Visnyk of the Lviv University. Series Physics 60 (2023) ñ. 90-100
DOI: https://doi.org/10.30970/vph.60.2023.90

Photoelastic properties of ammonium fluoroberyllate crystals

B. Mytsyk, B. Horon, N. Demyanyshyn, V. Stadnyk, P. Shchepanskyi, Ya. Kost

(íå ìåíøå 1800 çíàê³â) All independent piezo-optic \piim coefficients of ammonium fluoroberylate (NH4)2BeF4 crystals were determined by the interferometric method using experimental setups based on a single-pass Mach--Zehnder interferometer. Note that under the action of uniaxial pressure on the sample placed in one of the shoulders of the interferometer, the expression for determining the coefficients \piim has the form \piim = - \frac{\lambda}{ni3\sigmaimo} + 2Skm\frac{ni - 1}{ni3} (ni is the index of refraction, Skm} is the coefficient of elastic compliance, \sigmaimo\sigmaimdk is the control stress, \sigmaim is the half-wave stress and dk is the thickness of the sample in the direction of light propagation). The geometry of the experiment corresponds to the indices i, k, and m, which indicate the directions of polarization and expansion of light and the direction of action of uniaxial pressure, respectively. Based on \piim and elastic stiffness coefficients Cmk, all independent elasto-optical coefficients pik were calculated using the product pik = \piimCmk. It was found that some coefficients \piim have an atypically high value (\sim 10-13~Br). It was established that all the largest values of piezo-optic and elastic-optic effects correspond to the main coefficients \pi11, \pi23, \pi33 and p11, p22, and p23. This makes it possible to attribute ammonium fluoroberyllate to the best acousto-optical materials for the ultraviolet region of the spectrum, since the lower limit of the FBA transmission spectrum is in the deep UV region $\sim$~250~nm. The relative errors of determining the main piezo-optic coefficients are mainly within 13-18 %. For coefficients \pi44, \pi55, \pi66, the absolute and relative errors are slightly larger than the corresponding errors of the main coefficients \piim. This is due to the fact that the expressions for calculating such coefficients include complex sums of \piim and Skm coefficients, the errors of which get added up.

Full text (pdf)


