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In recent years a unified phenomenological picture for the hole doped high-T. cuprates has

emerged for a spin and charge spectroscopy. Spectral anomalies have been interpreted as evidence of

charge carrier coupling to a collective spin excitation present in the optical conductivity, in ARPES

(angular resolved photoemission), and in tunneling data. These anomalies can be used to derive an

approximate picture of a charge carrier — exchange boson interaction spectral density ]2x(w) which

is then to be used within an extended Eliashberg formalism to analyze normal and superconducting

properties of optimally doped and overdoped cuprates. This paper reviews recent developments and

demonstrates the sometimes astonishing agreement between experiment and theoretical prediction.
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I. INTRODUCTION

The standard Eliashberg equations [1,2] were derived
for superconductors with an energy gap of s-wave sym-
metry and the electron-phonon interaction as the pairing
interaction. This type of interaction allows the applica-
tion of Migdal’s theorem which states that vertex correc-
tions in the electron-phonon interaction can be neglected
to order wp/ep, with wp the Debye energy and ep the
Fermi energy. On the other hand, 1t is now widely ac-
cepted that the high 7. cuprates have an energy gap of
dyp2_y2 symmetry [3-8] and there is still no consensus as
to the microscopic mechanism leading to Cooper pairs in
these materials.

In Eliashberg theory a given superconductor is char-
acterized by the Eliashberg function o F(w) which de-
scribes the exchange of a phonon by two electrons at the
Fermi surface and by the Coulomb potential p*. These
are the kernels in the two non-linear coupled Eliash-
berg equations. One equation, which is referred to as
the renormalization channel, describes the effect of the
electron—phonon interaction on normal-state properties
modified further by the onset of superconductivity. The
second equation, referred to as the pairing channel, deals
with the energy gap directly and is identically zero in
the normal-state. When reliable tunneling data is avail-
able for the quasiparticle density-of-states Ny, (w), for in-
stance, the procedure can be inverted [9,10] to get from
Ngp(w) the kernels o F(w) and p*. In principle, it should
also be possible to get the same information from infrared
data [11-13] although in conventional systems this has
not been widely done while tunneling has. Once the ker-
nels o?F(w) and p* are known, the finite temperature
Eliashberg equations can be solved numerically to ob-
tain superconducting properties.

In principle, the Eliashberg equations can easily be

generalized to include d-wave symmetry of the energy
gap by an appropriate extension (to include a depen-
dence on orientation of the electron momenta) of the
charge carrier — exchange boson interaction spectral
density (a?F(w) in case of the electron—phonon interac-
tion) which contains all the relevant information about
the coupling of the charge carriers to the exchange
bosons. As the microscopic mechanism leading to super-
conductivity is not yet known, information on the charge
carrier — exchange boson interaction spectral density
(denoted I?y(w) throughout this paper) is to be obtained
by a fit to appropriate data sets using phenomenological
models. Such a procedure can yield a first approximation
to a complete description even in cases when an equiv-
alent to Migdal’s theorem is not applicable and vertex
corrections are not entirely negligible.

Unfortunately, the well established inversion tech-
niques which allowed one to determine a? F'(w) from tun-
neling experiments [10] have, so far, not been extended
to the cuprates and, therefore, phenomenological models
had to be developed for I?y(w). One such phenomeno-
logical model has been introduced by Schachinger et al.
[14-16] and was reviewed by Schachinger and Schiirrer
[17]. This model is a purely electronic model and de-
scribes the feedback effect the superconducting state has
on I?y(w). The authors used, for definiteness, the spin
fluctuation model introduced by Pines and coworkers
[18,19] in their Nearly Antiferromagnetic Fermi Liquid
(NAFFL) model. The feedback effect caused by super-
conductivity is described by introducing a low energy gap
in I?x(w) (low frequency cutoff) which opens up as the
temperature is lowered through the critical temperature
T.. This gap shows the same temperature dependence
and size as the superconducting energy gap. Within this
model 1t was possible to describe consistently the tem-
perature dependence of the microwave conductivity with
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its pronounced peak around 40 K observed in optimally
doped YBazCuzOs.95 (YBCO) [20,21], the similar peak
observed in the electronic thermal conductivity [22], and
the temperature dependence of the penetration depth in
nominally pure YBCO samples and in YBCO samples
with Zn or Ni impurities [14]. Nevertheless, similar re-
sults would have been achieved using the Marginal Fermi
Liquid (MFL) model [23] assuming a d-wave gap together
with a low frequency cutoff to describe the charge carrier
— exchange boson interaction spectral density.

A remarkable step forward in the development of phe-
nomenological models was provided by the work of Mar-
siglio et al. [24] who were able to show analytically that
there exists a simple, approximate formula which relates
a?F(w) to the normal state optical conductivity o(w)
via the second derivative of the real part of wo=!(w).
This established the basis for a spectroscopy which al-
lows the measurement of the spectral density o?F (w) di-
rectly from optical data. This result was then extended
to the superconducting state of d-wave superconductors
by Carbotte et al. [25] who explore the relationship be-
tween spectral density and W(w) at low temperatures in
the superconducting state. They conclude that the rela-
tionship is not at all as direct, but, even though more
complicated, it remains simple enough to be very useful
although more approximate. (A similar procedure was
also suggested by Munzar et al. [26].)

It will be the purpose of this paper to review the ap-
plication of this technique to various cuprates in some
detail. Thus, the paper establishes in section two the
formalism, section three discusses its application to opti-
mally doped YBCO. Other cuprates are also investigated
within the same context, and finally, in section four a
summary is presented.

II. FORMALISM
A. The Normal State Optical Conductivity

The optical conductivity is related to the current-
current correlation function. The paramagnetic part of
the response function on the imaginary frequency axis is

given by [27-31]

M(ivy) = Niﬁ 3 (eve)’tr {G(k, i) Gk, iwm + iun)} ,
(1)

where G’(k, iwm) is a matrix Green’s function in the
Nambu formalism [32], iw,, = inT(2m + 1),m =
0,£1,42,... is the fermion and v, = 2inal,n =
0,+1,42,...1s the boson Matsubara frequency; 7" is the
temperature and v, the component of the electron veloc-
ity in z-direction. The factors preceding the summations
include the total number of atoms in the crystal, NV, and
the inverse temperature, 5 = 1/kpT.
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The optical conductivity is related to the response
function through

o(w) = gﬂ(w +i0%). (2)

After analytical continuation to the real frequency axis
and using the usual procedure

%Zk: —>/d6N(6),

we arrive at a general expression for the optical conduc-
tivity o' (w):

o' (w) = iw( /Odu tanh (”;T“’) S‘l(T,w,u))

—I-(/dy [tanh (”;T“) (3)

0

2

— tanh (%) }S‘l(T,w, 1/)),

which has been given by Lee et al. [28] (with the fac-
tor ne?/m suppressed). Here, N(¢) = N(ep) = N(0),
N(0)e*vg = Q2/Am = ne®/m; Q, is the plasma fre-
quency, e the charge on the electron, m its mass, and
n the electron density per unit volume. In Eq. (3)

S(Tyw,v) =w+ YT, v+w) = X(T,v) —intt  (4)

with the self energy X(7,w) related to the electron-
phonon spectral density by
1
Y (5 +

1 w—z
_1/)(5“27@)

where ¢ is the digamma function. In Eq. (4) 7ttt =
1/(27imp) gives the impurity contribution to the elec-
tronic scattering. (Timp is the impurity scattering time.)

(Tw) = —/dzozzF(z) ZWQ:TZ)

, (5)

At zero temperature these expressions for the conduc-
tivity reduce to a simple form [24,33]:

and the self energy



APPLICATION OF AN EXTENDED ELIASHBERG THEORY TO HIGH-7. CUPRATES

]

2-w)_ iw/anzF(Q)
0

Q4w

Y(w) = /dQ azF(Q) In

for the electron—phonon interaction. In this form Mar-
siglio et al. [24] were able to show analytically that a
remarkably simple formula could be used to establish an
approximate but very useful relationship between o(w)
and a?F(w). The observation was also backed up by de-
tailed numerical work. We begin by defining an optical
scattering rate 7! (w) as [24,25]

1 Q2 1 1
= Lt Re—— = PRe—— 7
or (@) ™)

47 ea(w) o' (w)’

which is routinely obtained in optical experiments. We
then define an auxiliary function [24,25]

Wi = g { s ) (5

Marsiglio et al. [24] have shown that in certain circum-
stances

o’ Fw) ~ W(w), (9)

which serves as a basis for a spectroscopy which allows
the measurement of the spectral density o? F'(w) directly
from optical data. In Fig. 1 we show theoretical results
for W(w) at two temperatures based on the case of Pb.
The solid curve is the Pb a?F(w) obtained from tunnel-
ing data. The other two curves were obtained by calcu-
lating o(w) from Eq. (3) and computing W{w) defined
by Eq. (8). Such calculations were performed at two tem-
peratures, namely 7' = 1 K (dotted) and 7' = 14 K (dash-
dotted). Within the energy range corresponding to the
range of a? F'(w) the dotted curve for W (w) is remarkably
close to the solid curve for a?F(w) and therefore W (w)
gives an accurate measurement of the absolute value as
well as the frequency dependence of the spectral den-
sity. As the temperature is increased this is no longer
the case although some rough correspondence remains
which provides a qualitative similarity between the two
quantities which could still be exploited to get a rough
first measure of the spectral density in cases where low
temperature data are not available. We point out that
even at T = 1 K there are negative tails in W (w) above
the maximum phonon cutoff which are not in «?F(w).
This is expected since W(w) and a?F(w) are not the
same quantities. In fact, 1t is indeed remarkable that they
should correspond so closely below the phonon cutoff en-
ergy. This close correspondence can be exploited to get a
good first measure of the spectral density o?F(w) from
infrared data. In principle, one should use the first it-
eration for a?F(w) obtained from the second derivative
of the conductivity defining W(w) [Eq. (8)], to calculate
from it o(w) based on Egs. (3) to (5) and keep iterating

until an exact correspondence between calculated and
measured o(w) results has been achieved. In any of the
applications so far this has not been attempted because
of the many uncertainties that remain.
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Fig. 1. The solid curve is o® F(w) vs. w for Pb. The other
curves are the function W{w) according to Eq. (8) obtained
from the normal-state conductivity optical scattering rate
755 (w) at various temperatures. See Marsiglio et al. [24].

