ISSN 1024-588Х. Вісник Львівського університету. Серія фізична. 2023. Випуск 60. С. 78-89 Visnyk of the Lviv University. Series Physics. 2023. Issue 60. Р. 78-89

УДК 535.323; 535.35; 537.226 PACS 78.20.Ek, 78.20.Fm, 42.25.Ja https://doi.org/10.30970/vph.60.2023.78

Ізотропність у кристалах сульфату рубідію

I. Пришко¹, В. Стадник¹, П. Щепанський^{1,2}, Л. Карплюк¹, Н. Фтомин¹

¹ Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 8, 79005 Львів, Україна e-mail: pryshko_ivan@ukr.net

² Національний університет "Львівська Політехніка", вул. С. Бандери, 12, 79005 Львів, Україна

Досліджено спектральну (300-700 нм) й температурну (300-77 К) залежності двопроменезаломлення Δn_i та показників заломлення n_i монокристалів Rb₂SO₄. Виявлено, що залежності $n_i(T)$ майже лінійно зростають з пониженням температури, причому $|dn_z/dT| > |dn_x/dT| \ge |dn_y/dT|$. За кімнатної температури для $\lambda = 500$ нм виявлено перетин кривих $n_z(T)$ і $n_y(T)$, а за температури 85 К перетин кривих $n_z(T)$ і $n_x(T)$, що свідчить про існування ізотропних точок в цьому кристалі. Встановлено, що дисперсія $\Delta n_i(\lambda) \in$ нормальною $d(\Delta n_i)/d\lambda < 0$, так що $d(\Delta n_x)/d\lambda > d(\Delta n_z)/d\lambda > d(\Delta n_y)/d\lambda$. Досліджено вплив одновісного стискання σ_m на зміни $\Delta n_y(T, \lambda)$ і виявлено їх значну чутливість, при тому σ_m не змінюють характеру цих кривих, а лише змінюють значення Δn_i за абсолютною величиною.

Ключові слова: кристал, двопроменезаломлення, показник заломлення, ізотропна точка, одновісне стискання.

1. Вступ

Ізотропна точка (IT) у кристалах полягає у підвищенні симетрії оптичної індикатриси при зміні спектрального діапазону чи температури. Перехід через IT супроводжується зміною знаку двопроменезаломлення кристала, тобто має місце його інверсія. Тому саме явище перетину дисперсійних кривих показників заломлення називають явищем інверсії знаку двопроменезаломлення (I3Д) [1-4]. IT є результатом температурно-спектральних деформацій оптичної індикатриси кристалів і полягає в тому, що для кожної довжини хвилі лише за певної температури має місце перехід кристала з одновісного в ізотропний чи з двовісного в одновісний стан. Наявність і температурну залежність ізотропного стану кристала пов'язують зі спектральними та температурними змінами показників заломлення [5-9].

Кристали з IT цікаві можливістю їх використання у кристалооптичних сенсорах для вимірювання температури та тиску. Вони створюють кращі можливості для

[©] Пришко I., Стадник В., Щепанський П., Карплюк Л., Фтомин Н., 2023

вимірювання температури в жорстких умовах (високі електричні і магнітні поля, рухомі деталі) та можуть забезпечувати чутливість до 10⁻³ К.

Шляхом вимірюванням температурних (77-1000 К) та спектральних (300-700 нм) залежностей показників заломлення n_i і двопроменезаломлення Δn_i , вдалось виявити IT для низки діелектричних кристалів-фероїків групи ABSO₄ (LiKSO₄, K₂SO₄, RbNH₄SO₄, RbKSO₄, LiNH₄SO₄ тощо) [10-12]. Незважаючи на значну кількість кристалів, практична цінність пошуку нових кристалів з IT є актуальною, оскільки багато з відомих виявляють IT у незручній для практичного застосування ділянці спектра, і майже всі зазнають фазових переходів (ФП) у певному температурному діапазоні, що обмежує їх технічні характеристики.

З цією метою нами обрано один з представників цієї групи – кристал сульфату рубідію (СР) Rb₂SO₄. Раніше в цьому кристалі за кімнатної температури виявлено близькість показників заломлення n_z та n_y у видимій ділянці спектру, так що за довжини хвилі $\lambda = 495$ нм вони перетинаються ($n_z = n_y = 1,51705$), що вказує на існування ІТ в вздовж кристалофізичного напряму X.

Кристал СР є типовим представником групи ABSO₄, за температури T_c ~ 922 K він зазнає фазового переходу (ФП) з псевдогексагональної параелектричної фази P - 3m1 в орторомбічну сегнетоеластичну фазу (просторова група симетрії $D_{2h}^{16} - Pmcn$ [13, 14]). Це оптично двовісні кристали, у яких за кімнатної температури кут між оптичними осями становить $2V = 41.5^{\circ}$ [15].

