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The lattice models of the elongated molecules interacting via the Maier{Saupe and Berne{

Pechukas potentials are investigated. The Monte Carlo simulation of such the systems is performed

in the vicinity of the nematic{isotropic (NI) transition. The internal energy, heat capacity and scalar

order parameter near transition are investigated. It is shown that for more elongated molecules the

NI transition becomes of a stronger �rst order. The results are compared both with the results

of other computer simulations and with the experimental data. It is shown that the behaviour of

many nematics in the vicinity of the NI transition can be described by the proposed model with

the elongation ratio of molecules from 3 to 5.
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I. INTRODUCTION

Many molecular 
uids consisting of anisometric

molecules have one or several liquid crystalline phases

[1]. The simplest among these phases is the nematic one

(it appears in nematogenic liquid crystals) characterized

by long-range orientational and short-range translational

order. In the case of thermotropic nematogens it can be

observed below the isotropic liquid phase. With the in-

crease of temperature, the nematic to isotropic (NI) tran-

sition takes place [1].

To favour orientational ordering, the intermolecu-

lar interactions in nematogens have to be su�ciently

anisotropic. In general, these anisotropic interactions

consist of both long-range attractive interactions and

short-range repulsive ones. This complicates a theoret-

ical description of such systems. Maier{Saupe theory [2]

is the realization of the mean-�eld description of the NI

transition considering each molecule to be placed in the

mean-�eld of all others. Only long-range interactions are

taken into account. This theory predicts the NI transi-

tion to be of the �rst order. However, it overestimates

the order parameter at transition and its latent heat as

compared to experimental data. An alternative mean-

�eld theory with both energetic and steric e�ects [3,4],

as well as two particle [5] and four particle [6] cluster

expansions were also developed to describe the NI tran-

sition. These theoretical approaches do not include any

details of the intermolecular interaction and thus are not

able to describe a wide variety of real nematogens. On

the other side, Onsager theory for the NI transition de-

scribes the system of long thin hard rods [7], taking into

account only pure steric e�ects of excluded volume. This

theory concludes a very strong density driven �rst order

NI transition. Landau{de Gennes phenomenological the-

ory of the NI transition [1,8] is based on the expansion

of free energy in powers of order parameter and contains

a few phenomenological parameters which can be �tted

with experimental data. It predicts the order of transi-

tion due to symmetry considerations, and estimates pre-

transitional behaviour of the pair correlations and other

properties [8].

A breakthrough in identifying the microscopic nature

of phases in liquid crystals was achieved by computer

simulations which have been initiated for these systems

more than 20 years ago. There are several approaches for

a computer simulation concerning the NI transition. The

�rst one is the Monte Carlo (MC) study of the lattice ver-

sion of Maier{Saupe model (presently called Lebwohl{

Lasher model). Such simulations were performed by dif-

ferent groups [9{14]. Molecular dynamics study of this

model was also performed [15]. A MC study has been

done in which the restriction to lattice sites was removed,

thus adding a scalar component to the anisotropic po-

tential [16]. This approach considers the NI transition to

be temperature driven. It describes the behaviour of in-

ternal energy, heat capacity and scalar order parameter

(referred further as order parameter) in the vicinity of a

transition point. Furthermore, it decribes pretransitional

properties of pair correlations. The soft potential used in

these simulations does not include the details of molecu-

lar shape which can be important at the typical densities

in real nematics.

The second approach includes MC and molecular dy-

namics study of hard particles systems with exclusively

short-range repulsive interactions. The NI transition is

interpreted as density driven. The system of hard sphe-

rocylinders [17,18], spheroids [19,20], thin hard platelets

[21] and of other shape (see [22]) were simulated. Phase

diagrams of such systems were investigated and both ne-

matic and smectic phases were found for some molecular

shapes.