B. The Superconducting State

In as much as BCS theory applies, any effective in-
teraction between two electrons at the Fermi surface,
which is attractive, will lead to superconductivity. This
can arise from the electron—phonon interaction through
the polarization of the system of ions. In this case we
can describe the polarization process as due to the ex-
change of a phonon between a pair of charge carriers.
An obvious extension 1s to ask: could we exchange some
other excitation? In the Nearly Antiferromagnetic Fermi
Liquid (NAFFL) model of Pines and coworkers [18,19] it
is envisaged that spin fluctuations replace the phonons.
The basic formalism for dealing with this new situation
are the Eliashberg equations but now the k, k’ anisotropy
in momentum of the kernel o, F(w) needs to be taken
into account so that the resulting superconducting state
exhibits d-wave symmetry to accord with the experi-
mental observation. In the renormalization channel we
take for simplicity only the isotropic contribution from
the electron—spin fluctuation exchange written as I?y(w)
where I? is to denote a spin—charge exchange coupling
constant and x(w) is the spin susceptibility. To get a
d-wave gap we use a separable interaction of the form
cos(20)g1*x(w) cos(26') with @ and @’ the direction of the
initial (k) and final (k') momentum which, for simplicity,
we pin on the Fermi surface although in the NAFFL the
entire Brillouin zone is averaged over i.e.: is not pinned
on the Fermi surface. While, for simplicity, we have as-
sumed the same form I?x(w) to hold in the pairing as in
the renormalization channel we have introduced a numer-
ical factor ¢ to account for the fact that the projection
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of the general spectral density will in general be differ-
ent in the two channels. The repulsive effective Coulomb
interaction uk k' 18 isotropic in an isotropic s-wave for-
malism. The same holds for the ‘Hubbard’ U which is
also assumed to be large and isotropic. Thus, the effec-
tive Coulomb potential 1s not expected to have a numeri-
cally large d-wave symmetric part and therefore does not
contribute to the pairing channel in a generalized d-wave
formulation of the Eliashberg equations.

Within these simplifying assumptions the Eliashberg
equations need first to be written on the imaginary Mat-
subara frequency axis. They take on the following form

[34]:

A(iwn; 0) = gﬂ'TZ cos(20)A(m — n)

><< C0s(20)A om; ) > (10a)
+ o)

\/m(iwm) A

A?(fwy, ; 0"
for the renormalized pairing potential A(iwn; @), and

Oiwn) = wn + FTZ/\(TR —n)

& (iwm )

X < = > , (10b)
VO () + A2 (i 0)

for the renormalized frequencies &(iwy,). Here, (---) de-
notes the angular average over §. The quantity A(m —n)
has the usual form

—n) /dQ
0

m?()

wm - Wn)

5 (10c)

A(v +1i6;0) = 7Ty Z cos(260) [A(v — iwm) + Av + iwm )] < \/ Al(iwpm; 0') cos(26") >

m=0

oQ

+ img /dz cos(20)I? x(2) [n(2) + f(z — V)] <

— 00

for the pairing channel and

As written, Egs. (10) do not depend on impurity scatter-
ing. To include this possibility, we need to add into the
right hand side of Eq. (10b) a term of the form

Qiwy)

r+ 11
T O (iw,) + D (iwn) (11)

where I't is proportional to the impurity concentration
and ¢ 1s related to the electron phase shift for scatter-
ing off the impurity. For unitary scattering, ¢ is equal
to zero while ¢ — 0o gives the Born approximation, i.e.:
the weak scattering limit. In this case the entire impurity
term reduces to the form 7t Q(iw,,) with ¢ absorbed into
t*. To complete the specification of Eq. (11), we have

A(iwn; )

< = > , (12a)
V@2 () + A2 (i3 0)

D(iwy) =

and

(12b)

While certain quantities, such as the penetration
depth, can be obtained quite directly from the numer-
ical solution on the imaginary frequency axis, i.e.: from
Al(iwp; 0) and @(iwy), real frequency axis solutions are
needed to calculate the optical conductivity. These equa-
tions for A(v + 46;0) and & (v + id) with ¢ infinitesimal
are more complicated and can be written in the form

[14-16]:

G+id)=v+inT Y A

m=0

(v —iwm) — AV + iwm )] <

212

\/~

‘ (13a)
@2 (iwm ) + A2 (iwn; 0')
A(v — 2 +1i8;0") cos(20") >/
\/@2(1/—,2—1—2'5)—Az(V_Z+i5§9/) |
G in) > (13b)
2 (iwm ) + A2 (iw; 0')
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Y S — = + i6) L Qv)
+in [ dzI°x(2) [n(z) + f(z = V)] < > +arl T 5 5 ST
Zo ' Jo -t id) - Aoz + 00 FE D)+ )

for the renormalization channel. Thermal factors appear
in these equations through the Bose and Fermi distribu-
tion n(z) and f(z), respectively. Furthermore, the abbre-
viations:

x(Q)
) / v—Q+i0+

— 00

(14a)

D) = < A+ 4:6) > (14b)
V@R + i) — A2 +id:0)

(v + id)

Qv) = < = > ) (14c)
Vo (v + i6) — A2(v 4 i6:0)

have been used. Eqgs. (13) are a set of nonlinear cou-
pled equations for the renormalized pairing potential

A(v + i4;0) and the renormalized frequencies &(v + d)

oQ

with the superconducting gap given by

A(v + id;0)

Al +i00) =v =m0

(15)

or, if the renormalization function Z(v) is introduced in
the usual way as @(v + 4§) = vZ(v), one finds for the
superconducting gap

A(v + i8;0)

A(v +i6;6) = 70

(16)

These equations are a minimum set and go beyond a BCS
approach and include the inelastic scattering known to
be strong in the cuprate superconductors.

From solutions of the generalized Eliashberg equations
we can construct the Green’s function in Eq. (1) ana-
lytically continued to the real frequency axis . In this
formulation the expression for the in-plane conductivity
oab(T,§2) involves further averaging over angles which
needs to be done numerically. We find the following re-
sult after further manipulations and rearrangements:

Q

Tap(Q) = i%</dl/tanh( v ) 1=N@;0)N(v+;0) — P(v;0)P(v+ Q;0)

0

oQ

E(v;0)+ E(v + Q;6)

—i—/d t h(’““Q) 1 — N* (s ) N*(v + Q5 0) — P*(v;0) P*(v + Q3 0)
Vtan

2T
0

oQ

+ /dy [tanh (%) ~ tanh (%)]

0

Ex(v;0)+ E*(v+ Q;0)

14+ N*(v;0)N(v+Q;0) + P (v;0)P(v + Q;0)

E(v+Q;0) — E*(v;0)

0
+ /d t h(y—i—Q){1_N*(V;H)N*(V—I—Q;@)—P*(I/;H)P*(V—I—Q;H)
Vtan

2T

Ex(v;0) + Ex(v + Q;6)

14+ N*(v; )N (v +£2;0) + P*(v;0) P(v + £2;0) }>

E(v+Q;0) — Ex(v;6)

with

(17a)

(17b)
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and

In the above, the star refers to the complex conjugate.
This set of equations is valid for the real and imaginary
part of the conductivity as a function of frequency €. It
contains only the paramagnetic contribution to the con-
ductivity but this is fine since we have found that the
diamagnetic contribution is small in the case considered
here.

The out-of-plane conductivity o.(7, §2) at temperature
T and frequency 2 is related to the current—current cor-
relation function TI. (7, iv,) at the boson Matsubara fre-
quency v, analytically continued to real frequency €2,
and to the c-axis kinetic energy (H.) [35,36] via

0u(T,9) = g [T ivy = Q+i0%) = ()], (18)

with d the distance between planes in c-direction. In
terms of the in-plane thermodynamic Green’s function

Gk, iwy,) and for coherent hopping ¢, (k) perpendicular
to the CuOs5 planes

(T, ivn) = 2(ed)*T Y > 17 (k)

xtr {i—oé(k, ) oG (K, i, + iyn)} (19a)

and
(He) = 273 3 13 (1) tr { 7k, i) G, o) }
(19b)

In Egs. (19) the 2 x 2 Nambu Green’s function G’(k, W)
describes the in-plane dynamics of the charge carriers
with momentum k in the two dimensional CuQOs plane
Brillouin zone and is given by

Ol i) = i (iwn) 7o + Gt + Ax(iwn )71 (20)
Y 32 (iwn) — 2 — Al(iw,)

where the 7’s are Pauli 2 x 2 matrices, (i is the band
energy of the charge carriers as a function of their mo-
mentum k, Ay (éwy,) is the renormalized pairing potential
and iw(iwy,) the renormalized Matsubara frequency. In
our model these quantities are determined as solutions
of Eliashberg equations (10).

In Egs. (19) the out-of-plane matrix element ¢ (k)
can depend on the in-plane momentum k. Models have
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been summarized recently by Sandeman and Schofield
[37] who refer to previous literature [38-40]. A possible
choice is 1 (k) = t1, a constant. But, consideration of
the chemistry of the CuQO; plane and of the overlap of one
plane with the next, suggests a form ¢, (k) = cos?(20)
where # is the angle of k in the two dimensional CuQO,
Brillouin zone for the plane motion. This matrix element
eliminates entirely contributions from nodal quasiparti-
cles to the c-axis motion.

For incoherent impurity induced c-axis charge transfer
Egs. (19) are to be modified. After an impurity configu-
ration average one obtains

(T, ive) = 2(ed)*TY 0> " ViZ

m kk/

X tr {%OG(k, i )0 G K ity + izxn)} (21a)

(Hey=2T>"> V2

m k k'

% tr{ 7 Gk, i) TG iwm) | (21b)

with V2, the average of the square of the impurity
potential. If the impurity potential was taken to con-
serve momentum, which it does not, we would recover
Egs. (19). Various models could be taken for sz,k" Here

we use a form introduced by Kim [35] and Hirschfeld et
al. [41]

Vﬁk, = |Vo|* 4 |V1]? cos(260) cos(26'), (22)

with ¢ and 6’ the directions of k and k' respectively.
After analytic continuation to the real Q-axis the real

part of the incoherent conductivity along the c-axis is

given by (normalized to its normal state value ¢1.p) [41]:

71e(R) _ l/dw [f(w) — flw+ Q)] (23)

Tlen v

x [N(w + Q)N (w) + ‘%

Plw+ Q)P(w)] :
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III. APPLICATION TO HIGH-7T- CUPRATES
A. The Compound YBa;Cu3z0¢45
1. The Normal State Infrared Conductivity

We begin with a discussion of the normal-state scat-
tering of the charge carriers off spin fluctuations. For the
spin fluctuation spectral density I?y(w) we take a very
simple model motivated in the work of Millis et al. [18]
(MMP). We define a single characteristic spin fluctuation
frequency wgr and take

5 w/wsF

Px(w) = I" 52— (24)
w? + wip

where I? is a coupling constant which can be fit to
normal-state infrared data based on Eq. (3) with I?y(w)
playing the role of a? F(w) in Eq. (5) for the self energy.

In Fig. 2 we show our result for To_pl (w) related to the
conductivity by Eq. (7) for an optimally doped, twinned
YBasCuzOs. 95 (YBCO) single crystal with 7, = 924K
at temperature T = 95 K. The solid curve is the data
of Basov et al. [42]. The dashed and dotted curves are
our best fits for wgrp = 10 meV and 30 meV, respectively,
with I? adjusted to get the correct absolute value of the
scattering rate at 7' = 95K and low energies w. We see
that both values of wgp do not give equally satisfactory
fits to the data. The dash-dotted curve, however, fits the
data well and corresponds to wsp = 20meV. This fit
provides us with a model I?y(w) valid for the normal-
state of YBCO. A plot of this function is shown in Fig. 3
as the gray solid squares. Also shown in this figure are
two sets of theoretical results based on the I?y(w) with
wsp = 20meV which serve to illustrate the inversion
technique. The experimental data on To_pl (w) gives the

model [?x(w) spectrum. Next this model spectrum is
used in the normal-state conductivity Eq. (3) and two
temperatures are considered, namely 7' = 95K (dotted
curve) and 7' = 10K (solid curve). Except for some nu-
merical noise it is clear that when W(w) (solid curve) is
computed from Eq. (8) which involves a second deriva-
tive of our calculated data for To_pl (w) computed from the
conductivity according to Eq. (7), that the low tempera-
ture data (T = 10 K) gives a remarkable accurate picture
of the input I?x(w) function and that to a very good ap-
proximation W (w) is the same as I?x(w) in this case. If
the temperature is increased to 95 K the match between
W(w) (dotted curve) and I?x(w) is not quite as good.
This shows that our inversion technique summarized in
Egs. (7) and (8) is best when applied at low tempera-
tures. The resultant inverted I?y(w) gets smeared some-
what if high temperatures are used instead.