Проведено вивчення їх кристалічної структури та з'ясовано, що отримані кристали мають просторову групу симетрії *Pnma* з наступними уточненими параметрами гратки: a = 7.82079(10) Å, b = 5.97778(7) Å, та c = 10.44040(13) Å. Зонно-енергетична структура кристала має заборонену зону прямого типу (E_g =4.89 еВ) та слабку дисперсію енергетичних рівнів. З'ясовано, що для кристала Rb₂SO₄, як і для багатьох інших кристалів групи A₂BX₄ вершина валентної зони сформована 2*p* станами атомів кисню, а дно зони провідності сформоване 4*s*-електронами рубідію [16].

Раніше досліджувались спектральні залежності рефрактивних параметрів кристалів сульфату рубідію, вирощених методом пониження температури [17], де було виявлено існування ізотропної точки в ділянці низьких температур. Однак в літературі відсутні відомості про оптико-спектральні параметри кристала Rb₂SO₄, вирощеного методом повільного випаровування в ділянці низьких температур. Тому метою цієї роботи є підтвердити існування ізотропного стану в кристалі CP, вирощеного іншим методом, у ділянці низьких температур. Проаналізувати температурні трансформації оптичної індикатриси кристалу у випадку пониження температури, а також дослідити вплив одновісного стискання σ_m на зміни $\Delta n_y(T, \lambda)$. З'ясувати вплив катіонного заміщення Rb⁺ \rightarrow (NH₄)⁺ \rightarrow Na⁺ \rightarrow K⁺ на оптико-електронні параметри кристалів групи ABSO₄ з метою впливу та регулювання спектрального та температурного діапазонів їх існування.

2. Методика досліджень

Досліджувані кристали отримано методом повільного випаровування за кімнатної температури водного, багатократно перекристалізованого розчину солей чистого сульфату рубідію Rb₂SO₄. Температура розчину становила 310 K, яку контролювали термостатом з точністю 0,5 К. Вирощування проводили зі спонтанно утворених зародків зі псевдогексагональною морфологією упродовж 20 діб. Отримані кристали були хорошої оптичної якості і мали форму у вигляді видовженої призми, розміром приблизно $6 \times 8 \times 8$ мм.

Температурно-спектральні залежності показників заломлення досліджуваних кристалів проводили відомим фотографічним методом Обреїмова [6, 18], який базується на тому, що під час проходження паралельного світлового пучка променів вздовж границі плоскопаралельної кристалічної пластинки і зовнішнього середовища з показником заломлення n_{en} виникає різниця ходу:

$$\Delta = d(n_{cr} - n_{en}) \tag{1}$$

Світлові пучки, які пройшли через зразок і середовище, частково перекриваються і будуть інтерферувати, а показник заломлення досліджуваного кристала можна записати так:

$$n_{\rm \kappa p}(\lambda) = 1 + k\lambda/d \tag{2}$$

Тут $n_{\rm KD}$ і d – показник заломлення і товщина досліджуваного зразка, відповідно; λ – довжина хвилі, *k* – порядок інтерференційного екстремуму.

Дослідження двопроменезаломлення Δn проводили спектральним методом, в основі якого лежить аналіз інтерференційної картини, яка виникає внаслідок розкладання в спектр білого світла, що пройшло через систему схрещених поляризаторів, між якими розміщений зразок в діагональному положенні та нормально до падаючого паралельного пучка світла. Пропускання такої системи описується співвідношенням:

$$I = I_0 \sin^2 \left(\frac{(n_i - n_j)d}{\lambda} \right) \tag{3}$$

де I_0 і I – інтенсивності вхідного і вихідного пучків; λ – довжина хвилі; $n_i - n_j$ – величина двопроменезаломлення. Тоді двопроменезаломлення кристала визначається подібним до (2) виразом:

$$\Delta n(\lambda, T) = \frac{k\lambda}{d(T)} \tag{4}$$

Тут також k – порядок інтерференційного екстремуму, λ – довжина світлової хвилі, *d* – товщина зразка.

3. Результати досліджень

Вимірювання двопроменезаломлення $\Delta n_i(\lambda)$ проведено в діапазоні від кімнатної до температури рідкого азоту 77 К для трьох поляризацій світла Е || Х, Е || У та $E \parallel Z$. Вибрано наступне позначення напрямків у кристалі: $N_q = X$ (найбільший показник заломлення), $N_m = Z$ (середній показник заломлення) та $N_p = Y$ (найменший показник заломлення). Встановлено, що дисперсія $\Delta n_i(\lambda)$ є нормальною $d(\Delta n_i)/d\lambda < 0$. Виявлено наступні співвідношення між дисперсією двопроменезаломлення: $d(\Delta n_x)/d\lambda > d(\Delta n_z)/d\lambda > d(\Delta n_y)/d\lambda$ (рис. 1). При тому за кімнатної температури для довжини світлової хвилі $\lambda = 490$ нм величина $\Delta n_x = 0$ $(n_z = n_y = 1, 51705)$, що відповідає IT₁. Раніше серед групи кристалів A_2BX_4 у видимій ділянці спектру IT виявлено в ізоморфних кристалах (NH₄)₂SO₄ [20] та LiNH₄SO₄ α-модифікації [21].

Рис. 1: Спектральні залежності двопроменезаломлення Δn_y кристалу Rb₂SO₄ для різних температур і різних напрямів одновісного стискання. Верхні криві – для температури 85 К, нижні – для кімнатної температури; світлі точки – механічно вільний кристал, червоні точки – одновісно затиснутий кристал уздовж Z-напряму, зелені точки – одновісно затиснутий кристал уздовж X-напряму.

На рис. 2 наведено температурні залежності показників заломлення n_i кристалу Rb₂SO₄ для різних кристалофізичних напрямів для довжини світлової хвилі $\lambda = 500$ нм у температурному діапазоні 77... 300 К.

Бачимо, що всі залежності $n_i(T)$ майже лінійно зростають зі зростанням температури, причому $|dn_z/dT| > |dn_x/dT| \ge |dn_y/dT|$. За кімнатної температури для $\lambda = 500$ нм виявлено перетин кривих $n_z(T)$ і $n_y(T)$. За температури 85 К виявлено перетин кривих $n_z(T)$ і $n_x(T)$ ($n_z = n_x = 1,51938$). Це є друга ізотропна точка кристалу СР IT₂.

На рис. 3 наведено температурні залежності двопроменезаломлення кристалу СР для кристалофізичних X-Z-напрямів, для яких виявлені IT. Бачимо, що з пониженням температури Δn_i зростає, так що $d(\Delta n_x)/dT \sim 7,61 \cdot 10^{-6} \text{K}^{-1}, d(\Delta n_y)/dT \sim 5,02 \cdot 10^{-6} \text{K}^{-1}$.

В У-напрямі кристал володіє незначною дисперсією $d(\Delta n_y)/d\lambda \sim 2,810^{-7}$ нм⁻¹, а $\Delta n_y = -1,04 \cdot 10^{-3}$ для довжини світлової хвилі $\lambda_0 = 500$ нм і кімнатної температури. З підвищенням температури Δn_y зростає, при тому характер дисперсії не змінюється, лише зменшується за абсолютною величиною $d(\Delta n_y)/d\lambda \sim 0,910^{-8}$ нм⁻¹, а за температури 85 К величина $\Delta n_y = 0$, що свідчить про існування нової IT у ділянці

низьких температур у даному кристалі.

Рис. 2: Температурні залежності показників заломлення n_i кристалу Rb_2SO_4 для різних кристалофізичних напрямів для довжини світлової хвилі $\lambda = 500$ нм

Оскільки з пониженням температури Δn_y зростає, то це означає, що крива $\Delta n_y(\lambda)$ зсуватиметься вгору і, відповідно, точка перетину $\Delta n_y = 0$ буде зміщуватися в короткохвильову ділянку спектру. Встановлено, що за температури 81 К величина $\Delta n_y = 0$ для довжини світлової хвилі $\lambda = 370$ нм. І навпаки, з підвищенням температури крива $\Delta n_y(\lambda)$ зсуватиметься вниз, що відповідатиме зміщенню ІТ в довгохвильову ділянку спектру. Оскільки величина $d(\Delta n_y)/d\lambda$ для кристалу СР є малою, то велична зміщення ІТ по шкалі довжин хвиль є достатньо величкою, що свідчить про значну температурну чутливість ІТ. Нами оцінено величину спектрально-температурного зміщення ІТ: $d\lambda_0/dT \approx 63,5$ нм/К.

Раніше така ситуація з великим значенням $d\lambda_0/dT$ була виявлена для ізоморфних кристалів K_2SO_4 , в якому $d\lambda_0/dT \to \infty$, що відповідає ізоспектральності IT. Оскільки ізотропні точки виникають за конкретної температури одночасно в широкому спектральному діапазоні, то причиною цього є взаємна температурна зміна параметрів ультрафіолетових і інфрачервоних осциляторів, які визначають температурні і спектральні залежності рефрактивних параметрів кристалів уздовж різних кристалофізичних напрямів.

Той факт, що $\Delta n_y = 0$, відповідає рівності показників заломлення $n_z = n_x$ для даної довжини та температури. Умову виникнення IT можна отримати із формули

Зельмеєра [6, 21] за умови, що в ізотропній точці $(n_i = n_j)$:

$$n_{i} = n_{j} = \frac{B_{i1}\lambda_{0i1}^{2}\lambda^{2}}{\lambda^{2} - \lambda_{0i1}^{2}} + \frac{B_{i2}\lambda_{0i2}^{2}\lambda^{2}}{\lambda^{2} - \lambda_{0i2}^{2}} = \frac{B_{j1}\lambda_{0j1}^{2}\lambda^{2}}{\lambda^{2} - \lambda_{0j1}^{2}} + \frac{B_{j2}\lambda_{0j2}^{2}\lambda^{2}}{\lambda^{2} - \lambda_{0j2}^{2}}$$
(5)

Рис. 3: Температурна залежність двопроменезаломлення Δn_i кристалу Rb₂SO₄ для довжини світлової хвилі $\lambda = 500$ нм

Тут λ_{0i1} і λ_{0i2} – спектральне положення ефективних центрів ультрафіолетових (УФ) та інфрачервоних (ІЧ) смуг поглинання; B_1 і B_2 – пов'язані з ефективними силами відповідних осциляторів. З (5) можна знайти довжину хвилі λ_0 положення ІТ:

$$\lambda_0 = \pm \sqrt{\frac{b \pm \sqrt{b^2 + 4c}}{2}},\tag{6}$$

де

$$b = \frac{B_{i1}\lambda_{0i}^2 - B_{j1}\lambda_{0j}^2}{B_{i2}B_{j2}}; c = \frac{B_{j1} - B_{i1}}{B_{i2} - B_{j2}} - 1$$

На рис. 4 зображено температурні трансформації оптичної індикатриси кристалу СР у випадку пониження температури. За температури дещо вище кімнатної кристал є оптично двовісним, оптичні осі розташовані в (XOZ) – площині, напрям гострої бісектриси кута між оптичними осями співпадає з Х-напрямом, притому співвідношення між показниками заломлення $n_x > n_y > n_z$, кристал є оптично додатнім (рис. 4, а). З пониженням температури кут між оптичними осями зменшується в Х-напрямі, за температури 293 К вони сходяться в одну оптичну вісь

83

– кристал перетворюється з оптично двовісного в оптично одновісний (рис. 4, б). При тому $n_x > n_y = n_z$. Подальше пониження температури приводить до наступного перетворення кристалу в оптично двовісний, однак площина оптичних осей знаходиться в (XOY), а гострою бісектрисою кута між оптичними осями є Y-напрям. При тому співвідношення між показниками заломлення $n_x > n_z > n_y$, кристал знову стає оптично додатнім (рис. 4, в). За температури 85 К кристал знову перетворюється в оптично одновісний з напрямом оптичної осі вздовж Y-осі (рис. 4, г) так, що $n_x = n_z > n_y$.

Рис. 4: Температурні деформації оптичної індикатриси кристалу Bb_2SO_4 . X, Y, Z – напрями кристалофізичних осей; темні лінії – напрями оптичних осей; а) $T \ge 293$ K, (XOZ) – площина оптичних осей; б) T = 293 K, X – напрям ізотропної точки; в) 85 K<T>293 K, (XOY) – площина оптичних осей; г) T = 85 K, Y – напрям ізотропної точки

У роботі також досліджено вплив одновісного тиску на двопроменезаломлюючі властивості кристалу СР, яке досліджувалось за допомогою спеціальної приставки до азотного кріостату. На рис. 1 також показано дисперсійні криві $\Delta n_y(\lambda)$ для напрямів тисків уздовж кристалофізичних осей X і Z. Бачимо, що одновісні стискання σ_x і σ_z не змінюють характеру кривих $\Delta n_y(\lambda)$: $d(\Delta n_y)/d\lambda \sim 2, 1 \cdot 10^{-7}$ нм⁻¹, і 2,9 · 10⁻⁷ нм⁻¹ для тисків σ_x , $\sigma_z = 30$ бар, відповідно. Одновісні стискання вздовж головних кристалофізичних осей змінює криві Δn_y за абсолютною величиною. Так, одновісне стискання σ_z приводить до зростання Δn_y у середньому $\delta(\Delta n_y) \sim 2,9 \cdot 10^{-5}$, тоді як одновісне стискання σ_x приводить до зменшення Δn_y у середньому $\delta(\Delta n_y) \sim -5, 1 \cdot 10^{-5}$. Така поведінка індукованих одновісними стисканнями змін Δn_y підтвердила раніше виявлену закономірність для кристалів групи A_2BX_4 : одновісні стискання вздовж взаємноперпендикулярних напрямів ведуть до різних за величиною та знаком змін двопроменезаломлення.

