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The problem of two quarks interaction is reducet to the solution of one particle Dirac equation.

It was solved analytically and numerically using the potential like V = ��=r + Ar: We obtained

the spin{orbital mass di�erences in di�erent mesons.
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The description of hydrogen{like mesons as bound

states of quarks of di�erent masses by potential models

arouse considerable interest. Even quite recently exten-

sive relativistic (semirelativistic) or nonrelativistic cal-

culations were carried out (see [1{4] and the references

there in). Both types of models use a certain kind of

\QCD{motivated" two{body interaction potential. Most

frequently this is a potential consisting of the one{gluon

exchange term V

g

(r) and con�ning the long range part

V

c

(r). So the basic Anzats lies in expressing the interac-

tion in the form of

V (r) = V

g

+ V

c

+ V

0

; (1)

where V

g

= ��=r is the one gluon exchange, V

c

= Ar is

the long range con�nement part and V

0

�xes the ground

state.

Most of the researchers use the nonrelativistic or

semirelativistic potential models. Such an approach gives

a more or less good description of radial and orbital exci-

tations of mesons but the spin{orbital e�ects calculated

within the perturbation method can not be anything but

unreliable.

The numerical solutions in relativistic as well as in

nonrelativistic approaches yield a farly good description

of radial and orbital excitations of mesons. Spin{orbital

e�ect in quasirelativistic as well in nonrelativistic mod-

els are obtained within the framework of the so called

Generalized Breit{Fermi approach [1] where it has the

form

V

SL

(r) =

1

2m

2

r

dV

dr

S � L: (2)

For Coulomb{like potential in semirelativistic Shroe-

dinger equation it gives the 1=r

3

term which leads to

the problem of a particle falling on the force center and

therefore the �ne structure of mesons is calculated usu-

ally only as a perturbation for the central part of the

potential.

The main purpose of the present work is to estimate

spin{orbital splitting of meson spectra in the frame of

the Dirac equation which should hopefully describe these

phenomena more acurately. Such a model could be real-

istic for the hydrogen{like system of bounded light and

heavy quarks.

The application of a one{particle Dirac equation to the

two{quark system has been thoroughly discussed [5, 6,

7]. In order to observe why in the Dirac approach we do

not encounter the problem of the particle falling to the

force center as in the semirelativistic one let us consider

the Dirac equation for the radial functions f(r) and g(r)

of the Dirac spinor

(E � v(r) � s(r) �m) f(r) = �

k

r

g(r)�

dg(r)

d(r)

; (3)

(E � v(r) + s(r) +m) g(r) = �

k

r

f(r) +

df(r)

dr

;

where

k =

8

<

:

l + 1; for j = l + 1=2;

�l; for j = l � 1=2;

9

=

;

j is the total angular momentum; l is the orbital angular

momentum; E is the total energy of one particle; m is

the quark mass; v(r) is the vector part of the potential;

s(r) is the scalar part of the potential; f(r) and g(r) are

the radial wave{functions.

For our purpose of �nding the energy E it is su�-

cient to consider, as usual, only the solution of the radial

equation for a large component f(r). By eliminating g(r)

from (3) and introducing a new function '(r) according

to

f(r) =

p

s(r)� v(r) +m+E'; (4)

we obtain a single second order di�erential equation for

'(r):

'

00

+ [

(s(r) � v(r))

00

2D

�

3 (s(r)� v(r))

0

2

4D

2

(5)
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+

(s(r) � v(r))

00

k

Dr

�

k(k � 1)

r

2

+(E � v(r) + s(r) +m) (E � v(r) � s(r)�m)]' = 0;

where

D = E � v(r) + s(r) +m:

Let us now consider the third term in square brackets

(5) which is responsible for the �ne{splitting. Note that

D

0

= (s(r) � v(r))

0

! v(r)

0

at r ! 0 in the case that

v(r) is the Colummb-like potential (v(r) = V

g

). Then

D

0

Dr

!

1

2mr

dV

g

dr

; m� E � V

g

; (6a)

D

0

Dr

!

1

rV

g

dV

g

dr

; V

g

� m; V

g

� E; (r ! 0): (6b)

The nonrelativistic limit for the �ne{spitting term is usu-

ally obtained by putting E +m ' 2m � jV

g

j and from

(6) one obtains

1

2mr

dV

g

dr

i.e. the term of type (2). But if

r ! 0 one cannot put E +m � V

g

and just the oppo-

site limit is to be taken, namely E +m � V

g

at r ! 0.

So in the consequent relativistic approach one obtains

the expression

1

rV

g

dV

G

dr

for spin{orbital splitting. The re-

sult is 1=r

3

-type behaviour in the nonrelativistic limit

for Coulomb{like potential, while 1=r

2

is obtained in the

relativistic limit. So the problem of falling to the center

is eliminated in the relativistic approach.

