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It is shown that the classical theory of phase transitions cannot be used to describe the melting
of a nanocrystal. This is due to the zero-dimensionality of the nanocrystal in terms of thermo-
dynamics. This paper contains a new model of nanocrystal melting, which takes into account the
zero-dimensionality characteristic. Based on the proposed model, we obtained the formulas that
describe the size dependence of the nanocrystal melting temperature and nanocrystal melting heat.
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I. INTRODUCTION

To date, considerable experimental material of the
nanocrystals melting has been accumulated (see, for ex-
ample, [1–3], etc.), therefore, the problem of a physical
interpretation of this material is relevant.

In physics, as is known, there is a theory of phase tran-
sitions (see, for example, [4–6], etc.), which has been
confirmed in many experiments. Therefore, this theory
is called classical. So it is natural (see., e.g., [7, 8], etc.)
to describe the melting of nanocrystals using a classical
theory.

Can this theory be used for nanocrystals? We will try
to answer this question in this article.

II. THERMODYNAMIC MODEL OF MELTING
IN THE CLASSICAL THEORY OF PHASE

TRANSFORMATIONS

To clarify, we give an example of a first-order phase
transition from phase A to phase B. A classical theory
describes this situation using a model in which phase A
surrounds a volume of a spherical shape filled with phase
B. According to this model, the change in the thermo-
dynamic potential ∆Φ is given by

∆Φ = (µB − µA)4πr3/vB + α4πr2, (1)

where µB and µA are the chemical potentials of phases
B and A, r is the radius of the sphere, vB is the particles
(molecules) volume in phase B, and α is the coefficient
of surface tension at the boundary of phases.

If the condition

µB < µA, (2)

according to equation

∂∆Φ
∂r

= 0 (3)

is satisfied, the system can be in two equilibrium states:
stable and unstable.

The system will be stable if r = 0, that is, when phase
B is absent, and unstable — if the radius is equal to

rc =
2αvB

µA − µB
. (4)

All other states characterized by values of r 6= 0 are
not equilibrium. For them, inequalities are performed

∂∆Φ
∂r

> 0 (r < rc), (5)

∂∆Φ
∂r

< 0 (r > rc). (6)

From these inequalities we find that for (r < rc) the
size of the region containing phase B decreases without
permission, and for (r > rc) it increases without permis-
sion. The difference µB−µA is approximately written in
the form of the formula

µB − µA = −λ
T − T∞

T∞
, (7)

where λ is the heat of the phase transition A → B,
which is equal to one particle, T is temperature, T∞ is
the temperature of the phase transition corresponding to
the thermodynamic boundary.

Substituting (7) into (4), the formula of the so-called
critical nucleus radius can be obtained.

rc =
2αvBT∞

λ(T − T∞)
. (8)

Note that the phase transition A → B is two-stage.
At the first stage there is a fluctuation formation of the
phase B critical origin with a radius of rc. The probabil-
ity W of such a fluctuation is determined by the expres-
sion

W ≈ exp(−∆Φc/kBT ), (9)

This work may be used under the terms of the Creative Commons Attribution 4.0 International License. Further distri-
bution of this work must maintain attribution to the author(s) and the title of the paper, journal citation, and DOI. 2601-1



L. A. BULAVIN, O. M. ALEKSEEV, Yu. F. ZABASHTA, M. M. LAZARENKO

where ∆Φc is the maximum value of ∆Φ, which cor-
responds to the value of r = rc, kB is the Boltzmann
constant

In the second stage, the size of the nucleus formed,
according to the condition (6), increases without permis-
sion by attaching particles to it from the environment.
The formulas given above relate to the phase transition,
which was designated as A → B. Thus, in the descrip-
tion of melting, phase B is liquid, and phase A is the
crystalline phase. The latter, in this model, occupies an
infinite space around the region occupied by phase B.
In othe words, this model describes the melting of an
infinite crystal.