Оскільки одновісні напруження $\sigma_x = 30$ бар і $\sigma_z = 30$ бар зміщують диспер-

сійні криві в сторону більших і менших значень Δn_y , то це означає, що зміщується область існування ізотропного стану. Встановлено, що одновісне напруження $\sigma_x = 30$ бар зміщує IT в короткохвильову ділянку спектру, вона існуватиме за температури 85 К і довжині світлової хвилі 345 нм, тоді як напруження $\sigma_z = 30$ бар зміщуватиме IT у довгохвильову ділянку спектру та область низьких температур. У середньому температурно-спектральне зміщення IT становить $d\lambda_0/dT \sim 45,5$ нм/K, а спектрально-баричне $d\lambda_0/d\sigma \sim 6,8$ нм/бар.

Раніше було запропоновано використовувати двопроменезаломлюючі властвості оптично активних кристали з ізотропною точкою у якості оптичних вузькосмугових фільтрів [22-25]. За їх допомогою можна звужувати (фільтрувати) лінію випромінювання лазера, що дозволяє проводити вимірювання спектрів раманівського розсіювання для частот близьких до ліній збудження. Головною особливістю цих фільтрів є їхня вузькосмуговість, їхню смугу пропускання можна змінювати шляхом пошуку нових кристалів або зміною температури чи зовнішнього тиску [26-29]. Оскільки в даному кристалі IT існує в ділянці низьких температур, то даний кристал можна використовувати в якості робочого елемента кристалооптичного датчика температур в діапазоні 75 – 90 К.

4. Висновки

Методом повільного випаровування вирощено монокристали Rb₂SO₄ хорошої оптичної якості, а також досліджено спектральну (300-700 нм) й температурну (300-77 К) залежності двопроменезаломлення Δn_i та показників заломлення n_i . Виявлено, що залежності $n_i(T)$ майже нелінійно зростають з пониженням температури, причому $|dn_z/dT| > |dn_x/dT| \ge |dn_y/dT|$. За кімнатної температури для $\lambda = 500$ нм виявлено перетин кривих $n_z(T)$ і $n_y(T)$, а за температури 85 К перетин кривих $n_z(T)$ і $n_x(T)$, що свідчить про існування другої ізотропної точки в цьому кристалі. Встановлено, що дисперсія $\Delta n_i(\lambda)$ є нормальною $d(\Delta n_i)/d\lambda < 0$, так що $d(\Delta n_x)/d\lambda > d(\Delta n_z)/d\lambda > d(\Delta n_y)/d\lambda$. Проаналізовано температурні трансформації оптичної індикатриси кристалу сульфату рубідію у випадку пониження температури, а саме переходи з оптично двовісного в оптично одновісний стан. Досліджено вплив одновісного стискання σ_m на зміни $\Delta n_y(T, \lambda)$ і виявлено їх значну чутливість, при тому σ_m не змінюють характеру цих кривих, а лише змінюють значення Δn_i за абсолютною величиною.

 Bhar G. C. Refractive index dispersion of chalcopyrite crystals / G. C. Bhar // Applied Physics. - 1980. - Vol. 13. - P. 455. doi: 10.1088/0022-3727/13/3/018.

^{1.} Hobben M. A., Optical activity in an non-enantiomorphous crystal ${\rm AgGaS_2}$ / M. A. Hobben // Acta Cryst. – 1968. – V. A24, Nº 3. – P. 676–680. doi.org/10.1107/S0567739468001440

Schwartz C. Direct measurement of the birefringence of AgGaS₂ / C. Schwartz, D.S. Chemla, B. Ayrault, R. C. Smith // Optics Communications. - 1972. - Vol. 5. -P. 244-247. doi:10.1016/0030-4018(72)90089-2.

