Visnyk of the Lviv University. Series Physics 58 (2021) ñ. 16-29
DOI: https://doi.org/10.30970/vph.58.2021.16

Structural, electronic and optical properties of multiferoics group (CnH2n+1NH3)2CuCl4

O. Bovgyra, M. Kovalenko, V. Kapustianyk, O. Kozachenko

(íå ìåíøå 1800 çíàê³â) In the study, within the theory of density functional, structural, electronic and optical properties of compounds CnH2n+1NH3)2BCl4, which \textit {n} = 0, 1, 2,…, and CuCl4(C6H5CH2CH2NH3)2 compound are investigated using different approximation for exchange-correlation potential. The obtained theoretical equilibrium lattice parameters and ionic positions in the unit cell correlate satisfactorily with the experimental data. Based on the first-principle calculations, the IR absorption spectra of the studied multiferoics were obtained. The modes of normal oscillations corresponding to the peaks in the obtained spectra are analyzed. The calculated spectra can be used to interpret the experimental spectra of the synthesized nanostructures. Using the equilibrium lattice parameters, the band-energy diagrams of the crystals of the investigated compounds were determined. The study of the electron spectrum showed that the top of the valence band is constructed by octahedral complexes CuCl4, while the bottom of the conduction band is formed by organic components of the crystal, in particular \textit{s-p} -states of alkyl groups. The calculated spectral dependences of the absorption coefficients of these compounds reflect the main features of the dependence of the imaginary part of dielectric constant \varepsilon2. It is confirmed that the maxima in the spectra of optical functions in the region up to 4 eV are charge transfer bands associated with transitions \textit{p}-Cl(eu)\rightarrow \textit{d}-Cu. Wide bands with low intensity in the region of 700–900 nm are associated with \textit{d-d} transitions in the Cu2+ ion.

Full text (pdf)


References
  1. A. R. Lim and K.-Y. Lim, Solid State Sci. 31, 70 (2014). doi:10.1016/j.solidstatesciences.2014.03.004.
  2. D. B. Mitzi, K. Chondroudis and C. R. Kagan, Prog. Inorg. Chem. 38, 6246–6256 (1999). doi:10.1021/ic991048k.
  3. C. N. R. Rao, A. K. Cheetham and A. Thirumurugan, J. Phys.: Condens. Matter 20, 159801, (2008). doi:10.1088/0953-8984/20/8/083202.
  4. P. Zolfaghari, G. A. de Wijs and R. A. de Groot, J. Phys.: Condens. Matter 25, 295502 (2013). doi:0.1088/0953-8984/25/29/295502.
  5. V. Y. Kurlyak, O. V. Bovgyra and V. Y. Stadnyk, J. Appl.Spectroscop. 82, 755 (2015). doi:10.1007/s10812-015-0176-y.
  6. I. M. Kunyo, A. I. Kashuba, I. V. Karpaà, V. B. Stakhura, S. A. Sveleba, I. M. Katerynchuk, I. S. Holyns'kyi, T. I. Vozniak and M. V. Kovalenko, Journal of Physical Studies 22(3), 3301 (2018). doi:10.30970/jps.22.3301.
  7. J. Ding, H. Li, L. Wen, X. Kang, H. Li, J. Zhang, Journal of Magnetism and Magnetic Materials 346, 91 (2013). doi:10.1016/j.jmmm.2013.07.018.
  8. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli and M.Cococcioni, J. Phys. Condens. Matter. 29, 465901 (2017). doi:10.1088/1361-648X/aa8f79.
  9. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). doi:10.1103/PhysRevB.41.7892.
  10. C.G. Broyden, IMA Journal of Applied Mathematics 6(3), 222 (1970). doi:10.1093/imamat/6.3.222.
  11. R. Fletcher, The Computer Journal 24(3), 23 (1970). doi:10.1093/comjnl/13.3.317.
  12. D. Goldfarb, Mathematics of Computation 24, 23 (1970). doi:10.1090/S0025-5718-1970.-0258249-6).
  13. D.F. Shanno, Mathematics of Computation 24, 647 (1970). doi:10.1090/S0025-5718-1970-0274029-X.
  14. R. D. Willett, J. Chem. Phys. 41, 2243 (1964). doi:10.1063/1.1726253.
  15. I. Pabst, H. Fuess and J. W. Bats, Acta Crystallogr., Sect. C: Crys. Struct. Commun. 43, 413 (1987). doi:10.1107/S0108270187095568.
  16. J. P. Steadman and R. D. Willett, Inorg. Chim. Acta 4, 361 (1970). doi:10.1016/S0020-1693(00)93307-3.
  17. A. O. Polyakov, A. H. Arkenbout, J. Baas, G. R. Blake, A. Meetsma, A. Caretta, P. H. M. van Loosdrecht and T. M. Palstra, Chem. Mater. 24(1), 133–139 (2012). doi:10.1021/cm2023696.
  18. D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T Baikie, P. P. Boix, M. Gr\"atzel, S. Mhaisalkar, C. Soci and N. Mathews, Inorg. Chem. 55, 1044–1052 (2016). doi:10.1021/acs.inorgchem.5b01896.
  19. V.R. Valiente and F. Rodr\'iguez. ACS Applied Materials \& Interfaces. 12. 37807-37810 (2020). doi:10.1021/acsami.0c11480