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It is shown that the N=2,3,4 SUSY of Pauli Hamiltonian takes place in a three-dimensional

magnetic �eld possessing spatial symmetry with respect to the inversion of coordinates. For example,

the N=4 SUSY is realized in the �eld of magnetic octopole and the non-zero energy levels are 4-fold

degenerated. We also show that Dirac equation possesses the N=2,3,4 SUSY in a three{dimensional

magnetic �eld.
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I. INTRODUCTION

The notion of supersymmetry was introduced into

quantum �eld theory in order to unify bosons and

fermions [1{3]. After the appearance of these works the

idea of SUSY began to penetrate into other areas of

physics and mathematics. Supersymmetrical quantum

mechanics was proposed in papers [4, 5]. The motion

of electrons in the magnetic �eld is an interesting ex-

ample of quantum mechanical problem where SUSY is

physical symmetry. It is known that supersymmetry is

present in the case of an arbitrary two-dimensional mag-

netic �eld B

z

= B(x; y); B

x

= B

y

= 0 as well as in

a three-dimensional magnetic �eld B(�r) = �B(r) (see

for example [6{8] and the references therein). The �eld of

magnetic monopole is one of the examples where SUSY is

realized in a three{dimensional case [10{12]. SUSY also

takes place in the case of electron motion on the surface

orthogonal to the magnetic �eld [9].

In the present paper we show that electron motion in

a three{dimensional magnetic �eld with a somewhat dif-

ferent spatial symmetry with respect to the inversion of

coordinates possesses the N=2,3,4 SUSY as well.

II. SUPERSYMMETRIC QUANTUM

MECHANICS

Suppose that Hamiltonian H can be written in the

form:

H = Q

2

0

; (2.1)

where Q

0

is a self-adjoint operator called supercharge.

In addition let us postulate the existence of n selfadjoint

operators T

i

that anticommute with the supercharge:

f Q

0

; T

i

g = 0; i = 1; :::; n; (2.2)

and also ful�l the Kli�ord algebra:

f T

i

; T

j

g = 2�

ij

: (2.3)

As a result of (2.1) and (2.2) T

i

commutes with the

Hamiltonian

[H;T

i

] = 0: (2.4)

Using the introduced operators we may construct super-

charges

Q

j

= iT

j

Q

0

; j = 1; :::; n: (2.5)

They ful�l N = n+ 1 superalgebra together with Q

0

:

f Q

i

; Q

j

g = 2�

i;j

H; i; j = 0; 1; :::; n; (2.6)

[H;Q

i

] = 0:

Note, that the method of constructing one-dimensional

N -extended supersymmetrical quantum mechanics was

suggested in [13].

The introduced operators T

i

are useful for the study of

SUSY in real quantum mechanical systems. In sections 3

and 4 we are going to write operators T

i

in explicit form

for Pauli and Dirac Hamiltonians.

III. SUSY IN THE PAULI HAMILTONIAN

The Pauli Hamiltonian

H =

1

2m

(p�

e

c

A)

2

� ��B (3.1)

can be written in the form (2.1) where the supercharge

is

Q

0

=

1

p

2m

�(p�

e

c

A): (3.2)
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Here A is an external vector potential, B = rotA is the

magnetic �eld.

A. N=2 SUSY

Let us consider a three{dimensional magnetic �eld

with the vector potential which possesses the following

spatial symmetry with respect to the inversion of z:

A

x

(x; y;�z) = A

x

(x; y; z); (3.3)

A

y

(x; y;�z) = A

y

(x; y; z);

A

z

(x; y;�z) = �A

z

(x; y; z);

where dependencies on x and y are arbitrary. The mag-

netic �eld in this case has the following properties:

B

x

(x; y;�z) = �B

x

(x; y; z); (3.4)

B

y

(x; y;�z) = �B

y

(x; y; z);

B

z

(x; y;�z) = B

z

(x; y; z):

Now one can �nd the operator that anticommutes with

the supercharge (3.2)

T = �

z

I

z

: (3.5)

Here I

�

is the operator of inversion in the direction of �

(� = x; y; z). Using the results of the previous section we

obtain the N=2 SUSY with supercharges Q

0

and Q

1

.

Note that magnetic �eld (3.4) covers the case of a two{

dimensional �eld where SUSY was discovered earlier.

B. N=3 SUSY

The N=3 SUSY is realized in a magnetic �eld with

the vector potential which possesses the following spa-

tial symmetry with respect to y and z

A

x

(x;�y; z) = A

x

(x; y; z); (3.6)

A

y

(x;�y; z) = �A

y

(x; y; z);

A

z

(x;�y; z) = A

z

(x; y; z);

A

x

(x; y;�z) = A

x

(x; y; z);

A

y

(x; y;�z) = A

y

(x; y; z);

A

z

(x; y;�z) = �A

z

(x; y; z);

where the dependence on x is arbitrary. The magnetic

�eld has the opposite parity in comparison with A (3.6).

Now there are two operators that satisfy (2.2) and (2.3)

T

y

= �

y

I

y

; T

z

= �

z

I

z

: (3.7)

Thus, using (2.5) we shall come to the N=3 SUSY.