- 4. Abrahams S. C. Crystal Structure of Luminescent ZnSiP₂ / S. C. Abrahams, J. L. Bernstein // Chemical Physics. - 1970. - Vol. 52. - P. 5607-5613. doi:10.1063/1.1672831.
- Abrahams S. C. Crystal structure of piezoelectric nonlinear-optic AgGaS₂ / S. C. Abrahams, J. L. Bernstein // Chemical Physics. – 1973. – Vol. 59. – P. 1625–1629. doi: 10.1063/1.1680242
- 6. Романюк М. О. Кристалооптика / М. О. Романюк. Львів: ЛНУ імені Івана Франка, 2017. – 456 с.
- 7. Романюк М. О. Оптика / М. О. Романюк, А. С. Крочук, І. П. Пашук. Львів: ЛНУ імені Івана Франка, 2012. 564 с.
- Габа В. М. Спектрально-температурні деформації оптичних індикатрис у іонних кристалах та фізичні аспекти їх практичного застосування. Монографія / В. М. Габа. – Львів.: Ліга-Прес, 2006. – 226 с.
- Сусликов Л. М. Твердотельные оптические фильтры на гиротропных кристаллах / Л. М. Сусликов, В. Ю. Сливка, М. П. Лисица. – Киев, «Интерпрес ЛТД», 1998. – 294 с.
- Kushnir O. S. Relationships among optical and structural characteristics of ABSO₄ crystals / O. S. Kushnir, P. A. Shchepanskyi, V. Yo. Stadnyk, A. O. Fedorchuk // Optical Materials. - 2019. - Vol. 59. - P. 109221. doi: 10.1016/j.optmat.2019.109221.
- Stadnyk V. Yo. On isotropic state LiNH₄SO₄ / V. Yo. Stadnyk, R. S. Breznin, M. Ya. Rudysh, P. A. Shchepanskii, V. M. Gaba, Z. A. Kohut // Optics and Spectroscopy. - 2014. - Vol. 117. - P. 756-758. doi:10.1134/S0030400X14110216.
- Stadnyk V. Yo. Optical and electronic parameters of RbNH₄SO₄ crystals / V. Yo. Stadnyk, M. O. Romanyuk, R. S. Brezvin // Ferroelectrics. - 1997. - Vol. 192. - P. 203-207. doi: 10.1080/00150199708216190.
- Tomaszewski P. E. Structural Phase Transitions in Crystals / P. E. Tomaszewski // Phase Transitions. - 1992. - Vol.38. - P. 127-220. doi:10.1080/01411599208222899.
- Muller J. Crystal chemistry of non-metallic materials. The major ternary structural families / J. Muller, R. Roy // Acta Cryst. B. - 1975. - Vol. 31. - P. 2944. doi.org/10.1063/1.3069161
- Winchell A. The Microscopical Characters of Artificial Inorganic Solid Substances: Optical Properties of Artificial Minerals / A. N. Winchell, H. Winchell. – Chicago: McCrone Research Institute, 1989. – P. 410.
- Rudysh M. Ya. Optical and electronic parameters of Rb₂SO₄ crystals / M. Ya. Rudysh, I. A. Pryshko, P. A. Shchepanskyi, V. Yo Stadnyk, R. S. Brezvin, Z. O. Kogut // Optik. - 2022. - Vol. 269. - P. 169875. doi: 10.1016/j.ijleo.2022.169875.
- Gaba V. M. Temperature-and-Spectral Deformations of the Optical Indicatrix of Rubidium Sulphate Single Crystal / V. M. Gaba // Acta Physica Polonica. - 2010.
 - Vol. 117. - P. 129–132. doi: 10.12693/APhysPolA.117.129.
- Романюк М. О. Практикум з кристалооптики і кристалофізики / М. О. Романюк. – Львів: ЛНУ імені Івана Франка, 2012. – 362 с.
- Andriyevsky B. Band structure and optical spectra of RbNH₄SO₄ crystals / B. Andriyevsky, W. Ciepluch-Trojanek, V. Stadnyk [et al.] // J. of Physics and Chemistry of Solids. - 2007. - Vol. 68. - P. 1892-1896. doi: 10.1016/j.jpcs.2007.05.017.
- Stadnyk V. Yo. Birefringence Properties of Mechanically Clamped K₂ZnCl₄ Crystals / V. Yo. Stadnyk, V. M. Gaba, B. V. Andrievskii, Z. O. Kogut // Physics of the

Solid State. - 2011. - Vol. 53. - P. 131-137. doi: 10.1134/S106378341101029X.

- Shchepanskyi P. A. Structure and Optical Anisotropy of K_{1,75}(NH₄)_{0,25}SO₄ solid solution / P. A. Shchepanskyi, O. S. Kushnir, V. Yo. Stadnyk, A. O. Fedorchuk, M. Ya. Rudysh, R. S. Brezvin, P. Yu. Demchenko, A. S. Krymus // Ukr. J. Phys. Opt. 2017. Vol. 18. P.187-197. doi: 10.3116/16091833/18/4/187/2017.
- 22. Стадник В. Й. Електронна поляризовність фероїків / В.Й. Стадник, М. О. Романюк, Р. С. Брезвін. Львів: ЛНУ ім. І. Франка, 2013. 305 с.
- Horinaka H. A New Method for Measuring Optical Activity in Crystals and Its Application to Quartz / H. Horinaka, K. Tomii, H. Sonomura, T. Miyauchi // Japanese Journal of Applied Physics. - 1985. - Vol. 24 - P.755-760. doi:10.1143/jjap.24.755.
- Horinaka H. A New Approach to Highly Efficient Raman Spectroscopy Using a Laser Diode and AgGaSe₂ Crystal Filter / H. Horinaka, N. Yamamoto, H. Hamaguchi // Applied Spectroscopy. - 1992. - Vol. 46 - P. 379-381. doi:10.1366/0003702924125681.
- Susaki M. Performance of AgGaS₂ crystal filter for Raman spectroscopy. / M. Susaki, N. Yamamoto, H. Horinaka, W. Z. Huang, Y. Cho. // Jpn. J. Appl. Phys. - 1994. -Vol. 33. - P. 1561-1564. doi: 10.1143/JJAP.33.1561.
- Horinaka H. Optical band-pass filter using accidental isotropy and optical activity of AgGaSe₂. / H. Horinaka, H. Sonomura, T. Miyauchi. // Jpn. J. Appl. Phys. - 1985. - Vol. 24. - P. 463-466. doi: 10.1143/JJAP.24.463.
- Yamomoto T. Optical band-pass filter using accidental isotropy and optical activity of AgGaSe₂ (II). / T. Yamomoto, H. Takehara, H. Horinaka, T. Miyauchi // Jpn. J. Appl. Phys. - 1986. - Vol. 25. - P. 1397-1399. doi:10.1143/JJAP.25.1397.
- Horinaka H. Temperature Dependence of the Center Wavelength of Narrow Band Filters Made of AgGaSe₂, CuGaS₂ and CuAlSe₂ / H. Horinaka, T. Okudo, N. Yamomoto // Jpn. J. Appl. Phys. - 1989. - Vol. 28. -- P. 1328. doi: 10.1143/JJAP.28.1328.
- Syrbu N. Birefringence of CuGa₂S₄ crystals / N. Syrbu, A. Dorogan, V. Ursaki, I. Stamov, I.M. Tiginyanu // Optics Communications. -2011. Vol. 284 P. 3552-355. doi: 10.1016/j.optcom.2011.03.053.

