
�URNAL F�ZIQNIH DOSL�D�EN^

t. 1, } 2 (1997) s. 208{216

JOURNAL OF PHYSICAL STUDIES

v. 1, No 2 (1997) p. 208{216

THERMAL HYDRODYNAMIC FLUCTUATIONS NEAR THE

RAYLEIGH{BENARD INSTABILITY

V. P. Lesnikov

Odessa State Polytechnic University, Department of Physics, UA{270044, Odessa, Ukraine

(Received November 5, 1996)

The equivalence of Langevin's and Einstein's approaches for description of the thermal hydrody-

namic uctuations is shown. The erroneousness of the analogy of convective instability with phase

transitions based on the use of Landau{Lifshitz uctuating forces is pointed out.

Key words: uctuations, uctuating forces, uctuation{dissipation theorem, Landau{Lifshitz

uctuating forces, instability, phase transitions.

PACS number(s): 47.20.-K

I. INTRODUCTION

In the late 60s Uhlenbeck in the course of lectures de-

voted to the fundamental problems of statistical mechan-

ics advanced the idea that near the threshold of hydrody-

namic stability hydrodynamic uctuations should be en-

hanced similar to thermodynamic uctuations with the

approach to the point of a second-order phase transition,

leading to the critical opalescence, in particular [1].

Uhlenbeck suggested the Langevin description of uc-

tuations with the use of the uctuating forces obtained

by Landau and Lifshitz for equilibrium unlimited liquid

[2] as a uctuation source, i.e. thermal uctuations were

meant.

In this spirit Zaitsev and Shliomis examined the be-

haviour of hydrodynamic uctuations near the convec-

tive Rayleigh{Benard instability [3] and came to the con-

clusion about the inde�nite growth of integrated intensi-

ties of uctuations, con�rming thereby the Uhlenbeck's

idea.

The opposite results on the basis of Einstein's ap-

proach consisting in averaging the initial conditions in

the found uctuation time-dependence, were obtained

in [4].

For the single-time correlation functions equilibrium

estimates were used in [4] with the corrections on tem-

perature gradient obtained from kinetic theory by Hin-

ton [5]. It was supposed that non-equilibrium Hinton's

corrections exhaust all the �rst order corrections on the

temperature gradient to the basic equilibrium approxi-

mation de�ned by some average temperature of the liquid

layer. It will be shown below, that the signi�cant cor-

rections reecting non-equilibrium (as a matter of fact,

local-equilibrium) are corrections following from local-

equilibrium estimates. As to the kinetic corrections, there

was no need in their use within the hydrodynamic limit.

Nevertheless it is already in the equilibrium approx-

imation which is equivalent to the Langevin approach

with the constant temperature in the sources of uc-

tuations Einstein's approach gives results contradicting

to Uhlenbeck's assumption. The main result of [4] is

that the uctuation intensity remains constant while ap-

proaching the Rayleigh{Benard instability point, and pe-

culiarities consist only in narrowing the uctuation line

corresponding to the critical mode in spectra.

However this point of view is not common. The au-

thors of subsequent works on hydrodynamic uctuations

near the convective instability used the Lagevin approach

with the Landau{Lifshitz uctuating forces. Since the

intensity of the latter is �xed it was supposed that the

intensity of uctuation sources does not depend on the

proximity of the threshold of stability. As a result in [6{

10], as well as in [3], the conclusion was made about the

unlimited growth of uctuations and the analogy with

phase transitions was formulated.

The same tendency was continued elsewhere [11], see

also a recent survey on the appearance of convective rolls

[12] and the references in it. It should be remarked that

in all the enumerated works corrections on temperature

gradient were not taken into account, i. e. the tempera-

ture entering into the intensity of the uctuating forces

was assumed to be equal to some average.

The application of the Langevin method with the

Landau{Lifshitz uctuating forces to hydrodynamic in-

stabilities has led to the creation of the whole physical

branch named uctuation hydrodynamics. The adher-

ents of uctuation hydrodynamics either kept silent as re-

gards the fact that Einstein's and Langevin's approaches

gives varying results for uctuations in the Rayleigh{

Benard problem or explained that Einstein's approach

cannot be used for the description of nonequilibrium uc-

tuations.

