodium and potassium [12] allow to draw the con-
clusion that the three-ion interactions are also similar in
all simple metals.

For all metals the considered here the influence of re-
ducible three-ion interaction <I>(23) on a potential land-
scape in a cluster of three ions is considerably larger
than the influence of irreducible interaction <I>g3). This
fact to some extent can be a ground for the approach
when at calculations of the physical properties of met-
als the <I>g3) is taken into account as perturbation at the

accurate consideration of <I>(23) [12] or the <I>g3) contribu-
tion is neglected and only <I>(23) is taken into account [19],
especially for metals with low density of electron gas.
However, the final answer to a question on importance of
irreducible three-ion interaction in simple metals can be
obtained only by calculating energy and different physi-

cal properties of metals with considering this interaction.
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YUCEJBbHE JOCJLIKEHHS IOTEHIIIAJIB EGEKTUBHUX TPUUMOHHUX
B3A€MOOIN ¥V PIDKNUX METAJIAX 3 BUCOKOIO HIIJIbHICTIO EJIEKTPOHHOTI'O I'A3Y

€. B. Baciniy
Odecora nayionarvra axademia 36 ’asxky im. 0. C. llonosa
eyn. Kysnewuna, 1, Odeca, 65029, Yxpaina

Ha ocHoBi 6ararouacTMHKOBOI Teopili MeTaJiB y TPEeThOMY IMOPAIKY Teopil 30ypeHb 3a MCEBIOMOTEHINATIOM
eJIeKTPOH—HOHHOI B3a€MOJIIl pO3paxoBaHO MOTEHINAAN MMapHOl Ta TPUAOHHOI B3a€MOMIH y PIOIKOMY CBUHIL, aJIO-
miHll 1 Gepuiil mpm IXHIX TeMIleparypax ILaBjeHHs. PemdyKoBaHl Ta HepedyKoBaHl TPUHOHHI B3aeMO[ii MalOTh
HPUTATYBAJIBHAN XapaKTep Ha BIACTAHAX, AKI TPpUOJIM3HO JTOPIBHIOIOTH CepedHiil BiacTaHl MK HOHaAMHM B MeTajlaX.
Ile ckopouye cepeHiO MIXKATOMHY BIICTaHb y PIBHOBaXKHOMY cTaHl MeTasy. [Jo6ymoBaHO MOTEHIATBHI peabedu,
AK1 CTBOPIOIOTHCA THaporo (piKCOBaHMX HMOHIB 1Moo TpeThoro ftoHa. ITokasamo, 1m0 31 30L/IBHIEHHAM eJeKTPOHHOI
IIJIBHOCTH BHECOK sIK PedyKOBaHOl, TaK 1 HEPeIyKOBaHOI TPUMOHHOI B3aeMomil 301IblIyeThcd. [lokazaHo TaKoX,
1O BILIMB peayKOoBaHOl TPpUIOHHOI B3a€MO/Ili Ha IMOTEHINAIBHIN peabed y KaacTepl Tphox HOHIB 3HAYHO OlThIIMi

BII BIUIMBY HEPeIyKOBaHOI TPUIAOHHOI B3aeMOIji.
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