300
Experiment )
- - -- @, =30meV
250 | —-—-w, =20 meV .
- — -0, =10 meV L’
200
S
()
E 150
2
~° 100

50

o L 1 L 1 L 1 L 1 L
0 50 100 150 200 250

w (meV)

Fig. 2. The normal-state optical scattering rate 7'o_p1 (w) ws.
w for YBCO with a 7. = 92.4K obtained from the work
of Basov et al. [42] (solid line) at a temperature of 95K.
The dash-dotted curve from theory based on Eq. (3) with
an MMP model spectral density using a spin fluctuation fre-
quency wsr = 20meV gives good agreement while the other
choices of 30meV (dotted line) or 10meV (dashed line) do
not.

0.5
X(w)
——W(w), T=10K
0.4+ <--- W), T=95K
__ 03p
3
><
N—
3 o2}
; L]
0.1 J:
OO " 1 " 1 "
0 50 100 150

w (meV)

Fig. 3. Comparison of the spectral density [*x(w) (gray
solid squares) in the MMP model [18] (wsr = 20meV) with
the function W{(w) defined in Eq. (8) from the normal-state
conductivity scattering rate Eq. (7). The solid curve is at
T = 10 K while the dotted curve is at 95 K.
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2. The Superconducting State, I*x(w) and the Infrared
Conductivity

Going to the superconducting state requires the solu-
tion of the Eliashberg equations (13) and evaluation of
formula (17) for the optical conductivity. This is much
more complicated than the corresponding normal-state
analysis. Also, it is critical to understand that since we
are dealing with a highly correlated system and the ex-
citations we are exchanging in our spectral density are
within the electronic system itself, they could be pro-
foundly modified by the onset of the transition. In Fig. 4
we reproduce spin polarized inelastic neutron scattering
results of the spin fluctuations measured in a sample of
YBayCuzOg.92 by Bourges et al. [43] at two tempera-
tures namely 7' = 100K (open squares) and 7' = 5K
(solid circles) which show the formation of the 41 meV
spin resonance in the superconducting state. At 100K
the measured spectrum looks very much like the sim-
ple spectrum used in our analysis of the optical data in
YBCO (Fig. 3) but this simple form is profoundly modi-
fied in the superconducting state with the imaginary part
of the magnetic susceptibility depressed at small w and
the formation of a sharp peak around E, = 41 meV. The
possibility of a change in I?x(w) brought about by the
onset of superconductivity must be included in our anal-
ysis of the optical data in the superconducting state. A
question we can immediately ask is: is the 41 meV peak
seen in optimally doped YBCO in neutron scattering also
seen in the superconducting state optical conductivity?
To perform the necessary analysis several modifications
of what has been done so far need to be considered. The
observation that, in the normal-state the well defined
function W(w) given in Eq. (8) which is easily accessible
when the conductivity o(w) is known, can be identified
to a good approximation with I?y(w) may not hold in
the superconducting state of a d-wave superconductor.

. YBa,CuO, Resonarécf::lerg:r’ 1 800
F T=91K rotme
§ - Q=(mm) ?{‘ ] 600
5; [ —o—T=100K ¥
e [ *TTEEK 5 g 1 400
g 1
200
0

0 10 20 30 40 50 60
Energy (meV)

Fig. 4. Experimental results of the magnetic susceptibility
at Q = (7, 7) in a sample of YBayCusOg.92. The imaginary
part of x is measured as a function of energy. Open squares
are results at 7= 100K and solid circles are at T'= 5K (in
the superconducting state, 7. = 91K for this sample). The
energy of the spin resonance F; = 41 meV. Adapted from
[43].
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It turns out from extensive calculations of the su-
perconducting state conductivity based on Eqs. (17) by
Schachinger and Carbotte [44,45] that a simple modifi-
cation of the rule

can be found which applies approximately in the super-
conducting state in the resonance region, namely

with ws shifted by Ag(T), the energy gap at temperature
T, when compared with wi. This rule, while not exact,
1s nevertheless sufficiently accurate to make it useful in
obtaining first qualitative information on the magnitude
and frequency dependence of the underlying charge car-
rier — exchange boson interaction spectral density from
optical data. We expect the changes in going to the su-
perconducting state to be the growth of the resonance,
while at higher energies there should be no change in
I?x(w) from its normal state value. A detailed compar-
ison of I?y(w) and W (w) in the superconducting state
will be given later when we relate additional structures
in W(w) not in [?x(w) to structures in the supercon-
ducting quasiparticle density of states which introduce
distortions in W(w) as compared to the underlying spec-
tral density. In Fig. 5 we show results for the case of
YBCO [25,46] at T = 10 K. The solid line was obtained
directly from differentiation of experimental data on the
optical scattering rate using the superconducting state
conductivity o(w) in Eq. (7) and the definition (8) of
W (w). It is limited to the resonance region. It shows that
W(w)/2 clearly has a peak corresponding to the peak
seen in the spin susceptibility of Fig. 4 measured in neu-
tron scattering. Of course, I?x(w) includes the coupling
constant I? between electrons and spin fluctuations and
is not strictly the imaginary part of the spin susceptibil-
ity. These two functions are not the same but we do know
that an optical resonance peak does appear when the
neutron peak is observed. They fall at the same frequency
E, and look similar in other aspects. It 1s important to
emphasize that this solid curve comes directly from the
data on o(w) and can be interpreted as evidence for cou-
pling of the charge carriers to the spin one resonance at
41 meV. The other curves in the figure are equally impor-
tant. The gray squares represent the I?y(w) used in cal-
culations displaced in energy by the gap Ag = 27meV.
It is constructed completely from experiment. The fit-
ting procedure involves two critical independent steps.
First the data on To_pl (w) in the normal-state is used to
get a background spectrum of the form given in Eq. (24)
which applies to the normal-state. This defines wgr and
the corresponding I?. This spectrum is also valid at the
critical temperature T,. We use this to determine the last
parameter, the anisotropy parameter g in Egs. (10a) and
(13a), in solving the linearized Eqgs. (10) for g to give the
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required T.. In the second step the normal-state result
for the spectral density is modified only in the region of
the resonance peak leaving it unchanged at higher en-
ergies. The resonance 1s positioned and its magnitude
given by the data for the experimental W(w)/2 (solid
curve). There is no ambiguity and the procedure is def-
inite. A check on the consistency of this procedure is
then performed in calculating the theoretical Wi{w)/2
(dashed line) from the theoretical optical scattering rate
calculated numerically from the solutions of the Eliash-
berg equations. We see that the theoretical data agree
remarkably well with experiment in the region of the
resonance. More explanations of the differences between
W (w)/2 and I?x(w) beyond the resonance region will be
provided later on.

(@)
shifted by o) = 27 meV
— W(w)/2
<) inversion from experiment
; 1 - —--W(w)/2, theory g =0.78
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Fig. 5. The model charge carrier spin excitation spec-
tral density [?x(w) for T = 10K (gray solid squares) con-
structed from conductivity data for optimally doped YBCO.
The dashed line which follows the gray solid squares faithfully,
except for negative oscillations just beyond the spin resonance
around 68meV, is W{(w)/2 obtained from our model I*y(w)
(displaced by the gap energy Ag = 27 meV in the figure). The
solid line is the coupling to the resonance found directly from
experiment,.

After this important low temperature consistency
check we can now study in more detail the temperature
dependence of the spectral density I?x(w) in the super-
conducting state of an optimally doped, twinned YBCO
single crystal using experimental data. The frequency de-
pendence of the optical scattering rate has been studied
at five temperatures by Basov et al. [42]. We reproduce
their experimental results in the top frame of Fig. 6.
The data are for 7" = 10K solid line, 7' = 40K dot-
ted line, 7' = 60K dashed line, 7' = 80K dash-dotted
line, and 7'= 95K (in the normal-state) gray solid line.
We see that in the normal-state To_pl (w) vs. w shows a
quasi-linear dependence on w but in all other curves a
depression below the normal curve is seen at small w
below roughly 75 meV. The depression is the more pro-
nounced the lower the temperature. At higher frequen-
cies all curves roughly coincide. At low temperatures,
To_pl (w) as a function of w shows a small value up to
50meV or so, with a sharp rise around 75 meV charac-
teristic of the existence of a sharp peak in I?y(w). It is

clear that this peak increases in strength as 7' is lowered
into the superconducting state. More quantitative infor-
mation on the temperature variation of the optical reso-
nance, its strength in I?y(w), and its position is shown
in the bottom frame of Fig. 6 where we show the second
derivative W (w) function derived directly from the data
given in the top frame by performing the differentiation
indicated in Eq. (8). The solid curve is for 7' = 10K,
the dotted curve for T' = 40 K, the dashed for T'= 60 K,
and dash-dotted for 7" = 80 K. The height of the peak of
the resonance clearly increases with lowering of the tem-
perature. In the curves for W(w) vs. w the position of
the peak is seen to be reduced as 7' is increased towards
Te. If it is remembered that the peak in W(w) is located
at the gap value Ag(7T) plus the position of the reso-
nance E} and the temperature dependence of the gap is
accounted for (it decreases with increasing temperature
and rapidly goes to zero as T¢ is approached) then we
conclude that the position of the resonance is temper-
ature independent although its strength decreases as T'
increases. This is also in agreement with the observation
made by Dai et al. [47] that the energy at which the spin
one resonance is observed in YBCO (41 meV) is temper-
ature independent.
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Fig. 6. Top frame: optical scattering rate 7'o_p1 (T, w) in meV
for optimally doped, twinned YBCO single crystals [42]. Bot-
tom frame: function W(w) vs. w in the region of the optical
resonance.

In Fig. 7 we show results for the spectral density
I?x(w) vs. w obtained from the data of Fig. 6 at five tem-
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peratures, namely 7' = 95K (solid gray curve), T'= 80K
(dash-dotted curve), T'= 60K (dashed curve), T = 40K
(dotted curve), and T = 10K (solid black curve). The
procedure follows in all cases the procedure already de-
scribed in detail for the 7" = 10 K data. Now, the reso-
nance is positioned and its magnitude given by the W(w)
data shown in the bottom frame of Fig. 6 and W{(w)/2 is
used to modify the normal-state MMP background spec-
trum only in the region of the resonance.

t.2r T=95K
1ok A —-—-T=80K
i - —-T=60K
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Fig. 7. The charge carrier-spin excitation spectral den-
sity ]2x(w) determined from optical scattering data at var-
ious temperatures. Solid gray curve T' = 95 K, dash-dotted
T = 80K, dashed T' = 60K, dotted T' = 40K, and black
solid T' = 10 K. Note the growth in strength of the 41 meV
optical resonance as the temperature is lowered.