And only recently by the formal use of the uctuation{

dissipation theorem (FDT) [13] it was shown that

the cause of di�erent results given by Einstein's and

Langevin's methods is coupled with the fact that for the

convective Rayleigh{Benard instability uctuating forces

are distinguished with the cross-term's presence from the

Landau{Lifshitz uctuating forces. In doing so, the ba-

sic assumption of works [3, 6{12] about the independence

of the uctuating forces on the proximity of the stability

threshold turns out to be incorrect: the uctuating forces

depend on the proximity of the threshold, and uctua-

tions calculated on this basis behave themselves as it was

predicted in [4].
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In the present work the corresponding formulas (FDT)

will be obtained directly from the input equations. This

is a more convenient way for the demonstration of equiv-

alence of Einstein's and Langevin's methods. Besides,

using Langevin's description, the change of the temper-

ature of the liquid layer will be taken into account and

the peculiarities of the uctuating forces of the unstable

mode will be discussed.

The basis of the subsequent exposition is the local-

equilibrium. The Navier{Stokes equations describing the

hydrodynamic instabilities are true in this assumption.

A deviation from a local-equilibrium would lead to the

examination of more complex equations than the hydro-

dynamic ones. In general there is no need to attract the

kinetic theory for the description of the hydrodynamic

instabilities: the intensity of the uctuating forces should

be found on the hydrodynamic level. At the same time

the consideration of the long wave e�ects coupled with

the temperature gradient reduces to the account of the

space dispersion of the local-equilibrium distribution and

may be easily realized.

II. TWO METHODS OF FLUCTUATION

DESCRIPTION IN HYDRODYNAMICS

Two opportunities exist to describe hydrodynamic

uctuation. The �rst one may be called Einstein's (or

Einstein{Onsager's) approach. It is based on the fact

that at the initial moment of time uctuation distribu-

tion is supposed to be known and the subsequent evolu-

tion of uctuations is described by macroscopic equations

of hydrodynamics.

The second approach i. e. the Langevin one consists in

the fact that the input evolution equations are written

down with the uctuating forces. The correlation func-

tions of the uctuating forces should be chosen so that

both the approaches could give equal results for the cor-

relation functions of uctuations.

As a matter of fact, Einstein's and Langevin's ap-

proaches are two methods of the solution in the general

case of the set of di�erential equations either homoge-

neous with the random initial condition de�ned by the

corresponding distribution function, or heterogeneous, so

that the random heterogeneity is the source of the uc-

tuation perturbations. The results of the solution should

be equal for any moment of time and at the initial mo-

ment, in particular. This permits to �nd the intensity

of uctuating forces on the following recipe, which we

shall demonstrate for the simplest system, uctuations

in which are described by the equation:

_x = ��x (1)

and the distribution function of initial uctuation is

Gaussian:

f(x) / exp

�

�

1

2

�x

2

�

: (2)

Let us add to the right part of (1) the uctuating force

y, for which

hy(�)y(0)i = Q�(�): (3)

With the uctuating force the solution of (1) takes the

form

x = e

��t

t

Z

�1

y(�)e

��

d�: (4)

Putting t = 0, squaring and averaging we get the well-

known Einstein's formula for the intensity of the uctu-

ating forces:

Q = 2��

�1

: (5)

Formula (5), in which �

�1

determines the single-time

correlation function hx

2

i, is the most simple FDT, which

expresses the intensity or spectral density of the uctu-

ating forces through the evolution parameter � and the

single-time correlation function.

Below we shall apply this method for the �nding of

the uctuating forces in the Rayleigh{Benard problem

by preliminary de�ning single-time correlation functions.

III. SINGLE-TIME CORRELATION FUNCTIONS

OF FLUCTUATION IN THE FLUID LAYER

WITH TEMPERATURE GRADIENT

The input equations describing the Rayleig{Benard in-

stability of the horizontal liquid layer with the thickness l

and free boundaries in the gravitation �eld in the Boussi-

nesq approximation [14] have the form

@~�

@t

= �

1

�

~

rp+ ��~� � �~g�;

@�

@t

+ ~�

~

rT = ���; (6)

div~� = 0

with the boundary conditions for z = 0; l:

w = 0;

@�

x

@z

=

@�

y

@z

= 0; � = 0: (7)

Here ~�(�

x

; �

y

; w); �; p are the velocity, temperature and

pressure perturbations,

~

rT = ��~z

0

is the vertical gra-

dient of the temperature, � is the kinematic viscosity, �

is the thermal expansion coe�cient, � is the thermal dif-

fusivity, ~g is the acceleration of gravity, � is the density

of the uid.
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The boundary conditions allow us to search for the

solution of the problem in the expansion form

�

w

�

�

=

r

2

V

X

~

k

�

w

~

k

�

~

k

�

e

i

~

k~r

sin qz; (8)

where

~

k and ~r lie in the horizontal plane, q = n�=l; n =

1; 2; : : : ;

~

k =

~

k+ ~q; V is the volume of the layer. Anal-

ogous expansions take place for v

x

; v

y

with the substitu-

tion of sine for cosine.

Local{equilibrium distribution function of the initial

uctuations is de�ned by kinetic and intrinsic uctua-

tions energy:

f(~�; �) / exp

�

�

Z

�

�~�

2

2T

+

c

V

�

2

2T

2

�

dV

�

; (9)

where c

V

is the speci�c heat, integration is carried out

all over the volume, Boltzmann's constant is omitted and

the temperature is changed from the of the lower bound-

ary T

1

to the temperature of the upper boundary T

2

according to the law

T = T

1

� �z: (10)

Let us insert into (9) expansions of uctuation per-

turbations and (10). Then taking into account the in-

compressibility condition and retaining linear terms to �

when integrating, we get the following correlation func-

tions for the quantities �

~

k

; w

~

k

; �

x

~

k

; �

y

~

k

:

h�

~

k

�

~

k

0

i =

�

T

1

T

2

c

V

�

q;q

0

+

4AT

1

qq

0

c

V

�

q;q

0

�

�

~

k;�

~

k

; (11)

hw

~

k

w

~

k

0

i =

�

Tk

2

�k

2

�

q;q

0

+

Ak

2

qq

0

�k

2

�

�

q;q

0

�

�

~

k;�

~

k

0
; (12)

h�

�

~

k

�

�

~

k

0

i =

�

T

�

�

1�

k

2

�

k

2

�

�

q;q

0

+

A

�

�

q

2

�

1�

k

2

�

k

02

�

+ q

02

�

1�

k

2

�

k

2

��

�

q;q

0

�

�

~

k;�

~

k

0
; (13)

h�

�

~

k

w

~

k

0

i = i

�

T

�

k

�

q

k

2

�

q;q

0

+

Ak

�

q

2

q

0

�k

2

�

�

q;q

0

�

�

~

k;�

~

k

0
; (14)

h�

x

~

k

�

y

~

k

0

i = �

�

T

�

k

x

k

y

k

2

�

q;q

0

+

Ak

x

k

y

(q

2

+ q

02

)

�k

2

�

�

q;q

0

�

�

~

k;�

~

k

0

; (15)

where � = x; y; k

�2

�

= k

�2

+ k

0�2

; T = (T

1

+ T

2

)=2; �

with indices is the Kroneker's symbol, �

q;q

0

is equal to

one if q and q

0

are di�erent multiples of �=l and zero in

the rest of the cases,

A =

4�T

l

2

(q

2

� q

02

)

2

: (16)

The appearance of the imaginary unit in (14) is con-

nected with the phase shift in the expansions v

x

; v

y

and

w.

The possibility of the expansion on � in (9) caused

by the fact that hydrodynamics is restricted by the re-

gion of small gradients of macroscopic �elds of velocity,

temperature, etc. In our case the stated expansion sig-

ni�es small di�erence of temperatures of the boundaries

of the layer �T in comparison with the temperatures of

the boundaries themselves and guarantees the smallness

of the corresponding corrections in comparison with the

equilibrium approximation.

