Visnyk of the Lviv University. Series Physics 58 (2021) ñ. 85-97
DOI: https://doi.org/10.30970/vph.58.2021.85

Influence of ferroelastoelectric phase transition on the temperature evolution of the optical absorption edge of an ammonium dihydrate tetrachlorocuprate crystal

V. Kapustianyk, S. Semak, Yu. Chornii

On the basis of study of the temperature evolution of the optical absorption edge of (NH 4 ) 2 CuCl 4 \cdot2H 2O crystal, the ferroelastoelectric phase transition at the temperature \textit{T} c = 200,5 K was confirmed, as evidenced by the corresponding anomalies in the temperature dependences of the Urbach’s rule parameters, in particular of \sigma and Å’. Performed spectral investigations confirmed a strong influence of the electron-phonon interaction on the position and shape of the absorption edge in (NH 4 ) 2 CuCl 4 \cdot2H 2O crystals. As a result, for the phase lying above \textit{T} c and the temperature region below 100 K the low energy tail of the edge band follows the empirical Urbach’s rule. Nonfulfillment of the Urbach’s rule in the temperature range of 100 \div 200,5 Ê would be associated with light scattering on the ferroelastoelectric domains, the size of which in this temperature range is commensurate with the wavelength of light. The values of \sigma0 were found to be larger in comparison with those for the case of the localised exciton edge band observed in the related materials with an alkylammonium cation from A 2 BX 4 family. This testifies to a smaller strength of the EPI in (NH 4 ) 2 CuCl 4 \cdot2H 2O crystals that is characteristic of the edge bands of a charge transfer type. The calculated effective energy of phonons participating in formation of the absorption edge in the FEE phase precisely coincides with the frequency of the binding vibration \delta (Cl(II)-Cu-OH 2 ) within metal-halogen-hydrate complex (242 cm -1 ) observed in the investigations of the Raman spectra of (NH 4 ) 2 CuCl 4 \cdot2H 2O crystals. This looks natural since the charge transfer band originates from the electron transitions between the central ion and the ligand Cl - ion. Very similar situation was found to be in the majority of phases in the related materials manifesting the charge transfer band. One can also suggest that in the initial phase the rocking vibration of the crystallization water are most of all responsible for the broadening of the absorption edge.

Full text (pdf)


References
  1. Z. Tylczynski and M. Wiesner, Materials Chemistry and Physics 149-150, 566-573 (2015). doi: 10.1016/j.matchemphys.2014.11.007.
  2. H. Suga, M. Sorai, T. Yamanaka and S. Seki, Bulletin of the Chemical Society of Japan 38, 1007-1015 (1965). doi: 10.1246/bcsj.38.1007.
  3. Y. Iziumov, Phase Transitions and Crystal Symmetry. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990).
  4. S. Hendricks and R. Dickinson, Journal of the American Chemical Society 49 (9), 2149-2162 (1927). doi: 10.1021/ja01408a005.
  5. S. Bhakay-Tamhane, A. Sequeira and R. Chidambaram, Acta Crystallographica B 36, 2925-2929 (1980).doi: 10.1107/S0567740880010539.
  6. J. Itoh, R. Kusaka, Y. Yamagata, R. Kiriyama and H. Ibamoto, Physica 19, 415-418 (1953). doi: 10.1016/S0031-8914(53)80047-9.
  7. H. Maluszynska, Z. Tylczynski and A. Cousson, CrystEngComm 15, 7498-7504 (2013).doi: http://refhub.elsevier.com/S0254-0584(14)00710-X/sref9.
  8. M. L. Bansal, V. C. Sahni and A. P. Roy, Journal of Physics and Chemistry of Solids 40, 109-120 (1979). doi: http://refhub.elsevier.com/S0254-0584(14)00710-X/sref10.
  9. A. P. Roy, V. C. Sahni and M. L. Bansal, Journal of Physics and Chemistry of Solids 40, 289-292 (1979). doi: http://refhub.elsevier.com/S0254-0584(14)00710-X/sref11.
  10. M. Slaboszewska, Z. Tylczynski, A. Pietraszko and A. D. Karaev, Ferroelectrics 302, 55-58 (2004).doi: http://refhub.elsevier.com/S0254-0584(14)00710-X/sref12.
  11. P. Toledano, Physical Review B 16, 386-407 (1977).
  12. V. Kapustianyk, S. Semak, P. Demchenko, I. Girnyk and Y. Eliyashevskyy, Phase Transitions 91 (7), 715-723 (2018).doi: 10.1080/01411594.2018.1473578.
  13. V. Kapustianyk, S. Semak, M. Panasyuk, M. Rudko and V. Rudyk, Phase Transitions 92 (4), 396-405 (2019).doi: 10.1080/01411594.2019.1591407.
  14. N. Narsimlu, K. Sivakumar and G. S. Sastry, Cryst. Res. Technol. 31, 385-389 (1996).doi: 10.1002/crat.2170310318.
  15. V. B. Kapustianyk, S. I. Semak, S. B. Bilchenko, Y. I. Eliyashevskyy, Y. V. Chorniy and P. Y. Demchenko, Journal of Applied Spectroscopy 86 (4), 590-596 (2019).doi: 10.1007/s10812-019-00864-8.
  16. V. B. Kapustianyk, Physica Status Solidi B 207, 509-520 (1997).
  17. H. Sumi and A. Sumi, Journal of the Physical Society of Japan 56, 2211-2220 (1987).
  18. V. Kapustianyk, Z. Czapla, V. Rudyk, Y. Eliyashevskyy, P. Yonak and S. Sveleba, Ferroelectrics 540, 212-221 (2019).doi: 10.1080/00150193.2019.1611113.
  19. Â. Á. Êàïóñòÿíèê, Ô³çèêà êðèñòàë³÷íèõ ôåðî¿ê³â ç îðãàí³÷íèì êàò³îíîì. (Âèä. öåíòð ËÍÓ ³ì. ². Ôðàíêà, Ëüâ³â, 2006).
  20. V. B. Kapustianik, Physica Status Solidi  204, 877-887 (1997).
  21. V. Kapustianik, Y. Korchak and V. Bazhan, Physica Status Solidi B 218, 583-590 (2000).
  22. I. R. Beattie, T. R. Gilson and G. A. Ozin, Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 534-541 (1969).doi: 10.1039/j19690000534.