C. N=4 SUSY

The N=4 SUSY is realized when the vector potential

possesses the following spatial symmetry with respect to

the inversion of x; y and z:

A

�

(�x

�

) = �A

�

(x

�

); � = x; y; z; (3.8)

and is even with respect to other variables. The magnetic

�eld which corresponds to the vector potential (3.8) has

the opposite spatial symmetry

B

�

(�x

�

) = B

�

(x

�

); (3.9)

and is odd with respect to other variables. T operators

here must be as follows

T

�

= �

�

I

�

; � = x; y; z; (3.10)

and using (2.5) we �nally obtain the N=4 SUSY. The

degeneracy of energy levels connected with the N SUSY

is equal to 2

[N=2]

, where [N=2] means the integer part of

the number. Thus, for the case of (3.8) energy levels are

four-fold degenerated. As an interesting example of the

N=4 SUSY system we can adduce the electron motion

in the �eld of magnetic octopole.

To conclude this section we want to note that oper-

ators (3.10) satisfy simultaneously both (2.3) and the

following algebra:

[T

�

; T

�

] = i2�

��


~

T




; (3.11)

[

~

T

�

; T

�

] = i2�

��


T




;

[

~

T

�

;

~

T

�

] = i2�

��


~

T




;

where

~

T

�

= IT

�

; (3.12)

I = I

x

I

y

I

z

is the operator of full inversion. Hamilto-

nian commutes with

~

T

�

and T

�

. The superchargeQ

0

also

commutes with

~

T

�

. It is also interesting to note that the

operator of inversion anticommutes with the supercharge

Q

0

:

f I;Q

0

g = 0; (3.13)

but commutes with T

�

:

[I; T

�

] = 0: (3.14)
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Thus (3.11), (3.13) and (3.14) together with (2.1){(2.4)

ful�l the so-called generalized algebra of supersymmet-

rical quantum mechanics where commuting T operators

are present [14].

IV. SUSY IN THE DIRAC HAMILTONIAN

The Dirac Hamiltonian reads:

H

D

= c�(p�

e

c

A) + �mc

2

; (4.1)

where

�




=

�

0 �




�




0

�

; � =

�

1 0

0 � 1

�

: (4.2)

Let us introduce the matrices which are connected with

the electron spin:

�




=

�

�




0

0 �




�

: (4.3)

The supercharge commuting with H

D

reads:

Q

0

= c�(p�

e

c

A): (4.4)

Squaring of Q

0

gives squared Dirac Hamiltonian

Q

2

0

= H

2

D

�m

2

c

4

= H; (4.5)

where H can be called a new Hamiltonian.

Similarly to Pauli Hamiltonian, H also possesses the

N=2,3,4 SUSY in the case of respective �elds (3.3), (3.6)

and (3.8). T operators for Dirac Hamiltonian read:

T

�

= �I

�

�

�

; � = x; y; z: (4.6)

They anticommute with Q

0

(4.4):

f Q

0

; T

�

g = 0 (4.7)

and commute with H

D

[T

�

; H

D

] = 0: (4.8)

Thus Q

0

; Q

�

= �I

�

�

�

Q

0

and H also ful�l the SUSY

algebra (2.6).
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N = 4 SUPERSIMETR�� ELEKTRONA V MAGNETNOMU POL�

V. M. Tkaquk, S. �. Vakarquk

L~v�vs~ki� der�avni� un�versitet �men� �vana Franka, kafedra teoretiqnoÝ f�ziki

UkraÝna, L~v�v, 290005, vul. Dragomanova, 12

Supersimetr�� bula predstavlena vperxe v kvantov�� teor�Ý pol� z meto� ob'
dnati bozoni ta fer-

m�oni. Dal� �de� supersimetr�Ý poqala pronikati v �nx� oblast� f�ziki ta matematiki. Supersimetriqna

kvantova mehan�ka bula zaproponovana v prac�h [4, 5]. C�kavim prikladom kvantovomehan�qnoÝ zadaq�, de

supersimetr�� 
 f�ziqno� simetr�
�, mo�e buti ruh elektrona v magnetnomu pol�. Dobre v�domo, wo super-

simetr�� real�zu
t~s� v dov�l~nomu dvovim�rnomu magnetnomu pol� � u trivim�rnomu pol� B(�r) = �B(r).

Supersimetr�� ma
 m�sce pri rus� elektrona po poverhn�, ortogonal~n�� do magnetnogo pol�. �k priklad

SUSY v trivim�rnomu pol� mo�na tako� v�dm�titi roboti, wo stosu�t~s� supersimetr�Ý elektrona v pol�

magnetnogo monopol�.

V dan�� robot� pokazano, wo N=2,3,4 SUSY real�zu
t~s� v trivim�rnomu magnetnomu pol�, �ke volod�


pevno� prostorovo� simetr�
� v�dnosno �nvers�Ý koordinat. Napriklad, N=4 SUSY real�zu
t~s� v pol�

simetriqnogo magnetnogo oktupol�, � nenul~ov� energetiqn� r�vn� 
 4-kratno virod�en�. Pokazano, wo r�v-

n�nn� D�raka te� volod�
 N=2,3,4 supersimetr�
� v trivim�rnomu magnetnomu pol�.
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