In the experiments on the convective instability car-

ried out at a room temperature of the liquid layer the

temperature di�erence at the moment of appearance of

the instability does not exceed 5

�

C.In the percent rela-

tion this is less than 2%. So for the silicon oil the work-

ing temperature is 22

�

C and the critical di�erence of the

temperature is 4:51

�

C [15].

On account of this, the equilibrium approximation is

the basic one. It keeps space homogeneity of the prob-

lem leading to the symmetry on the frequency of the

uctuation spectra. Corrections destroy this homogene-

ity and it will be shown that they give non-symmetry of

the spectra just as it takes place for the uctuations in

the unlimited liquid with the temperature gradient [16,

17]. As to Hinton's kinetic corrections they represent the

kinetic way out of the hydrodynamic limits and cannot

give such long-wave peculiarities.

IV. FLUCTUATING FORCES AND SPECTRA

OF FLUCTUATIONS IN THE EQUILIBRIUM

APPROXIMATION

Equations (6) may be transformed in equations only

for two variables: the vertical component of velocity w
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and the temperature �:

�

@w

@t

= ��

2

w + �g

�

@

2

@x

2

+

@

2

@y

2

�

�; (17)

@�

@t

= �w + ���:

From here for the values of w

~

k

; �

~

k

we get

_w = ��w + ��; (18)

_

� = �w � ��;

where redesignations are carried out

�k

2

! �; �g

k

2

k

2

! �; �k

2

! � (19)

and here and later on the index

~

k will be omitted.

The eigenvalues of system (18) are equal to

�


�

= �

1

2

(� + ��E); (20)

where

E =

p

(� � �)

2

+ 4��: (21)

The evident properties are ful�lled for them:




+

+


�

= � + �; 


+




�

= ��� ��: (22)

The Rayleigh{Benard instability comes when 


�

van-

ishes. The gradient of the temperature is such that till

this moment

��� �� = 0: (23)

Condition (23) determines the critical meaning of the

adjustable parameter � or its dimensionless analog |

Rayleigh number R =

��gl

4

��

. For the unstable mode, as

is well known, q = �=l; k = �=

p

2l and R = 27�

4

=4.

In equilibrium approximation the single-time correla-

tion functions are equal to

hjwj

2

i =

Tk

2

�k

2

; hw�i = 0; hj�j

2

i =

T

2

c

V

: (24)

Let us add to the right parts of equations (18) the

uctuating forces f

1

and f

2

. By virtue of the stationary

and homogeneity of the considered approximation their

correlation functions should be sought in the form

hf

i

(�)f

0

j

(0)i = Q

ij

�

q;q

0

�

~

k;�

~

k

0
�(�); (25)

where Q

ij

is the symmetric matrix and dash in f

0

j

de-

notes here and further that the corresponding value is

de�ned for

~

k

0

.

Let us write down the solution of equations (18) at the

presence of the uctuating forces:

�

w

�

�

=

�

1

��


+

�

�

e

�


+

t

t

Z

�1

[f

1

(� � 


�

)� �f

2

]e




+

�

d� +

�

1

��


�

�

�

e

�


�

t

t

Z

�1

[�f

1

(� � 


�

) + �f

2

]e




�

�

d�: (26)

Putting t = 0 in (26) and then creating square terms,

we get the following set of equations for the de�nition of

Q

ij

:

hjwj

2

i =

(�

2

+


+




�

)Q

11

+ 2��Q

12

+ �

2

Q

22

2


+




�

(


+

+


�

)

;

0 = ��Q

11

+ 2��Q

12

+ ��Q

22

; (27)

hj�j

2

i =

�

2

Q

11

+ 2��Q

12

+ (�

2

+


+




�

)Q

22

2


+




�

(


+

+


�

)

:

From (27) we �nd

Q

11

= 2�hjwj

2

i;

Q

12

= ��hjwj

2

i � �hj�j

2

i; (28)

Q

22

= 2�hj�j

2

i:

The obtained formulas are in conformity with the for-

mal record of FTD, which has the form

Q

ij

= 

ij

+ 

ji

; 

ij

= �

ik

�

�1

kj

(29)

for the so called Orshtein{Uhlenbeck process [17] de�ned

by the set of di�erential equations with the distribution
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function of the initial uctuations

_x

i

= ��

ik

x

k

; f(~x) / exp

�

�

1

2

�

ik

x

i

x

k

�

: (30)

The decisive di�erence from the work [3] and the sub-

sequent works is the presence of the cross correlations in

(28), which change all inferences of these works concern-

ing uctuations near the convective threshold.

Cross correlations violate the Onsager principle

(

12

; 

21

6= 0). This is connected with the loss of the

property of de�nite evennes by the functions w and �.

Every one of them (see below (43),(44)) depends on both

the initial conditions of w(0) and �(0). When we inverse

the time w(0) changes and �(0) does not changes the

sign. That is why w and � are neither odd nor even.

The explicit from the matrix 

ij

is equal to



ij

=

�

�hjwj

2

i ��hj�j

2

i

��hjwj

2

i �hj�j

2

i

�

: (31)

The conversion to the zero of the determinant j

ij

j at

the instability point is an important property. This also

directly follows from the de�nition of 

ij

and the conver-

sion to the zero of the determinant j�

ij

j for the null root

of the dispersion equation j � i!�

ij

+ �

ij

j = 0.

Let us de�ne the spectrum of the uctuating value

�(~r; z; t) as Fourier transformation on space and time of

its two-time correlation function:

h�(2)�(1)i

~

k;!

=

1

Z

�1

1

Z

�1

Z

V

Z

V

h�(2)�(1)i

i!(t

2

�t

1

)�i

~

k(~r

2

�~r

1

)�iq(z

2

�z

1

)

dt

1

dt

2

d~r

1

d~r

2

dz

1

dz

2

; (32)

where we omit the multiplier connected with the volume

and experiment duration, and the set of space-time co-

ordinates is denoted here by the �gures in arguments.

Inserting into (32) expansion (8) we get

h�(2)�(1)i

~

k;!

=

X

q

00

;q

0

h�

00

!

�

0

�!

iI(q

00

; q

0

; q); (33)

where

I(q

00

; q

0

; q) = (34)

=

4

l

2

l

Z

0

l

Z

0

e

�iq(z

2

�z

1

)

sin q

0

z

1

sin q

00

z

2

dz

1

dz

2

two dashes denote the dependence on (

~

k; q

00

) and dash

that on (�

~

k; q

0

).

In the equilibrium approximation q

0

= q

00

.Besides,

we shall con�ne ourselves to q, which is a multiple of

�=l, then the greatest contribution gives the term with

q

0

= q

00

= q, the module of both the integrals in (34) for

which is equal to l=2, and I = 1.

In consequence using the solution of equations (18)

with added uctuating forces

w

!

= [(�i! + �)f

1!

+ �f

2!

]=�; (35)

�

!

= [�f

1!

+ (�i! + �)f

2!

]=�; (36)

where

� = (�i! +


+

)(�i! +


�

) (37)

and the expressions for the uctuating forces (25),(28),

we get

hw(2)w(1)i

~

k;!

= 2hjwj

2

i

��

� � 


�

E

�




+

!

2

+


2

+

+

�

�� 


�

E

�




�

!

2

+


2

�

�

; (38)

h�(2)�(1)i

~

k;!

= 2hj�j

2

i

��

�� 


�

E

�




+

!

2

+


2

+

+

�

� � 


�

E

�




�

!

2

+


2

�

�

; (39)

thus, every of the uctuation spectra presents itself two Lorentz lines corresponding to fast stable (


+

) and slow

unstable (


�

) modes.
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With the approach to the instability

E; 


+

! � + �; 


�

! 0 (40)

and the singular contributions appear in spectra:

hw(2)w(1)i

~

k;!

= 2hjwj

2

i

�

�

!

2

+ (� + �)

2

+

�

� + �

��(!)

�

; (41)

h�(2)�(1)i

~

k;!

= 2hj�j

2

i

�

�

!

2

+ (� + �)

2

+

�

� + �

��(!)

�

: (42)

The same results will be obtained if one writes down

the solution of equations (18) with the initial conditions

w(t) =

1

E

fw(0)[(� � 


�

)e

�


+

t

+ (�� 


�

)e

�


�

t

]

� ��(0)(e

�


+

t

� e

�


�

t

)g; (43)

�(t) =

1

E

f��w(0)(e

�


+

t

� e

�


t

)

+ �(0)[(�� 


�

)e

�


+

t

+ (� � 


�

)e

�


�

t

]g (44)

and does averaging and the Fourier trasformation in

time.

Therefore, both Einstein's and Langevin's approaches

give equivalent results in the basic equilibrium approx-

imation when correct de�nition of uctuating forces is

made. And it is natural, inasmuch as we speak about

the two methods of the solution of the same mathemat-

ical problem.

The formulas (38), (39), (41), (42) were obtained in [4]

where spectra were de�ned with the multiplier (2�)

�1

.

It is only necessarily to omit kinetic corrections and to

ignore the compressibility.

V. INFLUENCE OF DISPERTION OF THE

TEMPERATURE ON THE FLUCTUATION

SPECTRA

The problem of �nding uctuation spectra, when the

temperature gradient is present in the unlimited liquid,

primarily was considered by rather complicated methods

[18{20] and only then it was noticed that all peculiari-

ties caused by the temperature gradient one can get by

the Langevin way, taking into account the dependence

of the temperature on coordinates in the intesity of the

uctuating forces [21, 22, 16]. It just means the account

of the temperature dispersion in the approximation of a

local equilibrium.

The distinctive feature of the similar problem for the

convective instability is the presence of the boundaries

leading to discrete band of the modes, the single-time

correllation functions of which are de�ned by formulas

(11){(16).

Corresponding expressions for the correlation func-

tions of uctuating forces are received by the method

stated above:

hf

i
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j
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�
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0

i

��hww

0

i � �

0

h��

0

i (�+ �

0

)h��

0

i

�

�(�): (45)

Formula (45) represents FTD taking into account the temperature change in the local-equilibrium distribution func-

tion. With its help from (33) for the spectrum of the temperature uctuations we get
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The expansion on elementary fractions gives

h�(2)�(1)i
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where

D

!

=

�
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�

E

�

1

�i! +


+

+

�
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�

E

�

1

�i! +


�

: (48)

Let us note, that we also obtain (47) at once, if we use Einstein's approach.

For q, which is a multiple of �=l, the essential contribution in sum (47) except the term with q

0

= q

00

= q give the

terms at which either q

0

= q or q

00

= q. For them a module of one of the integrals entering in (34) equals l=2 and

I(q; q

0

; q) = I

�

(q

0

; q; q) =

4iq

0

l(q

2

� q

02

)

: (49)

The spectrum of the temperature uctuations consists of the already written results of the basic equilibrium approx-

imation where we must change T

2

in hj�j

2

i on T

1

T

2

according to the �rst term (11). A correction linked with the

second term in (11) also appears.
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): (50)

The summation in (50) is over q

0

, which has the evenness opposite to q. The imaginary part of D

!

in accordance

with (48) is proportional to !, that is why (50) is odd frequency function.

The presence in the denominator of (50) of the value (q

2

� q

02

)

3

allows when summed to be con�ned to the only

terms with q

0

di�ering from q on �=l which corresponds to the accounting of the correlation among the neighbouring

modes. If also one suggests that q >> �=l, then formula (50) can be represented in the form
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or in the explicit form
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Analogous corrections can be written for the spectra of velocity.

VI. FLUCTUATING FORCES FOR THE

UNSTABLE MODE

Let us de�ne the fast and the slow mode by formulas

x

�

= w + (� � 


�

)�=�: (53)

The evolution of these modes is described by the equa-

tions

_x

�

= �


�

x

�

: (54)

Fluctuating forces for equations (54) �

�

are expressed

in f

1

and f

2

as well as in accordance with (53) x

�

are

expressed in w and �.