To describe the melting of a finite-size crystal [5], a
crystal with radius R is located in the center of the model
and is surrounded by the crystal with an infinite melt. In
this case µB > µA, which means λ < 0. If the inequality

R < rc, (10)

is satisfied, then according to condition (5), the crystal
size must decrease without permission, that is, the crys-
tal must melt. According to the same logic, the beginning
of melting must correspond to equality

R = rc. (11)

Substituting Eq. (11) into Eq. (8), and taking into ac-
count that λ < 0, for the melting point T0 of a crystal
with radius R, we obtain the formula known in the liter-
ature [5] as the Thomson formula

T0 = T∞

(
1− 2αvB

|λ|R

)
. (12)

III. INAPPLICABILITY OF THE CLASSICAL
THEORY FOR THE DESCRIBTION OF THE

MELTING OF NANOCRYSTALS

In a number of papers published earlier (see, for ex-
ample [7, 8], etc.), the classical theory was used to de-
scribe the melting of nanocrystals. Namely, there was an
attempt to describe the dependence of the melting tem-
perature of a nanocrystal with the help of the Thomson
formula. In our opinion, such attempts are incorrect in
view of the following.

First, according to the model on which the classical
theory is based, at T < T0 the size of the crystal placed
in the center of the model and surrounded by a melt must
increase continuously. However, with the application of
the Thomson formula, it is assumed that the size of the
crystal in this temperature range remains constant.

Obviously, to overcome this contradiction, it is enough
to accept an additional condition

r ≤ R. (13)

But the model used by the classical theory does not
provide this possibility.

Secondly, let us consider the structure of the crystal
in the process of melting. We will use a model in which

the nanocrystal is spherical with a radius R and is sur-
rounded by a solid medium. The reason for choosing such
a model is that it corresponds to the structure of the ex-
perimentally investigated objects, where the nanocrys-
tals are inclusions located in the matrix of another sub-
stance. It is essential that this model takes into account
the fact that the matrix remains in a solid aggregate
state when the nanocrystals are melted in it.

Suppose we have a crystal with a radius R. After it has
partially melted, it turns into a sphere of radius r. Now
the part of the volume in which the crystalline phase
previously took place is occupied by the melt. The latter
separates the boundary layers from the crystal and the
solid surroundings, whose thickness will be denoted by h
and h2. The melt forms a layer with a certain thickness
h1. It is obvious that

R = r + h + h1 + h2. (14)

Consequently, the Thomson formula was obtained us-
ing a purely thermodynamic approach. In particular, it
was considered that the radius of the crystal r is a con-
tinuous value, which, when the crystal melts, can take all
values from the interval (0, R). This assumption is quite
natural in terms of thermodynamics, which considers the
atomic-molecular discrete system as a continuum.

The notion of “continuum”, as is known (see, for ex-
ample [10], etc.), is inextricably linked with the concept
of “physical infinitesimal volume”. By definition, this is
an area in which the local equilibrium is established. It
is into this region that certain local values of the char-
acteristics of the continuum — density, thermodynamic
potential, etc. are attributed.

The size of a physical infinitesimal volume ∆r is re-
garded as an infinitely small quantity. Thus, the physi-
cally infinitesimal volume becomes a mathematically in-
finitesimal volume, and the atomic-molecular discrete
system becomes a continuum.

In fact, the magnitude of ∆r is the spatial scale of the
thermodynamic theory, which in our case means that
the radius of the crystal r, which changes in the melting
process, must take values of multiple ∆r. Consequently,
the Thomson formula can only be applied, if there is the
inequality

∆r � r. (15)

Given (14), we obtain

∆r � R. (16)

Taking the upper limit of the nanocrystal size to
20 nm, we obtain the ratio R ≤ 10 nm. Evaluating the
size of the region where the local equilibrium is estab-
lished [11] allows us to speak about the fairness of the
ratio ∆r ≥ 100 nm. Thus, inequality (16) for nanocrys-
tals is not fulfilled, and therefore, the Thomson formula
can not be applied to them.
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IV. THERMODYNAMIC MODEL OF
NANOCRYSTAL MELTING

As already mentioned, the size of a nanocrystal in or-
der is equal to the size of the region where the local
equilibrium is established; that is, in fact, nanocrystal is
a physically infinitesimal volume. And the latter, from
the standpoint of thermodynamics, is a delta-peculiarity
— a point, in which the characteristics of the continu-
um differ from the characteristics of the environment.
In other words, in thermodynamics nanocrystalis a zero-
dimensional object.