Other approaches simulate systems with more realis-

tic intermolecular potentials such as those with disper-

sion forces [23], Berne{Pechukas [24{26] and Gay{Berne

[27] potentials. Gay{Berne potential seemed to be the

most realistic for the description of liquids with elon-

gated molecules and is used in many recent simulations.
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Adjustable parameters in this potential can be �tted to

describe a real intermolecular interaction in the given

mesogen. The phase diagram for Gay{Berne liquid of

256 particles was investigated by means of molecular dy-

namics simulations in a wide range of temperatures [28].

Computer graphics were used to identify phases and vi-

sualize con�gurations. The system possesses an isotropic,

nematic, smectic A, smectic B and a crystal phase. Phase

diagram of the similar system was also investigated using

molecular dynamics simulations in the NVT ensemble

[29]. The isotropic liquid, nematic and smectic B phases

were identi�ed. The temperature stability of nematic

phase was also investigated. These simulations suggest

that the anisotropic attractive interactions play a cru-

cial role in the formation of smectic B phase.

The parameters of Gay{Berne potential were adjusted

to �t the p-terphenyl, and a molecular dynamics study

of 256 molecules was performed in by Luckhurst and

Simmonds [30]. Isotropic, nematic and smectic A phases

were observed. In other study model parameters for p-

azoxyanisole (PAA) were adjusted and a molecular dy-

namics simulation of 256 molecules was done [31]. The

temperature dependencies of rotational and shear vis-

cosities are in good agreement with the experimental

data. More details on related subject can be found el-

swere [1,32{34].

We will concentrate our attention on the results ob-

tained by computer simulations of the Lebwohl{Lasher

(LL) model. This is the system of anisosymmetric

molecules con�ned to the sites of simple cubic lattice and

interacting via the simple anisotropic potential of Maier{

Saupe type. Reciprocal molecular spatial orientations are

considered to be the only essential degrees of freedom.

Due to the head-tail isotropy in most known nematics

(see [1]), the dipolar interaction plays no role in nematic

ordering. The �rst nontrivial term in the Hamiltonian

corresponds to the quadrupole-type interaction [9]:

H = ��

X

<ij>

P

2

(cos �

ij

); (1.1)

where the sum includes all pairs < i; j > of the nearest

neighbours, �

ij

is the angle between long axes of the i-

th and the j-th molecule, � is the maximum interaction

energy and P

2

(x) =

1

2

(3 cos

2

(x) � 1) is the second Leg-

endre polynomial. It was shown by Lebwohl and Lasher

that the NI transition is de�nitely of the �rst order [9].

Also, estimations for transition temperature T

NI

, order

parameter in nematic phase at transition temperature

S

NI

and latent heat were obtained. Then this model was

studied in greater detail by Jansen, Vertogen and Ypma

[10]. These authors stated two aims: �rst, to improve

the accuracy of the calculations, and second, to calculate

the magnetically induced birefringence and the scatter-

ing of light by orientational 
uctuations in the isotropic

phase. Then, the LL model was revisited by Luckhurst

and Simpson [11] to achieve more accurate data for in-

ternal energy, heat capacity and latent heat at the tran-

sition, as well as transition temperature T

NI

. MC data

obtained by them were extensively compared with the re-

sults obtained within the cluster theories and experimen-

tal data on real nematics. A molecular dynamics study

of the LL model was performed by Zannoni and Guerra

[15]. Results of MC simulation of the LL model were es-

sentially preestimated by Fabbri and Zannoni [12]. The

larger lattice of molecules (30

3

) was simulated and the

number of simulation runs were signi�cantly higher than

in the previous simulations. This allowed more precise

estimates for transition temperature T

NI

, as well as for

order parameters < P

2

>� S, < P

4

>, internal energy

and heat capacity in transition region. Particular atten-

tion was paid to pair correlations G

2

(r) and G

4

(r). The

di�erence between T

NI

and isotropic phase limiting in-

stability temperature T

�

was obtained with reasonable

accuracy, agreeing well with the experiments on real ne-

matics.