References

- 1. M. A. Hobben, Acta Cryst. A24, 676–680 (1968). doi: 10.1107/S0567739468001440.
- C. Schwartz, D. S. Chemla, B. Ayrault, R. C. Smith, Optics Communications. 5, 244–247 (1972). doi: 10.1016/0030-4018(72)90089-2.
- 3. G. C. Bhar, Applied Physics. 13, 455 (1980). doi: 10.1088/0022-3727/13/3/018.
- S. C. Abrahams, J.L. Bernstein, Chem. Phys. 52, 5607–5613 (1970). doi: 10.1063/1.1672831.
- S. C. Abrahams, J.L. Bernstein, Chem. Phys. 59, 1625–1629 (1973). doi: 10.1063/1.1680242.
- 6. M. O. Romaniuk, Lviv, Ivan Franko LNU, 456 (2017).
- 7. M. O. Romanyuk, A. S. Krochuk, I. P. Pashuk, Lviv, Ivan Franko LNU, 564 (2012).
- 8. V. M. Gaba, Lviv, Liga-Press, 226 (2006).
- 9. L. M. Suslykov, V. Yu. Slyvka, M. P. Fox, Kyiv, Interpress LTD, 294 (1998).

	І. Пришко, В. Стадник, П. Щепанський, Л. Карплюк, Н. Фтомин
88	ISSN 1024-588X. Вісник Львівського університету. Серія фізична. 2023. Вип. 60

- O. S. Kushnir, P. A. Shchepanskyi, V. Yo. Stadnyk, A. O. Fedorchuk. Optical Materials 95, 109221 (2019). doi: 10.1016/j.optmat.2019.109221.
- V. Yo. Stadnyk, R. S. Brezvin, M. Ya. Rudysh, P. A. Shchepanskyi. Optics and Spectroscopy **117**, 756–758 (2014). doi: 10.1134/S0030400X14110216.
- V. Yo. Stadnyk, M. O. Romanyuk, R. S. Brezvin. Ferroelectrics **192**, 203–207 (1997). doi: 10.1080/00150199708216190.
- P. E. Tomaszewski, Phase Transit. 38, 127–220 (1992). doi: 10.1080/01411599208222899.
- 14. O. Muller, R. Roy, Acta Cryst. **31**, 2944 (1975). doi: 10.1063/1.3069161.
- 15. L. Vinchel, G. Vinchel, Chicago, McCrone Research Institute, 410 (1989).
- M. Ya Rudysh, I. A. Pryshko, P. A. Shchepanskyi, V. Yo Stadnyk, R. S. Brezvin, Z. O. Kogut, Optik 269, 169875 (2022). doi: 10.1016/j.ijleo.2022.169875.
- 17. V. M. Gaba, Acta Phys. Pol. 117, 129–132 (2010). doi: 10.12693/APhysPolA.117.129.
- 18. M. O. Romanyuk, Lviv, Ivan Franko LNU, 362 (2012).
- B. Andriyevsky, W. Ciepluch-Trojanek, V. Stadnyk, M. Tuzyak, M. Romanyuk, V. Kurlyak, Journal of Physics and Chemistry of Solids. 68, 1892–1896 (2007). doi: 10.1016/j.jpcs.2007.05.017.
- V. Yo. Stadnyk, V. M. Gaba, B. V. Andrievskii, Z. O. Kogut, Physics of the Solid State 53, 131–137 (2011). doi: 10.1134/S106378341101029X.
- P. A. Shchepanskyi, O. S. Kushnir, V. Yo. Stadnyk, A. O. Fedorchuk, M. Ya. Rudysh, R. S. Brezvin, P. Yu. Demchenko, A. S. Krymus, Ukr. J. Phys. Opt. 18, 187–197 (2017). doi: 10.3116/16091833/18/4/187/2017.
- 22. V. Y. Stadnyk, N. A. Romanyuk, R. S. Brezvin, Lviv, Ivan Franko LNU, 305 (2013).
- H. Horinaka, K. Tomii, H. Sonomura, T. Miyauchi, Jpn. J. Appl. Phys. 24, 755–760 (1985). doi: 10.1143/jjap.24.755.
- H. Horinaka, N. Yamamoto, H. Hamaguchi, Appl. Spectrosc. 46, 379–381 (1992). doi: 10.1366/0003702924125681.
- M. Susaki, N. Yamomoto, H. Horinaka, Jpn. J. Appl. Phys. 33, 1561–1564 (1994). doi: 10.1143/JJAP.33.1561.
- H. Horinaka, H. Sonomura, T. Miyauchi, Jpn. J. Appl. Phys. 24, 463–466 (1985). doi: 10.1143/JJAP.24.463.
- T. Yamomoto, H. Takehara, H. Horinaka, T. Miyauchi, Jpn. J. Appl. Phys. 25, 1397– 1399 (1985). doi: 10.1143/JJAP.25.1397.
- H. Horinaka, T. Okudo, N. Yamomoto, Jpn. J. Appl. Phys. 28, 1328 (1989). doi: 10.1143/JJAP.28.1328.
- N. Syrbu, A. Dorogan, V. Ursaki, I. Stamov, I.M. Tiginyanu, Optics Communications 284, 3552–355 (2011). doi: 10.1016/j.optcom.2011.03.053.

