The Al3Zn (D023) Structure
Last modified 5 April 2001
You can now
A lattice with tetragonal symmetry. The atoms are on the sites of a face centered cubic lattice when c = 4 a, z1 = 3/8 and z2 = 1/8. This phase can also be described as a set of alternating L12 and D022 lattices.
Note: I've changed the representation of the basis just a little bit, in order to make it easier to see the relationship between the atomic positions and the Wyckoff notation.
B1 | = | ½ A2 | = | ½ a Y | (4c) | (Al-I) |
B2 | = | ½ A1 | = | ½ a X | (4c) | (Al-I) |
B3 | = | - ¼ A1 + ¼ A2 + ½ A3 | = | ½ a Y + ¼ c Z | (4d) | (Al-II) |
B4 | = | + ¼ A1 - ¼ A2 + ½ A3 | = | ½ a X + ¼ c Z | (4d) | (Al-II) |
B5 | = | - z1 A1 - z1 A2 + 2 z1 A3 | = | + z1 c Z | (4e) | (Al-III) |
B6 | = | + z1 A1 + z1 A2 - 2 z1 A3 | = | - z1 c Z | (4e) | (Al-III) |
B7 | = | - z2 A2 - z2 A2 + 2 z1 A3 | = | + z2 c Z | (4e) | (Zn) |
B8 | = | + z2 A1 + z2 A2 - 2 z2 A3 | = | - z2 c Z | (4e) | (Zn) |
Go back to the Cubic Close Packed Structure page.
Go back to Crystal Lattice Structure
page.
Structures indexed by: