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In this paper, we studied the string theory in its original form of Nambu–Goto. We found that
the calculation of the variation of the Nambu–Goto action with respect to the metric of the word
sheet leads to a nonlinear action which is not strictly equivalent to the Polyakov action. Then the
equation of motion corresponding to this action is nonlinear. This was the reason why we decided
to solve the nonlinear Nambu–Goto equation of motion directly. This has been done for a string
interacting with a constant, antisymmetric tensor field B in the Nambu–Goto formulation, and we
derive the noncommutativity among the string end points coordinates.
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I. INTRODUCTION

In mathematical physics, noncommutative geometry
[1] studies the geometry of “quantum space” [2], in which
the coordinate functions are noncommutative, satisfying
a noncommutative algebra of the form:

[Xµ, Xν ] = iΘµν , (1)

where Θµν is an antisymmetric constant tensor.
String theory [3, 4, 5, 6], is a quantum theory of

one-dimensional objects called strings which are of two
different types: open and closed. Geometrically, open
strings are characterized by free endpoints, whereas
closed strings are characterized by connected endpoints.
The study of noncommutativity has a long history in
physics, and it attracted much attention in the past few
years owing to the inspiration from the string theory
(for a review and more references see [7, 8, 9, 10, 11,
12, 13, 14]). In the presence of an antisymmetric ten-
sor background field Bµν , an open string moving with
mixed Neumann and Dirichlet boundary conditions will
make the spacetime coordinates noncommutative, which
is manifested in the noncommutativity at the end points
of the string which are attached to D-branes and obey
canonical commutation relations (1). Different approach-
es have been adopted to obtain this result [15, 16, 17, 18,
19, 20, 26]. We establish explicitly that the Polyakov ac-
tion is not strictly equivalent to the Nambu–Goto action,
so we have to solve the nonlinear equation of motion of
Nambu–Goto action directly, and derive the noncommu-
tativity from the string end points coordinates.

II. NAMBU–GOTO AND POLYAKOV STRING
ACTIONS. ARE THEY STRICTLY

EQUIVALENT?

A string is a 1-dimensional object moving in a D-
dimensional space-time (1 time, D − 1 space dimen-
sions). As the string moves in time, it sweeps out a 2-
dimensional area in a D-dimensional space-time; this is
called the worldsheet of the string denoted Σ. This string
is parametrized by a parameter σ, (0 < σ < l for some
finite l). As the string moves in time, every point on the
string describes a trajectory in space-time, this trajecto-
ry can be parameterized by a variable τ . τ could have the
range −∞ < τ < +∞. Every point on the worldsheet is
parameterized by the pair (σ, τ). In the Lagrangian for-
malism, one can consider maps

x : Σ → Xµ. (2)

The space-time position of a point (τ, σ) on the string
worldsheet Σ is given by the function Xµ(τ, σ), (µ =
0, 1, . . . , D − 1).

Let us consider that the action for the Nambu–Goto
string (~ = c = 1) in a space-time with the flat
Minkowskian metric ηµν is proportional to the area of
the world-sheet swept out by the string during its mo-
tion:

SNG =− T

∫ σ2

σ1

dτ

∫ π

0

dσ
√
−h(τ, σ), L = −T

√
−h,

(3)
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where T = 1
2πα′ is called the string tension and

− h = −det(hab) = (ẊX ′)2 − Ẋ2X ′2 ≥ 0, (4)

hab = (∂aXµ∂bXµ) =
(

Ẋ2 ẊX ′

ẊX ′ (X ′)2

)
, a, b = 0, 1.

