Visnyk of the Lviv University. Series Physics 58 (2021) ñ. 3-15
DOI: https://doi.org/10.30970/vph.58.2021.3

Deposition and optical characterization of the cadmium telluride thin films

S. Pershyna, A. Kashuba, I. Semkiv, Ya. Storozhuk, H. Ilchuk, R. Petrus

The optical properties of CdTe thin film prepared by high-frequency magnetron sputtering method are determined. The optical transmission, reflectivity and \mu-Raman spectra of the CdTe thin film have been determined. The film thickness of \textit{d}= 717.7 nm was obtained by optical interference analysis of the transmittance spectra \textit{T}(\lambda) of CdTe films. The fundamental absorption edge position in the transmittance spectrum of studied thin films corresponds to the values that are typical for CdTe compound. The spectral dependence of the optical absorption of CdTe thin film in the (\alpha\cdoth\nu){}2 vs. h\nu coordinates demonstrates the presence of the fundamental absorption edge and the band gap is of a direct type. The value of optical band gap \textit{E}g for CdTe was obtained by different methods (from optical transmission and reflectivity spectra) and identified between 1.523 and 1.548 eV. Based on the obtained experimental data of band gap, the refractive index, static dielectric constant and electron effective mass were calculated. Obtained values of electron effective mass and static dielectric constant show small underestimation if compare with experimental results. Based on the values of \textit{n} calculated from the different relations, we also calculated the high-frequency dielectric constant. It is established that the Moss relation allows to determine the value of the refractive index and high-frequency dielectric constant in the most accurate way. Raman spectra show modes at 139, 167 and 331 cm{}-1 which confirm the formation of the of CdTe compound. Also, we observed peaks at 90 and 121 cm{}-1 which are corresponding to crystalline tellurium. The form of the inclusions and their possible location of crystalline tellurium must be subject of future studies.

Full text (pdf)


References
  1. N. Spalatu, J. Hiie, V. Valdna, M. Caraman, N. Maticiuc, V. Mikli, T. Patlog, M. Krunks, V. Lughi, Energy Proce. 44, 85-95 (2014). doi:10.1016/j.egypro.2013.12.013.
  2. O. Toma, L. Ion, M. Girtan, S. Antohe, Sol. Energy. 108, 51-60 (2014). doi:10.1016/j.solener.2014.06.031.
  3. I. Ban, M. Kristl, V. Danc, A. Danc, M. Drofenik, Mater. Lett. 67, 56-59 (2012). doi:10.1007/s40820-017-0137-5.
  4. F. de Moure-Flores, J. G. Quinones-Galvan, A. Guillen-Cervantes, J. S. Arias-Ceron, A. Hernandez-Hernandez, J. Santoyo-Salazar, J. Santos-Cruz, S. A. Mayen-Hernandez, M. de la L. Olvera, J. G. Mendoza-Alvarez, M. Melendez-Lira, G. Contreras-Puente, J. Crys. Growth. 386, 27-31 (2014). doi:10.1016/j.jcrysgro.2013.09.036.
  5. S. D. Gunjal, Y. B. Khollam, S. R. Jadkar, T. Shripathi, V. G. Sathe, P. N. Shelke, M. G. Takwale, K. C. Mohite, Sol. Energy. 106, 56-62 (2014). doi:10.1016/j.solener.2013.11.029.
  6. S. K. Pandey, U. Tiwari, R. Raman, C. Prakash, V. Karishna, V. Dutta, K. Zimik, Thin Solid Films. 473, 54-57 (2005). doi:10.1016/j.tsf.2004.06.157.
  7. A. Romeo, D. L. Batzner, H. Zogg, C. Vignali, A. N. Tiwari, Sol. Energy Mater. Sol. Cells. 67, 311-321 (2001). doi:10.1016/S0927-0248(00)00297-X.
  8. N. R. Paudel, K. A. Wieland, A. D. Compaan, Sol. Energy Mater. Sol. Cells. 105, 6109-112 (2012). doi:10.1016/j.solmat.2012.05.035.
  9. N. R. Paudel, A. D. Compaan, Y. Yan, J. Electron. Mater. 43, 2783-2787 (2014). doi:10.1007/s11664-014-3042-4.
  10. V. V. Plotnikov, D. Kwon, K. A. Wieland, A. D. Compaan, 34th IEEE Photovolt. Spec. Conf. 34, 1435-1438 (2009). doi:10.1109/PVSC.2009.5411312.
  11. R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv, E. Zmiiovska, Functional Materials. 27, 342-347 (2020). doi:10.15407/fm27.02.342.
  12. H. Ilchuk, A. Kashuba, R. Petrus, I. Semkiv, V. Haiduchok // Journal of Physical Studies. 24, 3705(1-9) (2020). doi:10.30970/jps.24.3705.
  13. H. Ilchuk, R. Petrus, A. Kashuba, I. Semkiv, E. Zmiiovska, Molecular Crystals and Liquid Crystals. 699, 1-8 (2020). doi:10.1080/15421406.2020.1732532.
  14. A. Cortes, H. Gomes, R. E. Marotti, G. Riveros, E. A. Dalchiele, Sol. Energy Mater. Sol. Cells. 82, 21-34 (2004). doi:10.1016/j.solmat.2004.01.002.
  15. T. A. Moss, Proceedings of the Physical Society. Section B. 63, 167-176 (1950). doi:10.1088/0370-1301/63/3/302.
  16. N. M. Ravindra, S. Auluck, V. K. Srivastava, Physica status solidi (b). 93, K155-K160 (1979). doi:10.1002/pssb.222093025710.1002/pssb.2220930257.
  17. P. J. L. Herve, L. K. J. Vandamme, Journal of Applied Physics. 77, 5476-5477 (1995). doi:10.1063/1.359248.
  18. S. K. Tripathy, Optical Materials. 46, 240-246 (2015). doi:10.1016/j.optmat.2015.04.026.
  19. A. G. De Bell, E. L. Dereniak, J. Harvey, J. Nissley, J. Palmer, A. Selvarajan, W. L. Wolfe, Applied Optics. 18, 3114-3115 (1979). doi:10.1364/AO.18.003114.
  20. A. J. Strauss, Revue de Physique Appliquee. 12, 167-184 (1977). doi:10.1051/rphysap:01977001202016700.
  21. G.Morell, A.Reynes-Figueroa, R.S.Katiyar, M.H.Farias, F.J.Espinoza-Beltran, O.Zelaya-Angel, F.Sanchez-Sinencio, Journal of Raman spectroscopy. 25, 203-207 (1994). doi:10.1002/jrs.1250250303.