A consistency check is then performed for all temper-
atures and we present the 7" = 40K result in Fig. 8.
The top frame gives W{(w)/2 obtained directly from ex-
periment in the resonance region (solid line, corresponds
to the dotted line in the bottom frame of Fig. 6). The
model [?x(w) for this temperature is given by the gray
solid squares displaced in energy by the superconducting
gap Ag = 21 meV. This spectrum agrees with the ex-
perimental W(w)/2 in the resonance region. The dashed
curve, finally, represents the theoretical W(w)/2 and we
recognize, again, a remarkable agreement between theory
and experiment in the appropriate energy range. The fit
to the optical scattering rate which in the end is the
quantity that matters is shown in the bottom frame of
Fig. 8. The theoretical curve (dashed line) follows well
the experimental data (solid line). In this sense we have
found a spectral density which can reproduce the mea-
sured optical scattering rate at 7' = 40K and it does
not matter much how we arrived at our final model for
I?x(w) which involved, as a step, consideration of the
function W(w) which served to guide our choice.

We return now to a more detailed discussion of the
optical conductivity. In Fig. 9 we show the real part
of the optical conductivity ¢1(w) for untwinned, opti-
mally doped YBCO single crystals (solid line) reported
by Homes et al. [48] and compare with results of vari-
ous calculations. This means that we are now comparing
theoretical predictions with experimental YBCO data
which have not been used to derive the I?Y(w) spec-
tra. The gray solid curve is the BCS result for a gap of
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24meV and impurity scattering in Born approximation
corresponding to ¢t = 0.32meV. It is very clear that no
agreement with experiment 1s possible with BCS d-wave.
One needs to go to an Eliashberg formulation if one is to
even get close to the data. In some sense this is very posi-
tive since a good fit with a BCS formulation would mean
that details of the pairing potential do not play an im-
portant role in the conductivity and, thus, our procedure
would not be a good way to pin down some of the details
of the pairing interaction. The dash-dotted curve repre-
sents results of Eliashberg calculations but with an MMP
model for the I?y(w) kernel. This ignores the growth of
the 41 meV optical resonance that enters when the su-
perconducting state develops. While the agreement with
the data is good at high energies beyond 100 meV say,
it fails completely in the low energy region. In partic-
ular, the Drude like peak at very low energies is much
too narrow. It 1s important, however, to emphasize the
difference between Eliashberg and BCS at high energies
where BCS gives a conductivity which is much too small
while, in comparison, Eliashberg with an MMP kernel
gives larger values reflecting the long tails extending to
400meV in the MMP I?x(w) spectrum. This is taken as
strong evidence for the existence of long tails in the pair-
ing spectral density and argues against a pure phonon
mechanism which would be lot more confined in energy.
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Fig. 8. The top frame gives the resonance peak obtained
directly from the optical data for YBCO in the supercon-
ducting state (solid curve) at 7' = 40K, the model I*y(w)
(gray squares) displaced by the gap, and the theoretical re-
sults for W{(w)/2 obtained from the model spectral density
(dashed line). The bottom frame gives the optical scattering
rate 7'o_p1 (w) vs. w. The experimental results give the solid
curve and our theoretical fit to it is the dashed curve.
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Fig. 9. Comparison of the real part of the in-plane conduc-
tivity o1 (w) vs. w for various models ("= 10 K). The grayed
solid line with a peak before 50 meV is BCS. The dash-dotted
line is an Ehashberg calculation with an MMP spectral den-
sity peaked at wsr = 20meV. The dashed line is the same
but with our temperature and frequency dependent [ 2x(w)
(see Fig. 7) used instead of the MMP model. As described
in the text this charge carrier — exchange boson interaction
spectral density ]2x(w) has been determined through a con-
sideration of in-plane optical data. The dotted (Born) and
dash-double-dotted (unitary scattering) curves include impu-
rities in addition to the I?x(w) model for inelastic scattering.
The solid line is the data of Homes et al. [48].

The dashed curve in Fig. 9 gives our results for the
real part of the conductivity oq(w) when our I?y(w) at
T = 10K (solid line in Fig. 7) is used in the calcula-
tions rather than the MMP kernel. The existence of the
41 meV resonance shifts the large rise in the conductivity
which now begins at much higher energies ~ 50 meV than
in the MMP case. It also leads to a maximum around
100 meV in good agreement with experiment. Even bet-
ter agreement can be obtained if a small amount of im-
purity scattering is included within the unitary or res-
onant scattering limit ¢ — 0 in Eq. (13). Results with
't = 0.63meV are shown as the dash-double-dotted
curve which displays all the important characteristics ob-
served in the experimental data. The agreement is truly
very good. A final curve including only Born impurity
scattering (dotted curve) shows that this limit cannot
explain the data. It should be clear from this compari-
son that BCS theory is quite inadequate in describing the
observed features of the real part of the infrared conduc-
tivity as a function of frequency while Eliashberg theory
can give a good fit. It is also clear that some impurity
scattering in the unitary limit 1s needed and that the
electron—boson exchange spectral density has long tails
extending to at least 400meV, and at 7' = 10K has a
large contribution from the 41 meV resonance peak.

In Fig. 10 we show our results for the imaginary part of
the optical conductivity o3(w). What is plotted is weoa(w)
vs. w at T'= 10 K. The solid curve gives data from Homes
et al. [48]. The dash-dotted curve are Eliashberg results
based on an MMP kernel which does not account for
charge carrier coupling to the 41 meV resonance. It fails
to reproduce the data. On the other hand, when the reso-
nance is included in our I?y(w) we get the dashed curve
which agrees with the data much better and shows a
large depression in the curve located around 75 meV in
agreement with the data. This is the signature in o2 (w)
of the 41 meV resonance in Iy (w). At very low energies
the agreement is not as good. As for the real part of the
conductivity this region is sensitive to impurity scatter-
ing while at higher energies only inelastic scattering is
really important. The dash-double-dotted curve includes
impurities in the unitary limit with 't = 0.63meV
as before. This produces excellent agreement with the
data even in the small w region which is not as well de-
scribed in the case of Born scattering (dotted curve with
tt = 0.32meV). It is clear from this graph that wos(w)
has an easily identifiably signature of the spin resonance.
Also, the spectral density extends to high energies and
Eliashberg theory with some contribution from unitary
scattering impurities is in very good agreement with the
data.
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Fig. 10. The imaginary part of the conductivity woz(w)
vs. w for the various models described in Fig. 9 (T = 10K).
The solid curve is the data [48]. The dash-dotted curve is
the result of an Eliashberg calculation with an MMP model
while the other curves are based on the model ]2x(w) which
includes the 41 meV resonance. These three curves are for
the pure case (only inelastic scattering, dashed line), the oth-
ers are with some additional elastic impurity scattering in
Born (dotted) and unitary (dash-double-dotted) limit with
tT = 0.32meV and I'" = 0.63meV respectively. The gray
solid line is the BCS result.

While we have seen that an unmistakable signature of
the 41 meV optical resonance exists in the data on both
real and imaginary part of the infrared conductivity as
a function of energy w in the 7" = 10K data, the res-
onance is even clearer in the second derivative defined
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by W(w) of Eq. (8). The near equality between W(w)
and o?F(w) established by Marsiglio et al. [24] for a
phonon mechanism was only for the normal-state, i.e.:
To_pl (w) entering the formula is the normal-state optical
scattering rate. But in the high T, cuprates the only low
temperature data available is often in the superconduct-
ing state. Thus, we need to discuss in more detail what
happens in Eq. (8) when To_pl (w) is replaced by its super-
conducting state value. As we have seen in Fig. 3, in the
normal-state and at low temperatures W (w) is almost ex-
actly [25,44,45,49,50] equal to the input I?y(w) for mod-
els based on the NAFFL. Of course, I?y(w) is seen in
W (w) through electronic processes. But in the normal-
state the electronic density of states N(g) is constant in
the important energy region and, thus, does not lead to
additional structures in W(w) that are not in I?y(w).
Such additional structures would then corrupt the sig-
nal, if the aim is to obtain I?y(w) from W (w). This is no
longer the case in the superconducting state because of
the logarithmic van Hove singularities in N (¢) and these
do indeed strongly influence the shape of W{w) and in-
troduce additional structures in W (w) corresponding to
combinations of the positions of the singularity in N (¢)
and the peak in I?y(w) at E, as described by Abanov et
al. [51].

The structures in W{(w) corresponding to these singu-
larities contaminate the signal in the sense that W(w) in
the superconducting state is no longer equal to the input
I?x(w) [44,45]. In fact, only the resonance peak appears
clearly at Ag + Ey and its size in W(w) is about twice
the value of I?y(w) at that frequency. In some cases the
tails in W (w) also match well the tails in I?x(w). In the
end, of course, W(w) serves only as a guide and it is
the quality of the final fit to the conductivity data that
determines the quality of the derived I?x(w).

Nevertheless, besides giving a measure of the coupling
of the charge carriers to the optical resonance W(w) can
also be used to see the position of density of states singu-
larities, as shown in Fig. 11 where I?y(w) (gray squares)
and W (w) (solid line) derived from our theoretical results
are compared. Also shown by vertical arrows are the po-
sitions of Ag + Fr, 2A¢ + Ey, Ag+ 2FE;, and 2Ay + 2F;.
We note structures at each of these places and this in-
formation i1s valuable. Note that at 2Ay 4+ B} the large
negative oscillation seen in W(w) is mainly caused by the
kink in I?y(w) (gray squares) at about 75 meV. The den-
sity of electronic states effects clearly distorted the spec-
trum above the resonance peak and W (w) stops agreeing
with the input I?y(w) in this region until about 150 meV
where agreement is recovered. In summary, W(w) con-
tains some information on singularities in N (g) as well
as on the shape and size of I?y(w) and, in the supercon-
ducting state, the two effects cannot be clearly separated.
Nevertheless, W (w) remains a valuable intermediate step
in the construction of a charge carrier — exchange boson
interaction spectral density from optical data. To close,
the dashed curve in Fig. 11 is the direct experimental
data for W(w)/2 which is remarkably similar to theory
when we consider that a second derivative is needed to
get this curve.
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Fig. 11. Second derivative W (w) compared with the input
spectral density I?x(w). The 41 meV peak in I°y(w) (gray
squares) is clearly seen in W(w)/2 (solid line) as are the
tails at higher energies. In the energy region between 75 and
150 meV the van Hove singularities in the electronic density
of states show up added on to F, and distort the correspon-
dence between W{(w)/2 and I*x(w). The dashed line shows

the function W(w)/2 derived from experimental data.