The equation (3) can be solved numerically as well

as analytically. Let us begin from the description of the

analytical solution.

While dealing with the Dirac equation one encounters

the problem of Lorentz structure of the potential (see e.

g. [1]). Many are inclined to believe that the only gluon

exchange is of the character of the vector, the con�ne-

ment being a scalar. Our numerical as well analytical

calculations show that it does not seem to be so. We

are convinced that in order to obtain the correct sign of

spin orbital splitting in Dirac equation it is necessary to

take the con�nement part of the potential partly for the

vector character since in the opposite case one obtains

M(P

3=2

) < M(P

1=2

). It is important to point out that

a similar conclusion concerning the Lorentz character of

the con�nement was made by H. Crater, P. Van Alstine

[6]. We study the following Lorentz structure of the po-

tential

v(r) = V

g

+ "V

c

; s(r) = (1� ")V

c

; (7)

where " is the parameter which indicates the part of

con�ning interaction in the vector sector of the poten-

tial. It turns out that the larger part of the con�nement

(" = 0:48 � 0:65) must be of a vector character. Now

we understand why Moshinsky et al [8] obtain too large

contribution in the spin{orbital interaction with Dirac

equation. It happened because of their suggestion of a

totally scalar character of the con�nement. In the physi-

cally interesting region (0�1 fm) D !

�

r

. After applying

this limit in (5) we obtain

'

00

+

�

E

2

�m

2

� 2A�"+ (1� 2")

Ak

�

+ (1� 2")

3A

2�

� ((1� 2")

2

3A

2

4�

2

+ (1� 2")A

2

)r

2

+

�

2

� k

2

+ 1=4

r

2

�

' = 0: (8)

In this equation we neglect the term ( 2Amr�2E�=r) for its being numerically small. It is easy to see that equation

(8) is an oscillator equation. The solution of this simpli�ed equation exists at energy eigenvalues

E

2

=

�

4N + 2 + 2

p

k

2

� �

2

�

v

u

u

u

t

(1� 2")

2

3A

2

4�

2

+ (1� 2")A

2

+m

2

+ 2"�A� (1� 2")

Ak

�

� (1� 2")

3A

�

: (9)

From this expression we can see that in order to obtain

a correct sign of the spin{orbital splitting it is necessary

to take " to be larger than 0:48�0:65. That indicates that

the con�nement must rather be a vector. Expression (9)

is the solution of Dirac equation (3) with potential (1).

We used the analytical solution to show the direction in

which we must search the parameters for the numerical

solution. We calculated, for example, the �ne splitting ac-

cording to expression (9) in su system with the following

parameters: m

s

= 0:27 GeV, m

u

= 0:005 GeV, A = 0:18
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GeV

2

; " = 0:48. The result is �(P

3=2

�P

1=2

) = 72 MeV

while the experiment gives 68 MeV. These parameters

are chosen by �xing the basic mass spectrum [11].

In obtaining the values of meson masses we proceed

from the argumentation given in the work of Predazzi

et al [9]. In this paper the authors start from the clas-

sical relativistic relation for two body systems W =

p

p

2

1

+m

2

1

+

p

p

2

2

+m

2

2

. In the system of the center

of mass p

1

= p

2

and with an elementary transfor-

mation this leads to the one particle Dirac equation

cp� + �m

1

c

2

= E where W = E +

p

E

2

�m

2

1

+m

2

2

is the total energy of a two particle system (i.e. the mass

of the bound state system, M = W is the meson mass),

W

1

being the total energy of one particle.

Now let us solve equation (3) numerically. The radial

functions f(r) and g(r) in equation (3) obey the bound-

ary conditions f(0) = 0; g(0) = 0; f(1) = 0; g(1) = 0:

The �rst two boundary conditions are used as the

starting conditions and the second pair of boundary con-

ditions can be used for the selection of eigenvalues of

energy in equation (3) under the numerical solution by

Runge{Kutta method.

bb cc bs cu su

M

th

M

exp

M

th

M

exp

M

th

M

exp

M

th

M

exp

M

th

M

exp

1S 9460 9460 3106 3096 2094 2110 2016 2010 884 892

2S 10016 10023 3596 3686 2554 2448 1316 1410

3S 10344 10355 3942 4040 2787

4S 10603 10580

5S 10826 10865

Table 1. Radial excitation of (qq){system (masses are given in MeV)

M

exp

M

th

[2] M

th

1

P

1

1270 1350

1113 P

1=2

3

P

0

1350 1240

1430?