(5)

hab =
1
h

(
X ′2 −ẊX ′

−ẊX ′ Ẋ2

)
. (6)

Here, the “dot” and “prime” denote derivatives with re-
spect to time τ and the space coordinate σ, respectively,
as follows:

Ẋµ ≡ ∂0X
µ ≡ ∂Xµ/∂τ, (7)

X ′µ ≡ ∂1X
µ ≡ ∂Xµ/∂σ. (8)

The condition −h ≥ 0 means that the surface swept out
by the string in the space-time is everywhere time-like or
null. The strip 0 ≤ σ ≤ π is mapped on the world-sheet
spanned by the string in the Minkowski space, which is
described by the coordinates X(τ, σ) in an arbitrary in-
ertial frame.

The Polyakov action is:

Sσ =
T

2

∫
d2σ

√
−hhabgµν∂aXµ∂bX

µ. (9)

In the Minkowski space hab = ηab = diag (1,−1) we
have:

Sσ =
T

2

∫
d2σ

√
−hhabgµν∂aXµ∂bX

µ

=
T

2

∫
Σ

(Ẋ2 −X ′2) d2σ. (10)

Varying the action (9) with respect to the metric hab

yields the stress energy tensor Tab

δSσ =
T

2

∫
d2σ(δ(

√
−h)hab +

√
−hδhab)gµν∂aXµ∂bX

µ.

(11)

To calculate the variation of this action, where there is
a square root in its form, we first prove that δ(

√
−h) =

1
2

√
−hhabδh

ab as follows:

det(hab) = etrln(hab)

det(hab + δhab) = etrln(hab+δhab) = etrln[hab(1+h−1
ab δhab)]

= etrln(hab)+trln(1+h−1
ab δhab) = det(hab)etrln(1+h−1

ab +δhab)

= det(hab)etr(h−1
ab δhab)

= det(hab)(1 + tr(h−1
ab δhab + . . .))

det(hab + δhab) = det(hab) + det(hab)hab(δhab)det(hab + δhab)− det(hab)

= −det(hab)δhabh
ab,

∂det(hab)
∂hab

= −det(hab)hab,

∂
√
−det(hab)
∂hab

=
1
2

∂(−det(hab))
∂hab

1√
−det(hab)

= −1
2
det(hab)

1√
−det(hab)

.

Finally,

∂
√
−h

∂hab
=
−1
2

√
−hhab. (12)

Now we can vary the Polyakov action with respect to the metric hab,

δS

δhab
=
−T

2

(
∂
√
−h

∂hab
hρσ +

√
−h

∂hρσ

∂hab

)
gµν∂aXµ∂bX

ν ,

=
−T

2

(
−1
2

√
−hhabh

ρσ +
√
−h

∂hρσ

∂hab

)
gµν∂aXµ∂bX

ν ,

=
−T

2

√
−h

(
∂aXµ∂bXµ −

1
2
hab(hρσ∂ρX

µ∂σXµ)
)

. (13)
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Then we have the stress energy tensor Tab:

Tab = ∂aXµ∂bXµ −
1
2
hab(hρσ∂ρX

µ∂σXµ) (14)

Tab = Gab −
1
2
hab(hρσGρσ), (15)

where Gab = ∂aXµ∂bXµ.
Now, the equations of motion for field hab follow from

setting the variation of action Sσ with respect to hab

equal to zero, δSσ = 0, which gives:

Tab = Gab −
1
2
hab(hρσGρσ) = 0,

Gab =
1
2
hab(hρσGρσ),

G =
1
4
h(hαβGαβ)2, (16)

where G = det(Gab), h = det(hab) and Gαβ =
∂αXµ∂βXµ. We than conclude:

√
−G =

√
−hhabhab (17)

and ∫
Σ

√
−Gd2σ =

1
2

∫
Σ

√
−hhabGab d2σ. (18)

In the Minkowski space

T

∫
Σ

√
(ẊX ′)2 − Ẋ2(X ′)2d2σ =

T

2

∫
Σ

(Ẋ2 −X ′2) d2σ.

