Visnyk of the Lviv University. Series Physics 60 (2023) ρ. 101-115
DOI: https://doi.org/10.30970/vph.60.2023.101

PHYSICAL AND TECHNOLOGICAL CONDITIONS OF THE DEPOSITION OF THIN FILMS OF CADMIUM CHALCOGENIDES BY THE METHOD OF CSD, CSS AND RF- MAGNETRON SPUTTING

H. A. Ilchuk, A. I. Kashuba, I. V. Semkiv, R. R. Guminilovych

(νε μενψε 1800 ηνΰκ³β) Thin films of cadmium chalcogenides (Cd\textit{X}, with \textit{X} = S, Se and Te) represent a large AIIBVI group of crystalline materials that reveal a canonical semiconducting behavior. These materials embrace large and important research field because of their wide application potential in various fields of optoelectronic devices. CdTe semiconductor has proven to be a leading compound for manufacturing cost-effective second-generation photovoltaic devices. When forming high-efficiency heterojunctions based on \textit{p}-CdTe used as window layers of solar batteries, cadmium sulfide (CdS) is mainly employed. CdS is characterized by a high absorbance and high photoconductivity in the visible region. The occurrence of photocurrent is negatively affected by the lattice mismatch between CdTe and CdS layers. Despite the formation of CdS{}\textit{x}Te{}\textit{1-x} (CdTe{}\textit{x}S{}1-\textit{x}) solid solutions between CdTe and CdS layers which reduce the lattice mismatch the high defect density causes a loss of efficiency. The use of CdSe can be an alternative solution to the problems originating from CdTe/CdS junction. Up to date, a great number of different techniques have been developed for preparing thin films of cadmium chalcogenides. These are physical vapor deposition, sputtering, spray pyrolysis, electro-deposition, close-space sublimation (CSS), etc. In this work, results of the physical and technological modes of deposition of thin films of cadmium chalcogenides by CSD, CSS and RF magnetron sputtering are present. For deposited films, structural (XRD) and X-ray fluorescence (XRF) analysis was carried out, optical transmission spectra of the films were measured. The dependence of the optical band gap on the thickness (deposition time) of the thin film was established. Correlation analysis of methods of deposition of thin films of cadmium chalcogenides based on the results of XRD and optical transmission analysis was carried out.

Full text (pdf)


References
  1. I. V. Kurilo, H. A. Ilchuk, S. V. Lukashuk, I. O. Rudyi, V. O. Ukrainets, N. V. Chekaylo, Semiconductors. 45(12), 1531–1537 (2011). doi: 10.1134/S1063782611120086.
  2. S. A. Medvedev, Yu. V. Klevkov, C. A. Kolosov, V. S. Krivobok, A. F. Plotnikov, Fiz. Tekhn. Poluprov. 36(8), 937–940 (2002). doi: 10.1134/1.1500463.
  3. N. L. Sermakasheva, G. F. Novikov, Yu. M. Shul‘ga, V.N. Semenov, Semiconductors. 38(4), 380–386 (2004). doi: 10.1134/1.1734662.
  4. A. Kashuba, I. Semkiv, O. Kushnir, LAP Lambert Academic Publishing, Riga, Latvia (2021).
  5. N. Romeo, A. Bosio, R. Tedeschi, V. Canevari, Mater. Chem. Phys. 66(2), 201–206 (2000). doi: 10.1016/S0254-0584(00)00316-3.
  6. B. M. Basola, B. McCandless, J. Photon. Energy. 4(1), 040996 (2014). doi: 10.1117/1.JPE.4.040996.
  7. N. Romeo, A. Bosio, V. Canevari, A. Podesta, Sol. Energy. 77(6), 795–801 (2014). doi: 10.1016/j.solener.2004.07.011.
  8. N. R. Paudel, C. Xiao, Y. Yan, J. Mater. Sci.: Mater. Electron. 25(4), 1991–1998 (2014). doi: 10.1007/s10854-014-1834-1.
  9. S. V. Averin, P. I. Kuznetsov, V. A. Zhitov, N. V. Alkeev, V. M. Kotov, L. Y. Zakharov, N. B. Gladysheva, Techn. Phys. 57(11), 1514–1518 (2012). doi: 10.1134/S1063784212110047.
  10. R. N. Bhattacharya, M. A. Contreras, B. Egaas, R. N. Noufi, A. Kanevce, J. R. Sites, Appl. Phys. Lett. 89(25), 253503 (2006). doi: 10.1063/1.2410230.
  11. I. O. Oladeji, L. Chow, Thin Solid Films. 474(1–2), 77–83 (2005). doi: 10.1016/j.tsf.2004.08.114.
  12. W. Mahmood, J. Ali, I. Zahid, A. Thomas, A. Haq, Optik. 158, 1558–1566 (2018). doi: 10.1016/j.ijleo.2018.01.045.
  13. A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Prog. Cryst. Growth Charact. Mater. 52(4), 247–279 (2006). doi: 10.1016/j.pcrysgrow.2006.09.001.
  14. B. E. McCandless, K. D. Dobson, Sol. Energy. 77(6), 839–856 (2004). doi: 10.1016/j.solener.2004.04.012.
  15. R. Yu. Petrus, H. A. Ilchuk, A. I. Kashuba, I. V. Semkiv, E. O. Zmiiovska, Opt. Spectrosc. 126(3), 220–225 (2019). doi: 10.1134/S0030400X19030160.
  16. G. A. Ilchuk, I. V. Kurilo, V. V. Kusnezh, R. Yu. Petrus, P. I. Shapoval, R. R. Guminilovich, M. V. Partyka, S. V. Tokarev, Inorg. Mater. 50(8), 762–767 (2014). doi: 10.1134/S0020168514080093.
  17. R. R. Guminilovych, P. I. Shapoval, I. I. Yatchyshyn, G. A. Ilchuk, V. V. Kusnezh, Russian J. Appl. Chem. 86(5), 696–702 (2013). doi: 10.1134/S1070427213050157.
  18. S. Delice, M. Isik, H. H. Gullu, M. Terlemezoglu, S. O. Bayrakli, M. Parlak, N. M. Gasanly, Journal of Physics and Chemistry of Solids. 131, 22–26 (2019). doi: 10.1016/j.jpcs.2019.03.004.
  19. M. Khammass Khalaf, B. A. M. ALhilli, A. I. Khudiar, A. Abd Alzahra, Photonics and Nanostructures - Fundamentals and Application. 18, 59–66 (2016). doi: 10.1016/j.photonics.2016.01.001.
  20. D. Prakash, E. R. Shaaban, M. Shapaan, S. H. Mohamed, A. A. Othman, K. D. Verma, Materials Research Bulletin. 80, 120–126 (2016). doi: 10.1016/j.materresbull.2016.03.039.
  21. A. Goktas, F. Aslan, E. Yasar, I. H. Mutlu, J. Mater. Sci.: Mater. Electron. 23, 1361–1366 (2012). doi: 10.1007/s10854-011-0599-z.
  22. M. Bouderbala, S. Hamzaoui, B. Amrani, A. H. Reshak, M. Adnane, T. Sahraoui, M. Zerdali, Physica B: Condensed Matter. 403, 3326–3330 (2008). doi: 10.1016/j.physb.2008.04.045.
  23. M. S. Shaalan, R. Muller, Solar Cells. 28, 185–192 (1990). doi: 10.1016/0379-6787(90)90052-7.
  24. H. Ilchuk, R. Petrus, A. Kashuba, I. Semkiv, E. Zmiiovska, Molecular Crystals and Liquid Crystals. 699(1), 1--8 (2020). doi: 10.1080/15421406.2020.1732532.
  25. H. A. Ilchuk, R. Yu. Petrus, A. I. Kashuba, I. V. Semkiv, E. O. Zmiiovska, Nanosistemi, Nanomateriali, Nanotehnologii. 16(3), 519–533 (2018). doi: 10.15407/nnn.16.03.519.
  26. R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv, E. Zmiiovska, Functional Materials. 27, 342--347 (2020). doi: 10.15407/fm27.02.342.
  27. A. I. Kashuba, H. A. Ilchuk, I. V. Semkiv, B. Andriyevsky, Y. M. Storozhuk, R. Y. Petrus, Romanian Journal of Physics. 68(5-6), 204(17) (2023).