If the intensity of the uctuating forces �

�

is calcu-

lated by using formulas by Landau and Lifshitz, then

Q = 2�hjwj

2

i+ 2�h�

2

i

�
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�

�

�

2

(55)

and the intesity of the uctuating forces slightly changes

with the approach of the threshold of stability remaining

�nite in the point of stability itself. Then the Fokker{

Plank equation for the slow mode distribution function:
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@x

�

(


�

x

�

f) +

1

2

Q

@

2

f
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2
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(56)

in the stationary case has the solution:
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f
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/ exp(�
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2
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Q

): (57)

It follows, taking into account the terms of higher order,

the analogy with phase transition of the second order and

a divergency of single-time correlation functions with the

approach to the point of stability when 


�

! 0.

In reality relations (25), (28) give

Q = 2


�

hx

2

�

i; (58)

where

hx

2

�

i = hjwj

2

i+

�
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�

�

�

2

hj�j

2

i: (59)

From (58) it follows that the intensity of the uctuat-

ing forces Q of slow mode tends to zero with 


�

; station-

ary distribution function does not feel any singularities

and the uctuations x

�

remain on the ordinary level. At

the same time, as it is easy to understand, the dissipation

function of slow mode vanishes.

In this convective Reileigh{Benard instability does not

di�er from the instability of the oscillator caused by di-

minishing damping or from that of the oscillatory circuit

with diminishing resistance. In both cases according to

the formulas o�ered by Einstein and Naiquist the inten-

sity of the uctuating forces vanishes.

The generalisation of formula (58) in the case of tem-

peratures dispersion is

h�

�

(�)�

0

�

(0)i = (


�

+


0

�

)hx

�

x

0

�

i�(�) (60)

which leads to longwave tail in spectrum as described

above.

VII. SUMMARY

Thus, in the present paper it is shown that hydro-

dynamic theory of thermal uctuations must be based

on the approximation of the local equilibrium; for con-

vective instability equilibrium approximation is basic by

virtue of the smallness of the temperature drop �T

in comparison with the temperature of the boundaries

themselves; the correlations between di�erent uctuation

modes when the temperature gradient presence leads to

the asymmetry of the of the spectra; uctuating forces

depend on the proximity of the threshold of stability, in

particular, the intensity of the uctuating forces of the

unstable mode vanishes in the point of instability; inte-

grated intensities of the uctuations do not have any sin-

gularities; nonlimited narrowing of the line correspond-

ing to the unstable mode takes place only in the uctu-

ation spectra.

The boundaries of such behaviour of the thermal uc-

tuations were stated in [4]. It is true in the whole region

of the Rayleigh number change excluding the extremely

narrow interval �R near the instability point.

In the experimental work [23] it was reported about

the chaotic character of the appearance of the Rayleigh{

Benard instability. Furthermore it was found that in ac-

cordance with the experimental data the intensity of the

uctuating forces causing the chaos must be on four-six

orders larger than the value following from the thermal

estimates on the basis of the Landau{Lifshitz uctuating

forces. As we pointed here the use of the Landau{Lifshitz

uctuating forces to the Rayleigh{Benard instability is

wrong. So the explanation of the chaotic character of the

appearance of the Rayleigh{Benard instability must be

sought elsewhere.
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TEPLOV� G�DRODINAM�QN� FL�KTUAC�Õ POBLIZU NEST��KOST�

RELE�{BENARA

V. P. Lsn�kov

Odes~ki� der�avni� pol�tehn�qni� un�versitet, kafedra f�ziki

UkraÝna, UA{270044, Odesa

Pokazana ekv�valetn�st~ opisu g�drodinam�qnih fluktuac�� a�nxta�n�vs~kim ta lan�even�vs~kim p�d-

hodami v zadaq� Rele�{Benara. Vkazano na pomilkov�st~ analog�Ý, zasnovanoÝ na vikoristann� sil Landau{

L�fxica do konvektivnoÝ nest��kost� z fazovimi perehodami.
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