Let us denote by x the radius vector of the continuum
point, which models substance in thermodynamics. The
location of the nanocrystal is determined by a certain
point of xA, because the nanocrystal is a zero dimension-
al object. Accordingly, the spatial dependence ρm(x) of
the density of any physical quantity M is determined by
the formula:

ρm(x) = ρ0δ(x− xA), (17)

where δ(x− xA) is the delta function.
Therefore, for a nanocrystal, it is meaningless to con-

sider the intermediate states of the system corresponding
to the values 0 < r < R and which are considered in the
classical theory. In other words, for the small nanocrystal
size, with the help of thermodynamics only two states
of the system can be distinguished from each other: a
nanocrystal (A) and a nanomelt (B).

The thermodynamic potential of a nanocrystal and a
nanomelt will be determined by the formulas

ΦA = fA4πR3/3 + αA4πR2 + pA4πR3/3, (18)

ΦB = fB4πR3/3 + αB4πR2 + pB4πR3/3, (19)

where fA and fB are the densities of the thermodynam-
ic potential for the crystalline and liquid phases calcu-
lated at the thermodynamic boundary, αA and αB are
the coefficients of the surface tension at the boundary of
the “nanocrystal– solid environment” and “the nanomelt–
solid environment”, pA and pB are the stresses in the
nanocrystal and melt caused by the influence of a sol-
id environment on the formation and melting of the
nanocrystal.

Then everything comes down to a situation that is
common in thermodynamics. There are two states of the
system A and B, which correspond to the thermody-
namic potential ΦA and ΦB . Let the system first be in
state A. Due to a change in external conditions, such as
temperature, the inequality ΦB < ΦA can be obtained
from the system. Then the system should go to state B
spontaneously, and the beginning of such a transition is
determined by the condition

ΦB = ΦA. (20)

The temperature T0 is the temperature of the transition,
at which the equality (20) is performed . In our case, this
is the temperature of the nanocrystal melting .

In the macroscopic system, which is considered in the
classical theory, the phase transition A → B actually also
happens due to the existence of the inequality ΦB < ΦA.
However, this transition occurs gradually, due to inter-
mediate states. Namely, first the critical nucleus of phase
B is formed, then it grows until all particles are trans-
mitted into the system. This leads to the fact that the
temperature of the melting point is not the temperature
that corresponds to the equation ΦB = ΦA, but the tem-
perature which is determined from equation (11), that is,
the temperature which corresponds to the formation of
the critical nucleus.

It is the absence of the states intermediate between
states A and B that allows us to write down the melting
condition in the form (20) for the model “nanocrystal in
a solid environment” that we adopted.

Questions may arise about formulas (18) and (19). On
the one hand, it is emphasized that the zero dimension-
ality of a nanocrystal is the reason for the inapplicability
of the classical theory. From this it follows that the ther-
modynamic approach cannot be used. At the same time,
the formulas are purely thermodynamic.

However, this article does not reject the thermody-
namic method. It is shown in the article that this ap-
proach can be applied taking into account the zero di-
mension of the nanocrystal. For example, in accordance
with formula (17) for the density of the thermodynamic
potential ρΦA(X) we have

ρΦA
(X) =

ΦA

4πR3/3
δ(x− xA). (21)

The zero-dimensional nanocrystal means that the ratio
is fulfilled

R ≈ ∆r, (22)

where ∆r — spatial scale — unit of measurement in co-
ordinate system x ≡ {x1, x2, x3}.

In this case, R and all other quantities included in for-
mulas (18) and (19) are the characteristics of a nanocrys-
tal. The location of the inertia center of this nanocrystal
is determined by the radius vector xA.

The principal difference between the proposed model
of nanocrystal melting and the classical theory is that
the former is based on ratio (22), and the latter — on
expression (15).

According to expression (15), r can be considered as
a continuous quantity. Therefore, it is possible to differ-
entiate ∆Φ in r. This leads to formula (3), which is a
melting condition in the classical theory.

Expression (22) rejects the possibility of differentia-
tion. Accordingly, for a nanocrystal we have another
melting condition, namely equation (20).

We assume that the temperature difference T − T∞ is
small; then we decompose the difference in the densities
of the thermodynamic potential into a series in powers of
T − T∞, confine ourselves to the term of the first degree
and obtain

fB − fA = −Λ
T − T∞

T∞
, (23)
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where Λ is the specific heat of melting that corresponds
to the thermodynamic boundary.