Next we want to concentrate on the out-of-plane con-
ductivity (c-axis conductivity) of YBCO. Before present-
ing results we stress that the boson exchange kernel
I?x(w) is an in-plane quantity and is taken from our
discussion of the in-plane conductivity. It is not fitted
to any c-axis data. It is to be used unchanged to calcu-
late the out-of-plane conductivity assuming first coher-
ent hopping with ¢ (k) = ¢, cos?(¢) in Eqgs. (19). The
solid curve in Fig. 12 is the in-plane Eliashberg result
which is included for comparison with the dashed curve
which is for the c-axis. In the boson assisted region, which
would not exist in a BCS theory, both curves have a
remarkably similar behavior. At very low frequencies, a
region which comes mainly from the coherent delta func-
tion part of the carrier spectral density, and which is the
only part included in BCS, we note a narrow Drude-
like peak in the solid curve. This part is suppressed in
the c-direction (dashed curve) because the contribution
from the nodal quasiparticles are effectively left out by
the ¢ cos?(¢) weighting term. Also, shown for compari-
son are BCS results for coherent hopping (dotted curve)
along the c-axis. These results show no resemblance to
our Eliashberg results and also do not agree with exper-
iment Fig. 13. What determines the main rise in the re-
gion beyond the Drude part of the conductivity in oy.(w)
are the boson assisted processes and this rise does not
signal the value of the gap or twice the gap for that mat-
ter, but rather a combination of Ay and the resonance
energy F..
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Fig. 12. Comparison between in-plane (solid line) and out
of plane (dashed line) real part of the c-axis conductivity
alc(w) vs. w in an Eliashberg model with our model car-
rier-boson spectral density ]2x(w) which includes the 41 meV
spin resonance. The dotted curve is alc(w) for a BCS d-wave
model with the same gap value as in the Eliashberg work and
is included for comparison.
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Fig. 13. Comparison between in-plane (dotted) and out of
plane (solid) for the real part of the conductivity o;(w) vs.
w. The data is from Homes et al. [48].

In Fig. 13 we compare the data of Homes el al
[48] on the same graph for in-plane (dotted) and out-
of-plane (solid) conductivity o1(w). It is clear that in
the c-direction, the nodal quasiparticles seen in the
dotted curve are strongly suppressed. This favors the
1 cos?(2¢) matrix element for the c-axis dynamics as
we have just seen. Further, in the boson assisted region
the two curves show almost perfect agreement with each
other, which again favors the ¢; cos?(2¢) coupling as was
illustrated in the theoretical curves of Fig. 12. One dif-
ference is that the main rise, indicating the onset of the

boson assisted incoherent (in-plane) processes, appears
to have shifted slightly toward lower frequencies in the
c-axis data as opposed to a shift to slightly higher fre-
quencies in our theory. It should be remembered, how-
ever, that in the raw c-axis data, large structures appear
in the conductivity due to direct phonon absorption and
these need to be subtracted out, before data for the elec-
tronic background of Fig. 13 can be obtained. In view of
this, 1t 18 not clear to us how seriously we should take
the relatively small disagreements that we have just de-
scribed between theory and experiment.

With the above reservation kept in mind we show in
Fig. 14, a comparison of various theoretical results with
experimental c-axis conductivity (black solid line). There
are five additional curves. The black ones are obtained
from an Eliashberg calculation based on the MMP model
for I?y(w) with impurities ¥ = 0.32meV included to
simulate the fact that the samples used are not perfect,
1.e.: are not completely pure, but this parameter does not
play a critical role in this discussion. Incoherent c-axis
coupling is assumed with |V /Vp| = 1 (black dotted). Tt
is clear that this curve does not agree well with the data
and that the coupling along the c-axis cannot be domi-
nated by incoherent hopping between planes. This is also
in agreement with the results of a theoretical study by
Dahm et al. [52] who also observed better agreement for
coherent c-axis conductivity in the overdoped regime. On
the other hand the fit with the black dashed line 1s good
in comparison. It uses the same MMP model but with co-
herent coupling of the form ¢ (k) = ¢, cos?(2¢). This fit
may already be judged satisfactorily but it should be re-
membered that if we had used the model of I?y(w) with
the 41 meV peak included instead of MMP, the agree-
ment would have deteriorated. This is troubling since one
would expect that coupling to the 41 meV spin resonance
would be stronger in the c-direction data than it is in the
in-plane data. This is because the c-axis emphasizes the
hot spots around the antinodal directions which connect
best to (m, 7) in the magnetic susceptibility. This is the
position in momentum space where this spin resonance
is seen to be located in optimally doped YBCO. On the
other hand, recent ARPES data [23,53-55] which fit well
the MFL (marginal Fermi liquid) phenomenology show
little in-plane anisotropy for scattering around the Fermi
surface and this is consistent with the findings here.

The dash-dotted curve in Fig. 14 illustrates a fit to
the data that can be achieved with a dominant coherent
piece and subdominant incoherent contribution. It is not
clear to us whether such a close fit is significant given the
uncertainties in the data and the lack of uniqueness in
the fitting procedure. It does, however, illustrate the fact
that a small amount of incoherent c-axis hopping cannot
be completely ruled out from consideration of the in-
frared data and that this data can be understood quite
well within Eliashberg theory. The last two curves (solid
gray and dotted gray) are based on BCS d-wave theory
and are reproduced here to illustrate the fact that such
a theory is unable to explain the c-axis data. The solid
gray curve is with ¢; (k) = ¢, cos?(2¢) and the dotted
gray one for incoherent c-axis transport. Compared with
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results the agreement with the data is

by itself will increase the microwave conductivity. At the
same time the normal fluid density is of course decreasing
towards zero. This feature reduces the absorption which
1s due only to the normal excitation. The two effects com-
bine to give a maximum in the real part of the microwave
conductivity at some intermediate temperature.

Another possible way to describe this collapse of the
inelastic scattering time is the introduction of a temper-
ature dependent inelastic scattering time which can be
modeled from spin fluctuation theory [56].

poor.
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Fig. 14. Comparison with the data of Homes et al. [48] for
the c-axis conductivity (black solid curve). The theoretical
curves were obtained in a BCS theory, solid gray (coherent),
dotted gray (incoherent) and the others in Eliashberg theory
with MMP model and impurities ¢¥ = 0.32meV. The black
dotted curve is for incoherent c-axis with |Vi/Vp| = 1, the
dashed for coherent c-axis with t1 (@) = t1 cos®(2¢) with ¢
an angle in the two dimensional CuQOs Brillouin zone, and
the dash-dotted is a fit to the data provided by a mixture
of coherent and incoherent. We stress that this last fit is for
illustrative purposes only, and is not unique.

8. The Microwave Conductivity

The microwave conductivity as a function of temper-
ature in pure single crystals of YBCO revealed the ex-
istence of a very large peak around 40K [20] whose size
and position in temperature depends somewhat on the
microwave frequency used. This peak has been widely
interpreted as due to a rapid reduction in the inelas-
tic scattering below T, and is generally referred to as
the collapse of the low-temperature inelastic scattering
rate. This has been taken as strong evidence that the
mechanism involved is electronic in origin and, this fact
translates in our formalism into the fact, that the charge
carrier — exchange boson interaction spectral density
I?x(w) is reduced at low frequencies due to the onset
of superconductivity. We have already seen in Fig. 7 the
growth of the 41 meV resonance in [?x(w) as the temper-
ature is lowered. At the same time the in-plane infrared
optical data shows a gapping or at least a strong reduc-
tion of spectral weight at small w. This implies that for
temperatures smaller than the characteristic energy asso-
ciated with this reduction, the inelastic scattering rates
will become exponentially small and therefore the inelas-
tic scattering time will become very large. This feature
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Fig. 15. Microwave conductivity o1(w,t) in 107 Q7 'm™*
vs. the reduced temperature ¢ = T'/T. for the five frequencies
measured in experimental work of Hosseini et al. [57] namely
Q = 1.14, 2.25, 13.4, 22.7, and 75.3 GHz (bottom frame).
Solid squares are experiment, open triangles clean limit and
solid triangles inelastic scattering plus impurities character-
ized by a potential with 't = 0.003meV and ¢ = 0.2.

Recently Hosseini et al. [57] provided new microwave
data at five different frequencies between 1 and 75 GHz
on ultra pure samples of YBayCusQOg g9 grown in BaZrOj3
crucibles. In Fig. 15 we show results obtained from our
Eliashberg solutions and compare with experiment [58].
The solid squares are the data of Hosseini et al., the open
triangles are our numerical results in the clean limit,
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and the solid triangles include a small amount of im-
purities characterized by I't = 0.003meV and ¢ = 0.2.
The figure has five frames one for each of the five mi-
crowave frequencies considered, namely 1.14, 2.25, 13.4,
22.7, and 75.3 GHz. We see that even for these ultrapure
crystals, results obtained without including impurities do
not agree well with the data at the lowest microwave fre-
quencies considered and at the lowest temperatures. For
example, in the case of the w = 1.14 and 2.25 GHz runs
the predicted peak is much to high. The agreement, how-
ever, improves as the frequency of the microwave probe
is increased. More importantly, when a small amount of
impurity scattering with ¢ = 0.2 is included, good agree-
ment is obtained in all cases. The same data plotted
in a different way shows better the dramatic improve-
ment in the agreement with the data when impurities
are included. This is demonstrated in Fig. 16 where we
show the data for the microwave conductivity o(w) vs.
w at three different temperatures. The data are repre-
sented by solid squares, up-triangles and down-triangles
for "= 10K, 15 K and 20 K respectively. The open sym-
bols give the results of our Eliashberg calculations in the
pure case and the solid gray symbols include impurities.
The gray lines through the points are a guide for the eye.
The agreement with the data in this last case is within
experimental error and 1s acceptable. It is clear, that a
small amount of elastic scattering needs to be included
in the calculations to achieve good agreement.
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Fig. 16. The microwave conductivity o1 (w,T') as a function
of w for three different temperatures. The data is the same as
shown in Fig. 15. The open symbols are theory for the pure
limit, the solid gray symbols theory with some impurity scat-
tering additionally included, and the solid black symbols are
experiments. The squares are for T' = 10 K, the up-triangles
for T'= 15K, and the down-triangles for 7' = 20 K.

We now turn to the c-axis. No new parameters rele-
vant to the in-plane dynamics need to be introduced in
order to understand the c-axis data. It is necessary, how-
ever, to have some model for the c-axis charge transfer.
Coherent or incoherent hopping will lead to quite differ-
ent conclusions as will the assumption, in the coherent
hopping case, of a constant or a momentum dependent
hopping probability. For the constant case the conduc-
tivity will mirror its in-plane value but its magnitude
will of course be greatly reduced. For a #-dependent ma-
trix element, on the other hand, the nodal quasiparticles
are eliminated from participation in the c-axis response
and we can expect a behavior different from the in-plane
results.
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Fig. 17. The c-axis microwave conductivity o1.(7) at
w = 22GHz as a function of temperature 7. The open

up-triangles were obtained from the empirically determined
I?y(w) shown in Fig. 7. The solid squares are for an MMP
form Eq. (19) with low frequency cutoff applied. This cut-
off is the same as seen in Fig. 7. The open down-triangles
employ the same MMP model with wsp = 20meV and
without the low frequency cutoff. In this case there is no

peak in alc(T). All curves are for coherent tunneling with
ti(k) =1ty cos2(29).

