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In the present paper, the formula for osmotic pressure is derived on the
grounds of the kinetic-molecular theory. The considerations which lead to
obtaining the formula stem from reference to a system containing two
solutions of differing solute concentrations, separated from each other with a
semi-permeable membrane. As it follows from van’t Hoff equation, which is
well-known in the literature of the subject, osmotic pressure is a function of
the difference in the concentrations of solutions and temperature. The formula
obtained in this work, apart from the mentioned factors, contains a molar
volumes ratio (or proper volumes of molecules) of the solute and the solvent.
It follows from the formula, among others, that in the case of equal molar
volumes of the solution components, the osmotic pressure is equal to zero.
However, if the solute molar volume is twice bigger than that of the solvent,
then the formula obtained in the paper acquires the form of van’t Hoff one.
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If two chambers containing solutions of different solute concentrations are separated
from each other with a porous membrane of differing permeability for the solute and the
solvent, then in such a system there will occur, the phenomenon of osmosis. The term
“osmosis” derives from the Greek language and means “pushing”. The phenomenon
itself is induced by the difference in the volume streams of the solvent and the solute
flowing through the membrane. The stream of the solvent is, generally, of higher value,
and due to this, in the system, there follows a net flow through the membrane of this
component. The flow can be stopped by influence relatively high external pressure on
the solution of the higher solute concentration. In the case of a semi-permeable
membrane, which allows passing of the solvent only, the pressure is equal to osmotic
pressure (m). For dilute solutions the osmotic pressure is described by means of van’t
Hoff formula, widely-known in the literature of the subject [1], [2], [3], in the following
form m = RTAc, where R means gas constant, 7 — temperature in Kelvin degrees,
Ac — the difference in solute concentrations. The formula was introduced into the
literature by van’t Hoff in 1885 [3]. It is a result of application of the ideal gas equation
to describe dilute solutions with the assumption that there exists an analogy between gas
closed in a vessel and a solute in a solvent.

Van’t Hoff proved that there exist a close dependence between the osmotic pressure
and saturated vapour pressure of the solvent over the surface of the solution [3]. In turn,
vapour pressure, similarly as the osmotic pressure, depends on the concentration of the
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solution [1], [3]. Thanks to this dependence, quantitatively described by Raoult’s law, it
is possible to derive van’t Hoff formula from this law as well.

It follows from van’t Hoff formula that the n/Ac ratio should be independent from
the concentration. This conclusion is not generally true with reference to real solutions
[1], [2]. In consequence, in order to describe the osmotic pressure in such solutions, the
virial equation in the form of © = RTx (I+Bx+Cx’+...) is applied, in which x denotes
concentration of the solution, and B, C ... are virial coefficients. The values of these
coefficients depend on temperature, and they determine intra-molecular interactions of
double molecules (B) and triple ones (C). Van’t Hoff formula constitutes the first term of
the sum in this equation.

The aim of this work was to provide an analysis of the phenomenon of osmosis and
derivation of a formula for osmotic pressure on the grounds of the kinetic-molecular
theory, neglecting intra-molecular interactions and the contraction phenomenon.

Let us consider a two-chambers system (Fig. 1) containing water (w), as the solvent,
and two water solute solution (s) of ¢ (chamber 1) and ¢, (chamber 2) concentrations.
The chambers are separated with the membrane (M).

w+s(cg) w+s(c,s)

M

Fig. 1. Two-chambers system for analysis of the phenomenon of osmosis: w — water,
s — solute, M — membrane

It follows from the kinetic-molecular theory concerning ideal gas that the pressure
of gas exerted on the walls of a vessel is a linear function of the kinetic energy of gas
molecules, which is described with the following equation:

2 E,
= —— , l
P=37 6]
in which E; denotes the sum of the kinetic energies of all gas molecules in the vessel,
and V — volume of the vessel [4], [5], [6]. The kinetic energy of molecules E; can be
written in the following form:
where N denotes the number of molecules in the vessel and e, — mean kinetic energy of

one molecule. The mean kinetic energy of a molecule is a function of temperature, which
is described with one of the most fundamental equations of the kinetic-molecular theory
and has the following form:

2, =§kr , 3)

where k& denotes Boltzmann constant.
On including equations (3 and 2) into equation (1) we will obtain:

N N
=—kT or = RT, 4
p=7 P=wy 4)

a

where N, denotes Avogadro’s number.
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Assuming that equation (4) can be applied to describe the pressure exerted by of
water and solute molecules on the membrane (M) (Fig. 1), we can write a formula to
determine the pressure of water and solute in chamber (1) and in chamber (2) in the form
as follows:

N,, N, RT
=l pr 4 L RT = N, +Ng), 5
b1 NaV NaV , ( wl sl) ()
N,
and Py = Nur ppy N pp o KT (N, +N,,), (6)

NV NV NV
where p; and p, denotes the pressure of water and solute in the chamber 1 and 2
respectively; N,,; and N,,; — the number of water molecules in this chambers; N; and Nj,
— the number of solute molecules; /" — the solution volumes (V=V;=V>).

. . . N N, N N,
Taking into account the proportions: —W1=I7—”, V—“=T“ as well as,
wl w sl s
N N, N, N,. R =
—w2 4 2 _-_4in which ¥, and ¥, denotes the water and solute molar
Vw2 Vw Vs2 s

volumes, V,,.,V,, and V;,V;, — volumes occupied by water and solute in chambers,
equations (5) and (6) can be written in the following form:

RT(V, V,
i AT 7
4 % (VW Vs] @)
RT (V. Vv
and =2 | w282 8
P> % [Vw 7 ) ®)

Assuming that the phenomenon of contraction does not occur in the solution, we
can write that V,,;+V,;=V as well as V,,+V,,=V, and then:

RT(V V4 Vy RT(. V4 VW,
= T___Y"‘ _Y , Or = — 1_‘_Y+_S_W R 9
P % (Vw 7V I/s] P Vw[ v v ®
RT V., V.,V.
and =— 1—L2+—32—W . 10

Taking into account the dependences, V,, =n,V, and V,, = n,V,, in which n, n,
denotes the number of moles of the solute in chambers, the expression determining the
pressure in this chambers can be written in the following form:

RT N
=—|1--2Ly +=Ly, |, 11
P VW [ v K v wj ( )
RT Ny = N —
and =—|1-=27 +227, |. 12
P2 VW [ v s v Wj ( )
On introducing, into equations (11) and (12), the molar concentrations of the solute
(cs1, ¢52) expressed with the dependences: ¢, = 1 and Cyy = 2s2 , We obtain:
RT — —
P == (I_CSIVS+CS1VW)’ (13)

V.,

w
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and pr ==l 4 eal). (14)

w
The difference in the pressures (p;-p;) is equal to osmotic pressure (1) and amounts
to:

T=p;— P> :[;—S—l]RTAc, (15)
where Ac = ¢,,—;.

It follows from equation (15) (in contrast to van’t Hoff formula) that osmotic
pressure depends not only on the solute concentration and temperature, but also on the
ratio of the molar volumes of the solution components (thus on the ratio of proper
volumes of their molecules). If the molar volumes of the solvent and the solute are equal,
then the osmotic pressure equals zero. If the molar volumes of the solute are smaller as
that of the solvent than the osmotic pressure change its direction. Equation (15), take on
the form of van’t Hoff formula, when the proper volume of a solute molecule is twice as
big as that of the solvent.

For multi-atomic molecules, which consist of two, three or a greater number of
atoms, equation (3) should be written in the following form:

_ i i R
e, 2kT 2N, T (16)
in which i denotes the number of degrees of freedom of the molecule. This number
equals 3 for one-atomic molecules, and for others it can assume values such as 5 (two-
atomic molecules), or 6 for greater. Substituting equation (16) in (2) and (1) we will
obtain the following;
i N
3VN,

If the number of freedom degrees of the solvent molecules (i) differs from that of
the solute (for example ;) then, in accordance with equation (17), each of the components
of the solution will exert different pressure on the membrane.