References
  1. Demyanyshyn N. M., Suhak Yu., Mytsyk B. G., Buryy Î. À., Ìàksishko Yu. Ya., Sugak D., Fritze H. Anisotropy of piezo-optic and elasto-optic effects in langasite family crystals. Opt. Mat. 2021, 119, 111284/1--7. doi: 10.1016/j.optmat.2021.111284.
  2. Dixon R. W., Cohen M. G. A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate. Appl. Phys. Lett. 1966, 8, 205--207. doi: 10.1063/1.1754556.
  3. Dixon R. W. Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners. J. Appl. Phys. 1967, 38, 5149--5153. doi: 10.1063/1.1709293.
  4. Uchida N., Niizeki N. Acoustooptic deflection materials and techniques. Proc. IEEE. 1973, 61, 1073--1092. doi: 10.1109/PROC.1973.9212.
  5. Pinnow D. A. Guide lines for the selection of acoustooptic materials. IEEE J. Quantum Electr. 1970, QE6, 223--238. doi: 10.1109/JQE.1970.1076441.
  6. Martynyuk-Lototska I, Mys O., Dudok T., Adamiv V., Smirnov Ye., Vlokh R. Acousto-optic interaction in \alpha-BaB_2O_4 and Li_2B_4O_7 crystals. Appl. Opt. 2008, 47, 3446--3454. doi: 10.1364/AO.47.003446.
  7. Krupych O., Kushnirevych M., Mys O., Vlokh R. Photoelastic properties of NaBi(MoO_4)_2 crystals. Appl. Opt. 2015, 54, 5016--5023. doi: 10.1364/AO.54.005016.
  8. Coquin G. A., Pinnow D. A., Warner A. W. Physical properties of lead molybdate relevant to acousto-optic device applications. J. Appl. Phys. 1971, 42, 2162--2168. doi: 10.1063/1.1660520.
  9. Narasimhamurty T. S. Photoelastic and electrooptic properties of crystals. New York: Springer, 1981, 544 p.
  10. Bergmann L. Der ultraschall und seine anwendung in wissenschaft und technik. Z\"urich 1954, 759 p.
  11. Pettersen H. E. New ultrasonic technique for the determination of the ratios of strain-optical constants. J. Acoust. Soc. Am. 1970. 48, 1093--1097. doi: 10.1121/1.1912248.
  12. Narasimhamurty T. S. Ultrasonic methods of determining elasto-optic constants of uniaxial and biaxial crystals. Acta Crystallogr. 1961, 14, 1176--1179. doi: 10.1107/S0365110X61003417.
  13. Yamada M., Wasa K., Hamaguchi C. Brillouin scattering in GaP. Jap. J. Appl. Phys. 1976, 15, 1107--1111. doi: 10.1143/JJAP.15.1107.
  14. Azuhata T., Takesada M., Yagi T., Shikanai A., Chichibu SF., Torii K., Nakamura A., Sota T., Cantwell G., Eason D. B., Litton C. W. Brillouin scattering study of ZnO. J. Appl. Phys. 2003, 94, 968--972. doi: 10.1063/1.1586466.
  15. Trzaskowska A., Mielcarek S., Mroz B., Trybula Z. Elastic and elasto-optical properties of Rb_{1–x}(NH_4)xH_2AsO_4 mixed crystals studied by Brillouin spectroscopy. Cryst. Res. Technol. 2010, 45, 48--52. doi: 10.1002/crat.200900357.
  16. Mytsyk B. G., Andrushchak A. S., Gaskevich G. I. Comprehensive studies of piezo-optical effect in langasite crystals. Ukr. J. Phys. 2007, 52, 798--808.
  17. Mytsyk B. G., Andrushchak A. S., Demyanyshyn N. M., Kost’ Ya. P., Kityk A. V., Mandracci P., Schranz W. Piezo-optic coefficients of MgO-doped LiNbO_3 crystals. Appl. Opt. 2009, 48, 1904--1911. doi: 10.1364/AO.48.001904.
  18. Mytsyk B., Suhak Y., Demyanyshyn N., Buryy O., Syvorotka N., Sugak D., Ubizskii S., Fritze H. Full set of piezo-optic and elasto-optic coefficients of Ca_3TaGa_3Si_2O_{14} crystals at room temperature. Appl. Opt. 2020, 59, 8951--8958. doi: 10.1364/AO.398428.
  19. Mytsyk B., Stadnyk V., Demyanyshyn N., Kost Ya., Shchepanskyi P. Photoelasticity of ammonium sulfate crystals. Opt. Mat. 2019, 88, 723--728. doi: 10.1016/j.optmat.2018.12.005.
  20. Stadnyk V. Yo., Romanyuk M. O., Andrievsky B. V., Kogut Z. O. Baric changes in refractive indices of K_2ZnCl_4 crystals. Opt. Spectrosc. 2010, 108, 753--760. doi: 10.1134/S0030400X10050139.
  21. Mytsyk B. Photoelasticity of anisotropic materials, Lviv, 2012, 400 p.
  22. Mytsyk B., Demyanyshyn N., Martynyuk-Lototska I., Vlokh R. Piezo-optic, photoelastic, and acousto-optic properties of SrB_4O_7 crystals. Appl. Opt. 2011, 50, 3889--3895. doi: 10.1364/AO.50.003889.
  23. Mytsyk B. Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. I. Methodology for the studies of piezo-optical effect. Ukr. J. Phys. Opt. 2003, 4, 1--26. doi: 10.3116/16091833/4/1/1/2003.
  24. Garg A., Srivastava R. C. Characteristic Debye temperature of ammonium fluoroberyllate, (NH_4)_2BeF_4. Acta Cryst. 1982, A38, 388--390. doi: 10.1107/S0567739482000783.
  25. Rudysh M. Ya., Fedorchuk A. O., Stadnyk V. Yo., Shchepanskyi P. A., Brezvin R. S., Horon B. I., Khyzhun O. Yu, Gorina O. M. Structure, electronic, optical and elastic properties of (NH_4)_2BeF_4 crystal in paraelectric phase. Current Appl. Phys. 2023, 45, 76--85. doi: 10.1016/j.cap.2022.11.005.
  26. Hauss\"uhl S. Elastische und thermoelastische konstanten von K_2SO_4, Rb_2SO_4, Cs_2SO_4, (NH_4)_2SO_4, TI_2SO_4 und K_2Mg_2(SO_4)_3. Acta Crystallog. 1965, 18, 839--842. doi: 10.1524/zkri.1965.122.3-4.311.
  27. Garg A., Srivastava R. C. Ammonium tetrafluoroberyllate (II). Acta Cryst. 1979, B35, 1429--1432. doi: 10.1107/s0567740879006609.