Статтю отримано: 12.06.2023 Прийнято до друку: 13.09.2023

Isotropicity in rubidium sulphate crystals

I. Pryshko¹, V. Stadnyk¹, P. Shchepanskyi^{1,2}, L. Karpliuk¹, N. Ftomyn¹

¹ Ivan Franko National University of Lviv, Kyrylo and Mefodiy St., 8, 79005 Lviv, Ukraine e-mail: pryshko_ivan@ukr.net

² Lviv Polytechnic National University, Bandera St., 12, 79005 Lviv, Ukraine

The work is devoted to the study of optical isotropic points in Rb_2SO_4 crystal. The isotropic points here imply an increasing in the symmetry of the optical indicatrix when the spectral range or temperature changes. The very transition through isotropic point is accompanied by a change in the sign of birefringence of the crystal, that is, its inversion takes place. The crystals for study were obtained by the method of slow evaporation of water from repeatedly recrystallized solution of pure rubidium sulfate Rb_2SO_4 salt. The crystal structure of obtained samples was studied by means of X-ray powder diffraction spectra. Measurement of refractive indices $n_i(T)$ and birefringence $\Delta n_i(T)$ of the crystal were carried out in the range from room temperature to liquid nitrogen temperature of 77 K for three polarizations of light $E \parallel X$, $E \parallel Y$ and $E \parallel Z$. It was found that the dependences of $n_i(T)$ increase almost linearly with decreasing temperature, and $|dn_z/dT| > |dn_x/dT| \ge |dn_y/dT|$. For a light wavelength of $\lambda = 500$ nm, the intersection of $n_z(T)$ and $n_y(T)$ curves at room temperature, and the intersection of $n_z(T)$ and $n_x(T)$ curves at a temperature of 85 K were found, which approve the existence of isotropic points in this crystal. It is established that the dispersion of $\Delta n_i(\lambda)$ is normal $d(\Delta n_i)/d\lambda < 0$, and $d(\Delta n_x)/d\lambda > d(\Delta n_z)/d\lambda > d(\Delta n_u)/d\lambda$. The temperature transformations of the optical indicatrix of the rubidium sulfate crystal in the case of a temperature decreasing, namely transitions from an optically biaxial to an optically uniaxial state, are analyzed. Since the second isotropic point in Rb_2SO_4 exists in the region of low temperatures, this crystal can be used as a working element of a crystal-optical temperature sensor in the temperature range of 75-90 K. The influence of uniaxial pressure on the birefringent properties of the crystal, as studied using a special attachment to a nitrogen cryostat, are also analyzed in this work. The effect of uniaxial compression σ_m on changes of $\Delta n_y(T,\lambda)$ is established and their significant sensitivity is revealed. Herewith, σ_m do not change the character of these curves, but only change the absolute value of Δn_i .

Key words: crystal, birefringence, refractive index, isotropic point, uniaxial compression.