In Fig. 17 we show numerical results for the tempera-
ture dependence of the real part of the c-axis microwave
conductivity o1.(T) at w = 22 GHz as a function of tem-
perature T in arbitrary units. The results are for coher-
ent hopping with a #-dependent matrix element. For the
in-plane case the same form applies except that the ver-
tex ¢4 (k) would be replaced by a Fermi velocity vi. In
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as much as both these vertices are taken to be indepen-
dent of k they can be pulled out of the integral over k
in Eqs. (19) and in-plane and out-of-plane conductivities
differ only by a numerical constant which sets the over
all scale in each case. Since no peak is observed in the
temperature dependence of the c-axis conductivity [59]
this case does not agree with experiment and will not be
treated further here. Only results for ¢ (k) = ¢, cos?(20)
are considered in Fig. 17. The open up-triangles are the
results obtained from the charge carrier — exchange bo-
son interaction spectral density I?y(w) obtained empir-
ically from the in-plane infrared conductivity (Fig. 7).
This is the only material parameter which character-
izes YBCO in the Eliashberg equations (13). Solutions
of these equations determine the in-plane Green’s func-
tion (22) and hence the c-axis conductivity Eqgs. (21).
Arbitrary units are used, so that the absolute value of
t, is not required. We see a broad peak in o1.(7) vs. T
which 1s centered around 7" = 60K rather than around
T = 40 K for the in-plane case of Fig. 15. The c-axis peak
is also smaller. These differences are entirely due to the
extra factor of cos*(26) in the c-axis conductivity which
eliminates the nodal direction. This has a profound ef-
fect on the resulting temperature dependence of o1.(7)
but, as we can see, does not entirely eliminate the peak
in o1(7T).

There is considerable disagreement with experiment
which is shown as the solid squares in Fig. 18. Our the-
oretical results are robust in the sense that the peak 1is
due to the greatly reduced spectral weight in I?y(w) of
Fig. 7 at small w when superconductivity sets in and this
is fixed from consideration of the in-plane conductivity.
The effect of this spectral weight reduction is further il-
lustrated in Fig. 17 by the solid squares which employ in-
stead of our empirical value for I?y(w) the simpler MMP
form of Eq. (24) with the same low frequency cutoff as
indicated in Fig. 7 being applied. The cutofl is of course
temperature dependent and goes to zero at 7T..

The peak in o1.(7") vs. T remains and is close to the
results obtained when an optical resonance is included
in addition to a low frequency cutoff. For comparison,
the down-triangles were obtained when no low frequency
cutoff was applied. We now see that the peak in ¢1.(7)
vs. T 1s completely eliminated. This demonstrates that
the peak is due to the collapse of the inelastic scattering
rate embodied in the low frequency gapping of the charge
carrier-boson spectral density. In summary, even when a
momentum dependent coherent hopping matrix element
of the form ¢, (k) = ¢, cos?(20) is considered, gaping of
I?x(w) at small w leads directly to a peak in the c-axis
microwave conductivity. However, the spectral density
I?x(w) which enters the Eliashberg equations (10) on
the imaginary axis and (13) on the real axis could depend
on position on the Fermi surface. This complication was
not considered here but it is important to point out that
coherent c-axis tunneling could lead to reasonable agree-
ment with the measured temperature variation of the
microwave conductivity, if the spectral density I?y(w) is
different along the antinodal direction and, in particular,
has no gapping at low frequencies. This difference might
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not have been picked up in our analysis of the in-plane
conductivity which is characteristic of an average over all
points on the Fermi surface and not just of the antinodal
direction.
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Fig. 18. The c-axis microwave conductivity oi.(7) at
w = 22 GHz as a function of temperature T'. The solid squares
are the experimental results by Hosseini et al. [59] shown for
comparison. The others are theory based on various models
for the charge carrier — exchange boson interaction spectral
density. All calculations are for the incoherent case based on
Egs. (21) with Vi = V5 in (22) and Vi adjusted to match
the experimental value at 7' = 90 K. Open up-triangles are
based on our empirically determined charge carrier — ex-
change boson interaction spectral density ]2x(w) of Fig. 7
without additional impurity scattering (pure limit). The open
down-triangles are also in the pure limit but the MMP model
(24) is used without cutoff. The stars are the same as the
open down-triangles but now impurity scattering is included
in the unitary limit with I't = 0.5 meV.

Fig. 18 shows results for the temperature variation of
the c-axis microwave conductivity o1.(7) at w = 22 GHz
in the incoherent coupling case, Eqgs. (21). As we have
indicated in Sec. 2 this formula involves a double inte-
gral over momentum which separately weights the two
Green’s functions. For simplicity, we show results only
for the case V1 = Vy in the impurity model potential
of Eq. (22). Other values have been considered but this
does not change qualitatively any of the conclusions we
will make. The open up-triangles give results when the
empirical I?y(w) of Fig. 7 is used. We see that in this
case the theory predicts no peak in o1.(7T) vs. T in good
agreement with the experimental results of Hosseini et al.
[59] (solid squares). The low frequency cutoff built into
our I?y(w) (open up-triangles) has little effect on the
resulting o1.(7). This is verified directly when we com-
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pare with the open down-triangles which were obtained
with the MMP form (24) without cutoff. These results
differ very little from the previous ones and show that
the application of a low frequency cutoff does not play
a critical role for the incoherent case. This 1s in sharp
contrast to the coherent case in which the low frequency
cutoff leads directly to a peak in o1.(7T). The curves are
also robust to the introduction of some elastic impurity
scattering as is demonstrated with the final set of re-
sults in Fig. 18, denoted by stars, which is based on an
MMP model with elastic impurity scattering included in
the unitary limit with Tt = 0.5meV in Eq. (11). We
see that the inclusion of impurities does not appreciably
change our results. The calculation clearly shows that
the observed data can be understood naturally in an in-
coherent c-axis transport model and that the results are
robust to changes in cutoff at low w and to the addition
of impurities.

This contrasts with the case of the c-axis infrared data
which we described previously and found to support co-
herent rather than incoherent c-axis charge transfer.

4. Other Superconducting State Properties

The temperature dependence of the area under the
spin resonance seen at (m,7) by spin polarized neutron
scattering [47] has been measured and its temperature
dependence denoted by (mZ (T))/(mZi (T = 10K)) is
reproduced in the top frame of Fig. 19 as the solid cir-
cles. Also shown on the same plot are our results for
the area under the optical resonance in our spectral den-
sity I?y(w) at various temperatures (see Fig. 7). We de-
note this by A(T) and plot as the solid line the ratio
A(T)/A(T = 10K) which follows the same temperature
variation as the neutron result. This temperature varia-
tion is also close to that of the gap edge shown as the
dashed curve. This last curve was found as a byproduct
of our Eliashberg calculations based on the numerical so-
lutions of Eqs. (13). The gap amplitude at temperature
T is given by Re{A(w = Ag;T)} = Ag(T). The same
solutions give the temperature dependence of the pen-
etration depth and of the thermodynamic critical field
which we present in the bottom frame of Fig. 19. The
solid curve gives results for [A(0)/A(T)]? vs. t = T/T.
(the reduced temperature) which are close to the exper-
imental results of Bonn et al. [4] given as solid squares.

Further results are shown in Fig. 20 for the electronic
part of the thermal conductivity as a function of tem-
perature. It shows, as does the in-plane microwave con-
ductivity, a large peak around 40 K. The solid triangles
are the results of our calculations while the solid squares
are the experimental results of Matsukawa et al. [60].
The agreement is remarkably good. We stress that no
adjustable parameters enter our calculations except for
a choice for the impurity parameter t which is also re-
stricted in this particular case because t1 has already
been determined by a previous fit to the microwave data
[15]. The kernel in the Eliashberg equations is completely
determined from optical data.
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Fig. 19. Top frame: spectral weight under the optical res-
onance as a function of temperature (solid line) obtained
from the optical data of Fig. 6 (top frame, five tempera-
tures only). The solid circles are the data of Dai et al. [47]
for the normalized area under the spin resonance obtained
by neutron scattering. The dashed curve gives our calculated
Ag(T)/Ao(0). Bottom frame: the normalized London pene-
tration depth squared (A(0)/A(T))? vs. reduced temperature
t =T/T, (solid line) compared with the experimental results
of Bonn et al. [4]. The dotted curve gives thermodynamic

critical field H.(T')/H.(0) vs. t.
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Fig. 20. The electronic part of the thermal conductivity as
a function of the reduced temperature t = T/T.. The solid
squares are the experimental results of Matsukawa et al. [60]
and the solid triangles our theoretical result with some im-
purity scattering included.
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Theory |Experiment| Ref.
AF(0) | 0.287 0.25 [64,65]
ns/n 0.33 0.25 [67]
Q, 2.36 2.648 [68]
2A0/kpT.| 5.1 5.0 [66]

Table 1. Some superconducting properties of the twinned
YBCO sample: AF(0) is the condensation energy at T'=0in
meV /Cu-atom, n./n is the superfluid to total carrier density
ratio, €1, is the plasma frequency in eV.

Other important successes of our Eliashberg calcula-
tions are summarized in Table 1. We begin with a discus-
sion of the plasma frequency €2,. Referring to Fig. 9 we
point out the arrow which shows the frequency at which
we made our calculated conductivity agree exactly with
experiment. This sets the plasma frequency which is also
the total spectral weight under the real part of the con-
ductivity. The optical spectrum sum rule 1s

/dw o1(w) = %. (25)

A value of Q, = 2.36 eV is found which agrees well with
the experimental value 2.648 eV (see Tab. 1). A further
comparison of our model with the infrared data is pro-
vided by the analysis of the fraction of the total normal-
state spectral weight which condenses into the super-
fluid: ns/n. Indeed, strong electron-boson coupling re-
duces the spectral weight of the quasiparticle component
of the electronic spectral function A(k,w) compared to
its non-interacting value by a factor of Z leading at the
same time to the appearance of an incoherent compo-
nent. It is the latter component which is responsible for
the Holstein band in the optical conductivity whereas
the coherent quasiparticle part gives rise to the Drude
term at T > T, and to the superfluid density at 7' = 0 in
the spectra of o1 (w) [69]. The values of ns/n and hence
(7 —1) yield an estimate of the strength of renormaliza-
tion effects in the interacting system. Tanner et al. [67]
obtained ny/n ~ 0.25 in crystals of YBCO. This com-
pares well with the value ~ 0.33 which corresponds to
7 ~ 3 (at low temperatures) generated in our analysis.
We have also calculated the condensation energy [2]
as a function of temperature. Its value at 7' = 0 fol-
lows from the normal-state electronic density of states
which we take from band structure theory equal to
2.0states/eV/Cu-atom (double spin) around the middle
of the calculated range of values [70]. This gives a con-
densation energy AF(0) = 0.287meV/Cu — atom which
agrees well with the value quoted by Norman et al. [64]
from the work by Loram et al. [65]. (See Tab. 1). This is
equivalent to a thermodynamic critical field pgH.(0) =
1.41T with H.(T) defined through AF(T) = H2(T)/8x.
The normalized value H.(T)/H.(0) is shown as the dot-
ted line in the bottom frame of Fig. 19 and is seen to
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follow reasonably, but not exactly, the 7" dependence of
the normalized penetration depth. One further quantity
is the ratio of the gap amplitude to the critical tempera-
ture which in BCS theory is 2Aq/kpT. = 4.2 for d-wave.
In Eliashberg theory the gap depends on frequency. In
this case an unambiguous definition of what is meant by
Ay is to use the position in energy of the peak in the
quasiparticle density of states which is how the gap Ag
is usually defined experimentally for a d-wave supercon-
ductor. We get a theoretical value of 2A/kgT, ~ 5.1 in
good agreement with experiment, as shown in Tab. 1.