Let us assume that in chamber 1 of the system represented in fig. 1, there are a
solvent (e.g. water — w) and solute — (s) of a concentration of ¢,;, and in chamber 2 there
are a solvent and the same solute of a concentration of c¢g,>c,;. The pressures in
chambers, analogous to equations (13) and (14), can be written as follows:

p RT . 7)

1 RT — —
=——V\i—ic V., + je V. 18
pl 3 Vw( s1” s J sl w) ( )
and pr =5 limiea?. + e 7). (19)

From equations (18) and (19) there follows a formula for osmotic pressure, which
includes the number of degrees of freedom of the solvent molecules (i), as well as those
of the solute (j), which has the following form:

1.V, .
“:P1_P2:§(ZI7 —ijTAc, (20)

w

where Ac = ¢, — ¢
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Equation (20) acquires the form of equation (15) assuming that both the solvent and
the solute consist of one-atomic molecules for which i=j=3.
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E®EKT PO3UHNHY TA PO3YUNHHUKA MOJIEKYJIAPHOI'O OB’€EMY IIIA
JI€I0 OCMOTHUYHOI'O TUCKY

M. Iopoasak

Incmumym @izuxu, Yuisepcumem Onone
eyn. Onecvka 48, 45-052 Onone, Pecnyobnixa [lonvwya

VY crarTi BUBEAEHO (HOPMYIY Ui OCMOTHYHOTO THUCKY 3 MOJIEKYJISIPHO-KIHETHYHOT
Teopii. Ik BuUAHO 3 Bimomoro y Haymi piBHAHHSA BanT [odda, ocMoTnunmii THCK
3aJIOKUTh BiJ PI3HUII B KOHIEHTpamii po3umHiB 1 Temmepatypu. OpjepkaHa B
IOCTiKeHHI (opMyna MICTHTP MOJISIpPHE CIiBBITHOIICHHS 00’€MiB y pO34YMHI i
po3unHHHKY. [lokazaHo, 10 B pa3i piBHOCTI MOJSPHUX 00’€MIB KOMIIOHEHT PO3YHHY —
OCMOTHYHHMHA THCK JOpiBHIOE Hymro. OmHaK, SKIIO0 MOJAPHHHA 00’€M PO3YHHY yIBii
OinpmMid BiJl 00’€eMy PO3UMHHHUKA, TO OTPHMaHa (OpMyJa IEPETBOPIOETHCS Y GopMyIty
Bant lN'odda.

Kniouosi crosa: ocMmotnunuii THCK, Gopmyna Bant [N'odda, mossipauii 06’ eMm.

IPPEKT PACTBOPA U PACTBOPHUTEJISI MOJIEKYJISIPHOI'O OBBEMA
noa JEMCTBUEM OCMOTHYECKOT'O JABJIEHUS

M. Hopoasak

Hnemumym ¢usuxu, Yuusepcumem Onone
ya. Onecka 48, 45-052 Onone, Pecnybnuxa Ilonvwa

B cratee BhIBemeHa ¢opMyna UIT OCMOTHYECKOTO IABICHHUA W3 MOJIEKYISIPHO
KHHeTH4YecKkor Teopuu. Kak BHIHO W3 WM3BeCTHOrO B Hayke ypaBHeHUs Bant ['odda,
OCMOTHYECKOE [JaBJICHHE 3aBUCHUT OT pAa3HHUIB B KOHIGHTPALMHd pPAacCTBOPOB U
temnepatypsl. [lomyuennas ¢gopmyna coaepKUT MOJSPHOE COOTHOIICHHE O0OBEMOB B
pactBope m pactBopurene. [lokazaHo, 4TO B cilydyae paBEHCTBA MOJSPHBIX O00BEMOB
KOMITIOHEHT pacTBOpa OCMOTHUYECKOE NaBJeHHE paBHO HYJ0. OJHAKO, €CM MOJIIPHBIN
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00bEM pacTBOpa BaBoe OoJjbplIe OT 00BEMA PAacTBOPHUTEINS, TO HOJNy4YeHHas (GopmyIa
npespaaercs B popmyiy Banr I'odda.

Kniouegvie cnosa: ocmotnueckoe nasienue, Gopmyna Bant odda, momspubiii
00BEM.
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