Substituting Eqs. (18) and (19) into Eq. (20), and then
using Eq. (23), the formula of the melting temperature
of the nanocrystalline T0 is obtained

T0 = T∞

[
1 +

1
Λ

(
3(αB − αA)

R
+ pB − pA

)]
. (24)

By definition, we have the expression for the heat of
melting Q of a nanocrystal:

Q = −T0

(
∂ΦB

∂T
(T0)−

∂ΦA

∂T
(T0)

)
. (25)

Substituting Eqs. (18) and (19) into Eq. (23), the for-
mula of the specific heat q of the nanocrystalline is ob-
tained

q = −T0

(
∂fB

∂T
(T0)−

∂fA

∂T
(T0)

+
3
R

(
∂αB

∂T
(T0)−

∂αA

∂T
(T0)

)
+

∂pB

∂T
(T0)−

∂pA

∂T
(T0)

)
. (26)

For the specific heat of melting Λ, which corresponds
to the thermodynamic boundary, we have the expression

Λ = −T∞

(
∂fB

∂T
(T∞)− ∂fA

∂T
(T∞)

)
. (27)

Given the small difference T∞−T∞, we write approx-
imately

Λ ≈ −T0

(
∂fB

∂T
(T0)−

∂fA

∂T
(T0)

)
. (28)

Substituting Eq. (28) into Eq. (26),we obtained

q = Λ− T0

(
3
R

(
∂αB

∂T
(T0)−

∂αA

∂T
(T0)

)
+

∂pB

∂T
(T0)−

∂pA

∂T
(T0)

)
. (29)

Formulas (24) and (29) can be used to interpret the
most common thermophysical experiment, which is to
determine the dependence of the melting temperature
T0 and the specific heat of melting of the nanocrystal q
on its size 2R.

V. CONCLUSIONS

From the research carried out in this article it follows
that the classical theory of phase transformations can not
be used to describe the melting of nanocrystals. An argu-
ment in favor of such a conclusion may be the following
considerations.

The size of a nanocrystal in order is equal to the size
of the physically infinitesimal volume. Thermodynamics,
as is known, is based on a model of a continuous medi-
um. In such a model, an infinitely small physical vol-
ume is drawn to a point. Consequently, when applying
the thermodynamic approach, the nanocrystal acts as a
zero-dimensional object: its size is regarded as infinitely
small, that is, it has no dimensions.

The classical thermodynamic theory is not intended
for the study of such objects. It considers long-term (hav-
ing, in terms of thermodynamics, certain dimensions) ag-
gregates of the newly formed phase. First, a nucleous of
a critical size emerges, after which it grows, etc. Accord-
ingly, to describe the melting of nanocrystals it is not
correct to use one of the formulas of this theory. In par-
ticular, the Thomson formula, which, as it turned out,
can not describe the dependence of the melting temper-
ature of a nanocrystal on its size.

It is possible to describe the melting of a nanocrystal
on the basis of the thermodynamic model proposed in
this article, which is constructed taking into account its
zero-dimensionality. Unlike the classical theory, in this
model, the existence of intermediate states is ruled out,
when the system is partially composed of liquid, and
partly of the crystalline phase. The nanocrystal is regard-
ed as a two-level system, which can only be in two states:
crystalline and liquid. The melting of the nanocrystal oc-
curs when the free energy of the liquid state becomes
less than the free energy of the crystalline state. Us-
ing this approach, we obtain the formulas that describe
the dependence of the temperature and heat of melting
nanocrystals on their sizes.
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ТЕРМОДИНАМIКА ПЛАВЛЕННЯ НАНОКРИСТАЛIВ

Л. А. Булавiн, О. М. Алєксєев, О. Ф. Забашта, М. М. Лазаренко
Київський нацiональний унiверситет iменi Тараса Шевченка,

фiзичний факультет, кафедра молекулярної фiзики,
просп. Глушкова, 2, Київ, 03022, Україна

Показано, що класичну теорiю фазових перетворень не можна застосувати для опису плавлення нано-
кристала. Причина — нульвимiрнiсть нанокристала з погляду термодинамiки. Запропоновано модель плав-
лення нанокристала, що враховує цю його особливiсть. На основi запропонованої моделi отримано формули
для температури та теплоти плавлення нанокристала в залежно вiд його розмiру.
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