3

P

1

1406 1370

1237 P

3=2

3

P

2

1430 1430

1

D

2

|

1412 D

3=2

3

D

1

1670

3

D

2

1770

1484 D

5=2

3

D

3

1780

Table 2. (su){system (masses are given in MeV)

M

exp

M

th

cu

1

P

1

|

2232 P

1=2

3

P

0

|

3

P

1

2420

2355 P

3=2

3

P

2

2460

cs

1

P

1

2536

2477 P

1=2

3

P

0

|

3

P

1

|

2577 P

3=2

3

P

2

|

Table 3. (cu, cs){systems (masses are given in MeV)

The following parameters are used in the numerical

calculations � = 0:5; A = 0:18 GeV

2

which correspond

to the usually accepted value for Cornell potential and

" = 0:65.

As for the case of equal quark masses the Dirac equa-

tion gives the spin{orbital splitting only into two levels

while the experiment gives three levels. It is due to the

fact that the individual quark spins can add to 0 or 1

and the total angular momentum can be 0, 1 or 2 in the

cases of l = 1. But in the limit of an in�nitely heavy

quark mass the heavy and light degrees of freedom de-

compose and the light degrees of freedom determine the

quantum states, the total angular momentum of the light

degrees of freedom being j = L+ s. This gives two sets

of levels j = 1=2, j = 3=2. For example, in the hydro-

gen atom, we do not worry about the nuclear spin | it

enters only as a hyper�ne e�ect [10]. In comparing our

data with other data in terms of total momentum we

kept to the following rule: P

1=2

was considered as being

an averaged mixture of

1

P

1

and

3

P

0

, while P

3=2

was

considered as averaged mixture of

3

P

1

and

3

P

2

masses.

This problem can have a di�erent solution and it will be

discussed elsewhere.

The numerical results are shown in tables 1, 2, 3. As

we can see, the mass spectrum (Table 1) is obtained

with reasonable accuracy [11]. As for �ne splitting for

su-system (Table 2) we have splitting � = 124 MeV

(108 MeV exp.) and � = 72 MeV (95 MeV exp.) for P{

and D{waves correspondingly. Other data (Table 3) can

be considered as predictions.The assessuent of Godfrey,

Kokoski's splitting for the su system for P{wave accord-

ing to our prescription and also that given in [10] yield

105 MeV. Unfortunatly Godfrey did not calculate the D

wave splitting.

The problem of two{quark systems with di�erent

masses was also examined in [2] and an excellent

overview of the situation is given in [12]. Comparing our

results with those obtained in [2] we shall see that the
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splitting in su{system is quite similar, however the split-

ting in cu{system obtained in [2] is much smaller. The

absence of experimental data does not allow us to make

the �nal conclusion. It is interesting to note that both

ours and Godfrey and Kokoski's [2] results strongly sug-

gest that the value of

3

P

0

su{mass equaling 1430 MeV

is too large and the previous one of 1350 MeV [13] is

preferable. It is also important to underline that:

1. It is promising to carry out successful calculations

by Dirac equation in hydrogen{like systems both for the

mass spectrum and �ne splitting;

2. Introducing the Lorentz character of the con�ne-

ment as admixture of scalar and vector types we estab-

lished them to be roughly equal which is con�rmed by

both numerical and analytical methods of calculations of

Dirac equation. In conclusion we would like to point out

that very interesting quark masses sum rules follow from

eq. (9). This question was discussed in [14].
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TONKE ROZWEPLENN� V POTENC�AL� Z REL�TIV�STIQNO� K�NEMATIKO�

�. Ga�sak, V. Lend~el, O. Xpenik

U�gorods~ki� der�avni� un�versitet, kafedra teoretiqnoÝ f�ziki

UkraÝna, UA{294000, U�gorod, vul. Voloxina, 32

Problema vzamod�Ý dvoh kvark�v zvedena do rozv'�zann� odnoqastinkovogo r�vn�nn� D�raka. Ostann

rozv'�zut~s� �k nabli�eno anal�tiqno, tak � qisel~no z vikoristann�m potenc�alu tipu \l��ki" V =

��=r+Ar. Osobliv�st� vikoristanogo p�dhodu  mo�liv�st~ toqnogo vrahuvann� sp�n{orb�tal~noÝ vzamod�Ý

bez zvedenn� do nabli�enih metod�v na kxtalt metoda zburen~. Rozrahovano sp�n{orb�tal~nu r�znic� mas

mezon�v, �k� sklada�t~s� �k z odinakovih kvark�v, tak � z kvark�v z r�znimi masami. Por�vn�nn� z ekspe-

rimentom vkazu na dobru uzgod�en�st~ teor�Ý z eksperimentom.
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