(19)

The right-hand side of (19) is the Polyakov action. But
this is not strictly true because

√
Gd2σ is a surface ele-

ment of the worldsheet. Indeed we have:

√
−G =

1
2

√
−h | habGab | . (20)

And then:∫
σ

√
−Gd2σ =

1
2

∫
σ

√
−h | habGab | d2σ. (21)

In the Minkowskian space

T

∫
σ

√
(ẊX ′)2 − Ẋ2(X ′)2d2σ =

1
2

∫
σ

| Ẋ2 − (X ′)2 | d2σ.

(22)

Then the equation of motion corresponding to (22) is
nonlinear. This was the reason why we decided to solve
the nonlinear Nambu–Goto equation directly.

III. INTERACTING STRING IN THE
NAMBU–GOTO FORMALISM: SOLUTIONS OF

EQUATIONS OF MOTION OF THE NAMBU
STRING

The string sweeps out a worldsheet which may be
parametrized by two parameters τ and σ. The Nambu–
Goto action for a bosonic string moving in the presence
of a constant background Neveu-Schwarz two-form field
Bµν reads [21, 22]:

SNG = −T

∫ +∞

−∞
dτ

∫ π

0

dσL = −T

∫ +∞

−∞
dτ

∫ π

0

dσ

√
(ẊX ′)2 − (Ẋ)2(X ′)2 − T

∫ +∞

−∞
dτ

∫ π

0

dσ eBµνẊµX ′ν . (23)

From the variation of this action, we obtain the follow-
ing equations of motion and the boundary conditions:

∂Pµ

∂τ
+

∂Πµ

∂σ
= 0, (24)

Πµ |σ=0,π= 0. (25)

where:

Pµ = − ∂L
∂Ẋµ

= −TL−1
(
(ẊX ′)X ′

µ − (X ′)2Ẋµ

)
+ TeBµνX ′ν (26)

Πµ = − ∂L
∂X ′

µ

= −TL−1
(
(ẊX ′)Ẋµ − (Ẋ)2X ′

µ

)
− TeBµνẊν . (27)

Note that Pµ is the canonically conjugate momentum to
Xµ, which satisfies the identities:

(P − TeBµνX ′ν)2 + T 2(X ′)2 = 0, (28)

PµX ′µ = TeBµνX ′µX ′ν , (29)

(Π + TeBµνẊν)2 + T 2Ẋ2 = 0, (30)

ΠµẊµ = −TeBµνẊµẊν , (31)

ΠX ′ = T
√
−h− TeBµνẊµX ′ν , (32)

(Πµ + TeBµνẊν)(Pµ − TeBµνX ′ν) = N2ẊX ′, (33)

(Pµ − TeBµνX ′ν)Ẋ = T
√
−h. (34)

1103-3



N. MANSOUR, E. DIAF, M. B. SEDRA

So the equation of motion is given by:

∂

∂τ

 (ẊX ′)X ′
µ − (X ′)2Ẋµ√

(ẊX ′)2 − (Ẋ)2(X ′)2


+

∂

∂σ

 (ẊX ′)Ẋµ − (Ẋ)2X ′
µ√

(ẊX ′)2 − (Ẋ)2(X ′)2

 = 0. (35)

At this point the main problem in the classical theory
is that the equation of motion is highly nonlinear and
incredibly complicated to solve.

What is to be done at this stage is to impose the or-
thonormal gauge, that is a choice of the parametrization
of the string worldsheet.

The Hessian Matrix is:

Wµν =
∂2L

∂Ẋµ∂Ẋν

=
TX ′2

(−h)
3
2

[
− hηµν + (X ′)2ẊµẊν + Ẋ2X ′µX ′ν − (ẊX ′)(ẊµX ′ν + X ′µẊν)

]
, (36)

Ẋµ(τ, σ) and X ′µ(τ, σ) are the null eigenvectors of the
Hessian for every value of σ except the end values
σ = 0, π. The non-null eigenvalues are degenerate for
σ 6= 0, π and are equal to:

T (X ′)2(τ, σ)√
−h(τ, σ)

. (37)

The variational principle for the action (23), with varia-
tions δ0X

µ(τ, σ) vanishing at τ = τ1, τ2 is:

δS =
∫ τ2

τ1

dτ

∫ π

0

dσLµδ0X
µ −

∫ τ2

τ1

dτΠµδ0X
µ |π0= 0

(38)

and gives the following Euler–Lagrange equations and
boundary conditions:

Lµ(τ, σ) = Ṗµ + Π′µ

= −Wµν

[
Ẍν +

1
X ′2 (Ẋ2X ′′

ν − 2(ẊX ′)Ẋ ′
ν)

]
= T∂α(

√
−hhαβ∂βXµ) = 0. (39)

Πµ

∣∣∣∣π
0

= TL−1((Ẋ)2X ′
µ − (ẊX ′)Ẋµ)− TeBµνẊν

∣∣∣∣π
0

= 0.

(40)

We have:

ΠµX ′µ
∣∣∣∣π
0

=
√
−h− eBµνẊµX ′ν

∣∣∣∣π
0

= 0 (41)

The restriction from (40) to (41) is due to the require-
ment that a variation of the boundaries must not violate
the condition −h ≥ 0; instead, in the frequently used or-
thogonal gauge (O.G.) it is defined by a choice of param-
eters which satisfy, besides −h(τ, σ) ≥ 0, the conditions

Ẋ2 + X ′2 = (ẊX ′) = 0 ⇒ (42)

⇒ hab = Ẋ2

(
1 0
0 −1

)
, Ẋ2 ≥ 0.

The equation of motion now is reduced to the well-known
D’Alembert equation:

Lµ = T (Ẍµ −X ′′µ) = 0 ⇒ Ẍµ −X ′′µ = 0, (43)

with the Boundary Conditions (BC), the Hessian matrix
and the canonical conjugate momentum to Xµ respec-
tively

Πµ

∣∣∣∣π
0

= X ′µ + BµνẊν

∣∣∣∣π
0

= 0, (44)

Wµν = − T

Ẋ2
(Ẋ2ηµν − ẊµẊν + X ′µX ′ν), (45)

Πµ = T (Ẋ + BµνX ′ν). (46)

At the end points, the usual conditions of the O.G. are

X ′µ(τ, 0) = X ′µ(τ, π) = 0 ⇒ Ẋ2(τ, 0) = Ẋ2(τ, π) = 0.
(47)

This in particular means that at the end points the in-
duced metric hab has a zero rank. Let us remark that if
one chooses coordinates such that

Ẋ2(τ, σ) ≥ 0, X ′2(τ, σ) ≤ 0, (48)

then the condition h = 0 implies two possible situations
at the end points:

1. X ′2 < 0, Ẋ2 = 0, (ẊX ′) = 0, and Ẋµ and X ′µ

independent and Ẋµ 6= 0. This is a regular case
(the Jacobian of the map (τ, σ) ⇒ Xµ has a max-
imal rank 2). In this case the rank of the induced
metric hab is 1, and the end points of the string de-
scribe null surfaces [23]. There is the possible case
Ẋµ = 0, which is a singular case (the Jacobian of
the map (τ, σ) ⇒ Xµ has rank 1).
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2. Ẋ ′2 = 0, Ẋ2 = 0, (ẊX ′) = 0, with X ′µ collinear
to Ẋµ. This is a singular case (where we may have
Πµ 6= 0 as well as Πµ = 0).
The case X ′µ = 0, corresponding to the O.G., may
be considered as a particular case of 2): O.G. is a
singular case.
As a consequence, to describe the solutions of the
classical equations of motion in a class of gauges
including as a special case the O.G., we have to
work with class 2), that is necessarily with singu-
lar coordinates.

Let us check if the boundary condition h
∣∣π
0

= 0 is pre-
served in a singular case (since it was deduced in the reg-
ular one), We may perform a transformation from regular
coordinates to those which will become singular at the
end points, in the interior of the interval (0, π), that is
from the class 1) to the class 2). As shown in ref.[24] and
more explicitly in sect. I1 of appendix I of Ref. [25], the
Jacobian of the transformation vanishes as

√
σ in σ = 0

(and in an analogous way in ±π), so ensuring, a fortiori,

the vanishing of the new h at the end points.
So we will assume the boundary conditions (44), with a
choice of coordinates falling into class 2).
In order to completely define the physical hypotheses, we
will assume that the total momentum Pµ of the string
is such that P 2 ≥ 0, with Pµ 6= 0. As shown in sect. I2
appendix I of Ref. [25], this ensures a unique solution at
the end points of the string with Pµ and Πµ finite.
The previous discussion and the boundary conditions
(40) suggest the usefulness of the following extension
from the interval (0, π) to (−π, π):

Xµ(τ, σ) = Xµ(τ,−σ), (49)

and to the real line with 2π periodicity. Let us stress
that, with this kind of boundary conditions, function
X ′µ(τ, σ), extended to the whole real axis, may be dis-
continuous in σ = 0, π.
Using the Fourier expansion, the general form of the
equation of motion (43) is given by:

Xµ(τ, σ) = xµ
0 + aµ

0 τ + bµ
0σ +

∑
n 6=0

e−inτ

n

(
iaµ

n cos(nσ) + bµ
n sin(nσ)

)
. (50)

By imposing boundary conditions (44) on (50) we get the following solution:

Xµ(τ, σ) = xµ
0 + (aµ

0 τ −Bµ
νaν

0σ) +
∑
n 6=0

e−inτ

n

(
iaµ

n cos(nσ)−Bµ
ν aν

nσ sin(nσ)
)

. (51)

IV. QUANTIZATION AND
NONCOMUTATIVITY OF STRING END

POINTS COORDINATES

In this section, we quantize an open string attached
to D-brane in the presence of the antisymmetric back-
ground B-field to see how the noncommutativity of space
coordinates appears at the string end points.

We will use the solution (51) and the expression of the
conjugate momentum given in (46) to obtain the com-
mutation relation of the form (1).

The conjugate momentum is:

Πµ = T (Ẋ + BµνX ′ν). (52)

Using (52), the mode expansion for momentum is then:

Πµ = T (aν
0 +

∑
n 6=0

aν
ne−inτ cos(nσ))M µ

ν , (53)

where Mij = ηij−B k
i Bkj . We define the Poisson brack-

et between functions G and K as:

{G, K} = Ωij ∂G

∂ξi

∂K

∂ξj
. (54)

A symplectic form is defined as:

Ω =
1
2
Ωijdξi ∧ dξj , (55)

where dξi ∧ dξj forms a basis for Ω, and dξi ∧ dξj =
−dξj ∧ dξi. The Poisson bracket is obtained from the in-
verse of Ω. For the usual field theory with fields φa, we
have

Ω =
∫

ddx dΠa(t,x) ∧ dφa(t,x). (56)

We can also apply this method to our discussion. The
symplectic form is given by

Ω =
∫ π

0

dσ dPµ ∧ dXµ. (57)

We can use the given symplectic form. The modification
to the Poisson bracket at the boundaries will be seen
from a mode expansion. For consistency, we require that

dΩ
dτ

= 0. (58)
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Using the equation of motion and the boundary con-
ditions, we see that this is actually the case. We have
explicitly

Ω =
1

2α′

{
Mijdpi

0 ∧ (dxj
0 +

π

2
Bj

kdpk
0)

+
∑
n>0

−i

n
(Mijdai

n ∧ daj
−n + daa

n ∧ daa
−n)

}
. (59)

Here we have used the symmetric property of Mij , the
antisymmetric property of wedge product ∧ and the fol-
lowing formulas∫ π

0

dσ cos mσ = πδm,0, (60)∫ π

0

dσ cos nσ cos mσ =
π

2
(δn,m + δn,−m), (61)∫ π

0

dσ cos nσ sinnσ = 0, (62)∫ π

0

dσ sinnσ sinmσ =
π

2
(δn,m − δn,−m). (63)

The Poisson bracket is obtained from the inverse of Ω.
We now do the canonical quantization by promoting all

modes to operators, and make the Poinsson bracket be-
come commutators {, } → [, ]/i. The commutation rela-
tions for the modes are therefore:

[âi
n, x̂j

0] = [âi
n, p̂j

0] = 0, [âi
m, x̂j

n] = 2α′mM−2ijδm,−n
(64)

[p̂i
0, p̂

j
0] = 0, [x̂i

0, p̂
j
0] = i2α′M−1ij ,

(65)

[x̂i
0, x̂

j
0] = i2πα′(M−1B)ij .

Then we calculate the commutation relations for open
string coordinates and momenta. We use commutation
relations for the modes and note that∑

n 6=0

f(n) = 0, for f(n) = −f(−n), (66)

and that
∑

n 6=0
(sin nx)

n is an anti-periodic extension to
π − x, over the range [0, 2π],∑

n 6=0

1
n

sinnx =
{

0, x = 0, 2π.
π − x, x ∈ (0, 2π). (67)

We obtain

[P̂ i(τ, σ), P̂ j(τ, σ′)] = 0. (68)

[X̂i(τ, σ), X̂j(τ, σ′)] =


2πiα′(M−1B)ij , σ = σ′ = 0

−2πiα′(M−1B)ij , σ = σ′ = π

0, otherwise

(69)

[X̂i(τ, σ), P̂ j(τ, σ′)] = iηijδ(σ, σ′), (70)

V. CONCLUSION

From the result, we see that the string coordinates
become noncommutative at the string end points. This
situation becomes even more difficult in the case of a to-
tally noncommutative phase space-time; where the whole
phase space becomes noncommutative, the noncommu-
tativity affects not just the space coordinates but also
the momentum coordinates to lead to the so-called to-
tall noncommutativity. However, in a totally noncom-
mutative phase space, neither the coordinate space rep-
resentation nor the momentum space representations are
allowed. So in order to study the physics in a totally non-
commutative phase space, we may propose to use the

generalisation of the phase space quantization. Howev-
er, it is difficult to construct a quantum field theory in
a totally noncommutative phase space. This is because
we normally view fields as functions in either spacetime
or momentum space. However, we are now forced to use
phase space functions. We might need to first construct
a quantum field theory in a usual phase space. Then the
next step will by easy: as the fields are already functions
of phase space, we may use a star-product to give the
details of a totally noncommutative phase space. Alter-
natively, we may first try to understand some physics by
studying quantum mechanics in a totally noncommuta-
tive phase space. This might provide some useful insights
into constructing aquantum field theory in a totally non-
commutative phase space.
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ТЕОРIЯ СТРУН У ФОРМАЛIЗМI НАМБУ–ҐОТО ТА НЕКОМУТАТИВНIСТЬ
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У цiй роботi ми вивчали теорiю струн у первiснiй формi Набму–Ґото. Встановлено, що розрахунок варi-
ацiї дiї Намбу–Ґото за метрикою свiтового листа призводить до нелiнiйної дiї, яка не є строго еквiвалентною
дiї Полякова. Тодi рiвняння руху, що вiдповiдає цiй дiї, є нелiнiйним. Саме тому ми вирiшили розв’язати
нелiнiйне рiвняння руху Намбу–Ґото безпосередньо. Це було зроблено для струни зi сталим антисиметрич-
ним тензорним полем B у формалiзмi Намбу–Ґото. Ми вивели некоммутативнiсть мiж координатами кiнцiв
струни.
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