B. The Compound Bi,Sr,CaCuz0s4;

Optical data published by Puchkov et al. [46]
for optimally doped samples of the compound
BiaSraCaCusOsys (Bi2212) have first been analyzed
by Schachinger and Carbotte [45]. They reported that
the normal-state optical scattering rate (7" = 300K)
can be fitted perfectly by an MMP spectrum with
wsp = 100meV and with an high energy cutoff at
400 meV. The inversion of the superconducting state op-
tical scattering rate revealed the coupling of the charge
carriers to a resonance found at an energy of 43 meV.
This corresponds to the magnetic resonant mode found
by Fong et al. [71] using inelastic neutron scattering.
This mode appears below 7. and its intensity increases
with decreasing temperature.

Tu et al. [72] recently studied the ab-plane charge dy-
namics in optimally doped Bi2212 single crystals (T, =
91K) using an experimental technique with much im-
proved signal to noise ratio. They developed an experi-
mentally unambiguous method which examines the max-
ima and minima of W(w), Eq. (8). The authors argued
that a comparison of their spectral data with data found
for YBCO suggests that a pseudogap exists in Bi2212
above T, at least at 7' = 100 K. Fig. 21 presents their
data (solid lines) together with a theoretical analysis.
For I?x(w) an MMP spectrum is used and at 7' = 295 K
our best fit is found for wgr = 82meV together with
an high energy cutoff 400 meV using theoretical results
calculated from Eq. (3) (dotted line). If we calculate the
optical scattering rate for the temperatures T = 200
and 100 K using the same I?y(w) spectrum it becomes
obvious that the agreement with experiment deteriorates
with decreasing temperature (dotted lines). A compari-
son of the anomaly in the optical data at 7" = 100K
around 50 meV with the optical data of YBCO (Fig. 8)
reveals quite similar behavior which suggests that in
Bi12212 a coupling to an optical resonance can actually be
seen in the normal state. Indeed, the quality of the data
is good enough to allow us to derive W(w) by inversion.
The result shows a pronounced peak at 43 meV which can
be used to modify the I?x(w) spectrum. This is shown
in Fig. 22. Using this modified spectrum I?y(w) to cal-
culate the optical scattering rate for 7" = 100K results
in excellent agreement between experiment and theory

(dashed line, Fig. 21 labeled 100 K).
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Fig. 21. The temperature dependent ab-plane optical scat-
tering rate for an optimally doped Bi2212 single crystal with
E||a in the normal state. The solid lines represent experimen-
tal data by Tu et al. [72]. The dotted lines give the theoretical
result calculated using Eq. (3) and a I?y(w) which is just an
MMP spectrum with wgr = 82meV. At T' = 295K theory
reproduces experiment almost ideally; this agreement deteri-
orates at lower temperatures. Finally, the dashed lines present
theoretical results found for the same MMP spectrum as be-
fore but now with coupling to the 43 meV optical resonance

added.
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Fig. 22. The charge carrier-spin excitation spectral density
]2x(w) determined from normal-state optical scattering data
shown in Fig. 21 for optimally doped Bi2212 single crystals.
The solid curve is for T'= 295 K, the dotted curve for 200 K,
and the dashed one for 100 K. Note the growth in strength of
the 43 meV optical resonance as the temperature is lowered.

The T' = 200K data show a similar, but less pro-
nounced, anomaly. It is not possible to derive a W(w)
directly from the data so we simply use the I?y(w) found

for 100 K and reduce the size of the 43 meV peak un-
til best agreement between experiment and theory is
reached (dashed line in Fig. 21 labeled 200 K). This re-
sults in an I?y(w) presented in Fig. 22 which still con-
tains a pronounced contribution from the coupling of the
charge carriers to the optical resonance (dotted line).
From this we can conclude that the optical resonance,
and probably connected with it, the magnetic resonant
mode exists at least up to 200 K. Nevertheless, our result
for 295 K indicates that at this temperature the optical
resonance no longer exists.
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Fig. 23. Top frame: optical scattering rate 75, (T, w) in
meV for optimally doped, untwinned Bi2212 single crystals
[72]. Bottom frame: function W(w)/2 vs. w in the region of
the optical resonance.

We will now concentrate on the superconducting state
and study the temperature dependence of I?y(w) be-
low T.. The top frame of Fig. 23 presents the infrared
scattering rate as measured by Tu et al. [72] for three
temperatures, namely 6 K (gray solid line), 50 K (dashed
line), and 80 K (dotted line). In comparison with similar
results for YBCO (top frame of Fig. 6) we recognize that
even at 80K Bi2212 shows a very strong suppression of
To_pl (w) at energies below 50 meV which is an indication
of stronger coupling of the charge carriers to the opti-
cal resonance. The bottom frame of this figure shows
the function W(w)/2 derived from experiment with the
high energy negative parts suppressed because we want
to concentrate on the optical resonance. It increases as
T is lowered and shows only little further variation be-
low 50 K. In W (w)/2 the resonance peak is positioned at
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the resonance energy E, plus the gap value Ag(T) and
with the temperature dependence of the gap accounted
for, we can conclude that the position of the resonance
is temperature independent and stays at B, = 43meV,
the energy at which the magnetic resonant mode is found
by inelastic neutron scattering [71]. The coupling of the
charge carriers to a boson at 43 meV has also been ob-
served in photoemission [73] and tunneling [74] work on
Bi2212 and the 43 meV magnetic resonant mode seems
to be the obvious candidate for the origin of this boson.

300
Experiment P
250 f----- Theory, clean limit %
-

< [ === Theory,"=0.5meV ..

> 200 | y s

é |

’:-;, 150

& 100}

50
0 A ] A ] A ] A
0 50 100 150 200 250
w (meV)
3000 f
I. Experiment
'I ----- Theory, clean limit

42000 f! - - - Theory, " = 0.5 meV

c 1
O

<}

3 1000 |

bH

0 Pk | 1 1 1 L
0 50 100 150 200 250

w (meV)

Fig. 24. The top frame gives the optical scattering rate
7'o_p1 (w) vs. w for optimally doped Bi2212 single crystals at a
temperature of 6 K. The experimental results give the solid
curve and our clean limit theoretical fit to it is the dotted
curve. The dashed curve presents theoretical results for a sys-
tem with impurity scattering in the unitary limit described
by the parameter 't = 0.5meV and ¢ = 0. The lower frame
gives a comparison of the real part of the in-plane optical con-
ductivity o1(w) vs. w for the two models already presented in
the top frame. The solid curve is the experimental data, the
dotted curve the clean limit theoretical result, and the dashed
curve the theoretical result for the system with impurities.

Fig. 24 demonstrates the agreement which can be
achieved between theory and experiment. The top frame
shows the infrared scattering rate To_pl (w) vs. w for T =
6 K. The solid line gives the experimental data while the
dashed and dotted curves represent theoretical results
for a clean limit system and for a system with impurity
scattering in the unitary limit ('t = 0.5 meV) respec-
tively. The differences in the scattering rate are marginal
for these two model systems, nevertheless, they become
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important when the real part of the optical conductivity
o1(w) is investigated. The bottom frame of Fig. 24 shows
the results. The solid line is experiment, the dotted line
1s theory for the clean limit system. It reproduces nicely
the maximum in o;(w) around 120meV and the high
energy tail. At energies below 75 meV the clean limit re-
sults deviates strongly from experiment towards nearly
zero values and show a very pronounced, narrow peak
around w = 0. Results for the system with impurities
treated in the unitary limit (I = 0.5 meV, dashed line)
display all important features observed in the experimen-
tal data. We see, as in the case of YBCO, that impurities
affect only the low energy region (w < 60 meV), the re-
gion 60 < w < 100meV is dominated by the coupling
to the optical resonance modeled in the I?y(w) while
the energy region w > 120meV is determined by the
normal-state MMP part of I?x(w) as has already been
described for the YBCO compound.

The bottom frame of Fig. 24 contains an arrow which
points out the frequency at which we made our calcu-
lated o (w) to agree exactly with experiment. (This was
only done for the clean limit calculation, the same scaling
was used for the system with impurities.) This sets the
plasma frequency €, = 2.3eV which is to be compared
with the , = 1.98 eV used by Tu et al. [72]. Finally, we
found for the superconducting gap at 7' = 6 K a value
of 25 meV. This is certainly smaller than the value of
34meV reported by Riibhausen et al. [75] from Raman
spectroscopy on Bi2212 single crystals with a 7, of 95 K.

C. Application to Other Cuprates

In contrast to the systems studied so far
Tl3BazCuOsg4s (T12201) is a monolayer compound while
YBCO, Bi2212 and YBasCuysOs (Y124) are bilayer
compounds. Moreover, T12201 is the only system with
tetragonal symmetry, all the other compounds are of
orthorhombic symmetry. Its 7, ~ 90K and this is simi-
lar to the 7. of YBCO and Bi2212. Y124, on the other
hand has a slightly lower T, of 82K and shows prop-
erties which resemble a moderately underdoped YBCO
compound.

In Fig. 25 we show our result for the normal-state
To_pl (w) [46] related to the conductivity by Eq. (7) for
TI12201 with 7, = 90K at temperature 7" = 300 K. The
solid curve is the data of Puchkov et al. [46]. The dotted
curve is our best fit for wgp = 30 meV with 7% adjusted
to get the correct absolute value of the scattering rate
at T'= 300K and w = 200 meV. We see that this value
of wgr does not give a satisfactory fit to the data. The
dash-dotted curve, however, fits the data well and cor-
responds to wgp = 100meV. This fit provides us with
a model I?y(w) valid for the normal state of T12201.
This I?x(w) is then used to calculate the anisotropy pa-
rameter g from the solution of the linearized imaginary
axis Eliashberg equations (10) for the critical tempera-
ture T, = 90 K. As a result of this procedure all necessary
parameters are fixed and we can now proceed to study
the superconducting state.
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Fig. 25. The normal-state optical scattering rate To_pl(w)
vs. w for T12201 with a 7. = 90 K obtained from the work of
Puchkov et al. [46] (solid curve). The dash-dotted curve from
theory based on Eq. (3) with an MMP model spectral den-
sity using a spin fluctuation frequency wsr = 100 meV gives
good agreement while the choice of 30meV (dotted curve)
does not.
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Fig. 26. The top frame gives our model for the

spin-fluctuation spectral density (displaced by the theoretical
gap Ap = 26meV) for T12201 in the superconducting state
at T'= 10K (gray solid squares). The dashed line is W(w)
obtained from the calculated conductivity and the black solid
line is the coupling to the resonance found directly from ex-
periment. (The high frequency part has been omitted.) It was
used in constructing the model I°y(w). The bottom frame
shows the optical scattering rate at 7' = 10K (solid line)
and the theoretical fit to experiment found from Eliashberg
theory.

Results are shown in Fig. 26. The solid line in the top
frame shows the optical resonance obtained from inver-

sion of the experimental superconducting optical scat-
tering rate, presented in the bottom frame of this figure
(solid line). The gray squares are the I?x(w) used in the
calculations displaced in energy by the gap Ay = 26 meV.
It is constructed completely from experiment and we fol-
lowed the procedure already described in detail for the
YBCO compound. The dashed curve, finally, is the result
of an inversion of theoretical data, shown in the bottom
frame of this figure (dashed line) and we see that it agrees
reasonably well with experiment (solid line). These re-
sults allowed Schachinger and Carbotte [44] to predict
for T12201 a spin resonance at 43 meV. They also pre-
dicted that the resonance should be less pronounced and
broader in T12201 than in YBCO or B12212. Recently He
et al. [76] succeeded in preparing a TI12201 sample big
enough for inelastic magnetic neutron scattering. This
sample consists of about 300 coaligned optimally doped
T12201 single crystals. This experiment confirmed the
existence of a magnetic resonant mode in T12201 below
T, which 1s located at about 47 meV and which appears
to be narrower than the resonances observed in YBCO
or Bi2212. This 1s in slight disagreement with the results
of Schachinger and Carbotte [44] and this disagreement
could probably be explained by the poorer quality of the
samples used by Puchkov et al. [46] for the optical mea-
surements many years ago. Other optical data are not
available. Nevertheless, the basic agreement between the
observation of Schachinger and Carbotte [44] that the
charge carriers in T12201 couple to an optical resonance
and the subsequent observation of a magnetic resonant
mode at about the same energy by He et al. [76] using
inelastic neutron scattering is quite important. It proves
that magnetic resonant modes are not restricted to bi-
layer compounds and that we seem to be confronted with
a unified phenomenological picture.

The optical resonance peak is not observed in all sys-
tems as is illustrated in Fig. 27 for an overdoped sam-
ple of T12201 with 7, = 23 K. In this case a fit to the
T = 300 K normal-state data (solid gray curve) with an
MMP model gives wgp = 100 meV (gray dashed curve).
The same spectrum also produces a good fit (black
dashed line) to the data at 7= 10K (black solid line) in
the superconducting state. There is no need to introduce
a spin resonance. Indeed the black solid curve for the
measured optical scattering rate To_pl (w) is smooth and
increases gradually as w increases with no clear sharp rise
at any definite frequency in sharp contrast with Fig. 26.
We conclude from this analysis that the resonance ob-
served in some cuprates with high values of 7T, at opti-
mum doping is not present in all cases and in particular
there is no evidence for such a resonance in overdoped
TI12201 with 7, = 23 K. In this case a standard MMP
spectrum of the form (24) gives an adequate representa-
tion of the superconducting state optical scattering rate
as a function of w with the same spectral density as was
determined by the data at 7" = 300 K. This is in contrast
to the other cases studied above for which the onset of
superconductivity appears to produce essential modifi-
cations of the underlying spectral density Iy (w).

We extend our analysis to the material Y124 (7, =
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82K) where we predict from Fig. 28 (top frame, solid
curve) a resonance at 38 meV. (This is below the energy
of 41 meV for the resonance in YBCO which is not sur-
prising as it 1s a well established property of bilayer high-
T, cuprates that the energy of the magnetic resonant
mode tracks T, in underdoped systems [47] and the opti-
cal resonance seems to be closely related to this magnetic
resonant mode.) The top frame of this figure demon-
strates the agreement with W(w)/2 and I?y(w) which
was shifted by the theoretical gap Ay = 24 meV which is
a prediction of our calculations as, to our knowledge, no
experimental data exist for this material. The bottom
frame of Fig. 28 presents our comparison between ex-
perimental and theoretical optical scattering rates. The
normal-state scattering rate (gray lines) at 7 = 300K
gives evidence for the existence of a high energy back-
ground as the experimental data (gray solid line) are best
fit by an MMP spin-fluctuation spectrum as described
by Eq. (24) with wsp = 80meV and a high energy cutoff
of 400 meV (gray dashed line). The black lines compare
the theoretical results (dashed line) with experiment [46]
(solid line) in the superconducting state at 7' = 10K.
The signature of the optical resonance, the sharp rise
n To_pl (w) starting at around 50 meV is correctly repro-
duced by theory. For w > 120 meV the experimental scat-
tering rate shows only a weak energy dependence and the
theoretical prediction starts to deviate from experiment.
This is in contrast to our results found for all other com-
pounds and could be related to the fact that the Y124
compound shows features of an underdoped system.
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Fig. 27. The optical scattering rates in an overdoped sam-
ple of TI12201 with a 7. = 23 K. The solid lines represent
experimental data and the dashed lines fits. The gray curves
apply in the normal-state at T' = 300 K and the black curves
in the superconducting state at 7' = 10K. No optical reso-
nance peak is found in this case.
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Fig. 28. The same as Fig. 26 but for the material Y124.
The spin-fluctuation spectral density [ 2x(w) was displaced
by the theoretical gap A¢ = 24meV in the top frame. In
addition, the grayed lines in the bottom frame of this fig-
ure show the comparison between experimental and theoret-
ical normal-state data at T'= 300 K. Due to this comparison
wsr = 80meV for the MMP spectrum of Eq. (24).

IV. SUMMARY

An extended Eliashberg theory can be applied to de-
scribe the superconducting properties of hole doped high-
T, cuprates. The extension goes in two directions: first, it
is essential to allow the pairing potential to have d,2_,»
symmetry, and, second, the charge carrier — exchange
boson interaction leading to pairing has to be modeled
using a phenomenological approach because the micro-
scopic origin of the attractive interaction between the
charge carriers is still unknown.

An anomalous steep rise in the superconducting state
optical scattering rate observed in optimally doped
YBCO in the energy range 50 < w < 90meV was at-
tributed to the coupling of the charge carriers to an
optical resonance located at about 41 meV. This opti-
cal resonance has its counterpart in a magnetic reso-
nant mode which can be observed in YBCO at the same
energy by inelastic neutron scattering. This resonance
1s not observed above 7. in the normal-state and the
normal-state infrared scattering rate too does not de-
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velop any anomaly. Further experimental data on the
temperature dependence of the infrared scattering rate
and of the magnetic resonance proved further agreement
as the area under the optical resonance 1s seen to have the
same temperature dependence as the 41 meV magnetic
resonant mode. All this resulted in a definite procedure
which allows a phenomenological charge carrier — ex-
change boson interaction spectral density I?y(w) to be
derived which reflects the coupling of the charge carri-
ers to the optical resonance and also describes properly
the almost linear frequency dependence of the normal-
state infrared scattering rate. Using this phenomenologi-
cal I?y(w) as the kernel of an extended Eliashberg theory
allows us not only to reproduce the experimental infrared
optical data, it also allows to reproduce properly the tem-
perature dependence of the microwave conductivity, of
the London penetration depth, and of numerous other
superconducting properties.

This success justifies the extension of this analysis
to other compounds, like Bi2212, T12201, and Y124 for
which less extensive experimental data are available. The
latest high quality optical data on Bi2212 proved that,
also in this case, the coupling of the charge carriers to
an optical resonance at 43 meV can be associated with
an anomalous steep rise in the superconducting state in-
frared scattering rate. In contrast to YBCO the anomaly
in the infrared optical scattering rate can also be ob-
served in the normal state. This optical resonance has, in
the superconducting state, its counterpart in a magnetic
resonant mode observed by inelastic neutron scattering
at 43 meV. This mode has, so far, not been observed in
the normal state of optimally doped Bi2212. The method
to derive a phenomenological I?x(w) from optical data
developed for YBCO can also be applied to the com-
pound Bi2212 and leads, again, to a temperature depen-
dent kernel I?y(w) and the extended Eliashberg theory
allows an excellent reproduction of some superconduct-

ing state properties.

A similar anomaly can be observed in the supercon-
ducting state low-temperature infrared scattering rate of
T12201 and Y124. It has, consequently, been interpreted
as the coupling of charge carriers to an optical reso-
nance, not present above 7. Recently, in the monolayer
compound TI2201 a magnetic resonant mode has been
observed in the superconducting state but at a slightly
higher energy than predicted from optical data. Never-
theless, this fact is quite important because it established
that the existence of a magnetic resonant mode is not
restricted to bilayer compounds. The existence of a mag-
netic resonant mode is still to be proved in Y124, in
which an optical resonance seems to exist at an energy
of 38 meV. For both compounds, an extended Eliashberg
theory together with a phenomenologically derived ker-
nel I?y(w) resulted in a good reproduction of the optical
data. Not enough information about a possible temper-
ature dependence of the I?y(w) in these compounds is
available to extend the theoretical analysis to other su-
perconducting state properties.

All this established a unified phenomenological picture
for hole doped high-T. cuprates which interpretes anoma-
lies in the charge carrier dynamics observed in optimally
and overdoped samples as a signature of spin degrees of
freedom in these compounds.
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3ACTOCYBAHHS PO3IIAPEHOI TEOPII EJIIAIIBEPTA 1O
BUCOKOTEMIIEPATYPHUX KVYIIPATIB

E. Hlaxiarep', Ix. Kap6orr?
! Inemumym meopemuunol disunu, Texnivnud ynisepcumem Ipauy,
A-8010, Ipay, Ascmpin

o

2Kadedpa disuxu & acmporomit, Vwrisepcumem MaxMacmep,
Tamiavmon, Onmapio, Kanada, L8S 4 M1

OcranHiM 9acoM 3’dBMIacA €IuHa HPeHOMEHOIOTIUHA KapTUHa JIETOBAHNK MIPKaMI BUCOKOTEMIIEPATyPHIX KY-

mpaTiB IJjId CIIHOBOI Ta 3apsAlKOoBOl cileKTpocKomii. CrieKTpaJibHl aHOMaJIll IHTEPIPEeTYIOTh 9K [I0Ka3 3 €IHaHHA

HOCIsI 3ap#Any 3 HagBHUM B ONTHYHII IPOBIIHOCTI KOJEKTUBHUM CIIHOBUM 30yMIKEHH:AM Yy KYTOBO-PO3IiJIeHIH

doToemicii Ta B JaHMX TYyHeJFOBaHHA. [[uMm aHOMaJiAMM MOXKHA CKOPHCTATUCH A BHABJIEHHA HabOJIMKEHOI

- . . - . 2 . .
KapTHUHU CIHEKTPaJIbHOI IyCTUHM B3aeMOMil MK HocieM 3apamy it obminauM GosonoM [°y(w), sAiky misHinre MoxKHa

BUKOPUCTATH B po3iupeHoMy dhopMastismi Emaimbepra g aHai3y HOpMaJbHUX Ta HAIMPOBIIHUX BJIACTHBOCTEHR

OTNITUMAJTBHO JIETOBAHUX Ta HAJIETOBAHMWX KYMPAaTiB. Y CTATTI 30CEPEIZKHO yBATry Ha CyJacHOMY CTaHl mpobaeMm,

a TaKOXK IIOKa3aHO iHO,Hi BpaxKarw4dy y3I‘O,H}KeHiCTb MIK CKCIIEPUMEHTAJIBPHUMA JaHUMHW Ta TE€OPETUIHUM nepeﬂ6a—

YCHHAM.
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