The LL model was revisited again by Zhang, Mourit-

sen and Zuckermann [13] using modern numerical tech-

niques of analyzing phase transitions. The �nite-size scal-

ing analysis proposed by Lee and Kosterlitz [35] and

Ferrenberg{Swendsen reweighting technique [36] were

used. Unambiguous numerical evidence is found in favour

of a weak �rst order transition and the presence of pseu-

dospinodal points T

�

and T

��

, which are extremely close

to T

NI

. The estimate for T

NI

coincides with the result

from Fabbri and Zannoni [12], and the value for transi-

tion enthalpy is in satisfactory agreement with exper-

imental data on octylcyanobiphenyl (8CB) [37]. Pseu-

dospinodal points T

�

and T

��

are located by analyzing

the free energy curve as the function of order parame-

ter with two minima in the transition region. In the case

for the temperatures just above the transition, the cor-

relation functions for the order parameter 
uctuations

are investigated by Gree� and Lee [14]. At those tem-

peratures for which the distribution of order parameter


uctuations is Gaussian, inverse susceptibility is found

to follow Landau theory behaviour, being proportional

to (T � T

�

). The value for T

�

is close to the one from

Fabbri and Zannoni [12].

Despite the limited reliability of the LL model, which

in fact describes a rotational order-disorder transition in

a crystalline solid, it plays the role of a canonical model

of a system with an orientational phase transition. To

bring more physics into the LL model one has to replace

the simple anisotropic potential of Maier{Saupe type in

(1.1) by a much more realistic one. For example, such

an attempt was made by Humpries et al [23], where the

MC simulation of a lattice model with anisotropic dis-

persion forces (being a more realistic soft potential) was

performed. But in this case, the results show that the

NI transition in such a model does not di�er essentially

from the transition in the LL model. The order param-

eter at transition is slightly higher and this produces a

larger entropy of the transition, but both these values

are insensitive to varying the relative anisotropy in the

polarizability of the system. Although the authors of this

paper believe these di�erences to be signi�cant, they em-

phasized that the transition is blurred by the relatively

small ensemble used in the simulations (10

3

particles).
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It is evident in the case of increasing the system's size

and the use of realistic potentials the simulations be-

come very time consuming. Most computer simulations

on Gay{Berne 
uids are performed on 256 particle sys-

tem [28{31], being too small for investigating phase tran-

sitions. For this reason, models of the same level of sim-

plicity as the LL model still seemed to be useful for the

investigation of di�erent phase transitions in anisotropic

systems. The aim of this report is to modify the simple

anisotropic potential of Maier{Saupe type used in the LL

model by including the additional parameter of molec-

ular elongation. The in
uence of this factor on phase

transitions in hard particles systems was already investi-

gated [22]. We will investigate the in
uence of this factor

in the system of particles interacting via a soft potential.

This will be done by using the angular part of Berne{

Pechukas potential [24] instead of a simple anisotropic

potential, as used in the LL model. This potential [24] is

the single-site approximation of intermolecular site-site

atomic potential between linear molecules. It describes

the pairwise interaction between two ellipsoids of revolu-

tion with the given elongation. The potential of Maier{

Saupe type can be reproduced from this potential in the

limit of almost spherical molecules (we will refer to the

lattice model with Berne{Pechukas potential as the mod-

i�ed LL (MLL) model). Comparing results of our simu-

lations with experimental data for some nematics in the

vicinity of the NI transition gives us optimism that the

LL model modi�ed in such a way yields the possibility

to simulate di�erent real systems closer to their nature.

The outline of this report is as follows. Section 2 con-

tains the description of the simulation method on the

LL model. We decided to perform our own simulations

(despite considerable data available in the literature).

First, test our procedure on a well known model. Sec-

ond, remove any method{relative e�ects when compar-

ing the simulation of the LL model with the simulation of

the MLL model. Section 3 contains the de�nition of the

MLL model and its simulation for di�erent elongations

of molecules according to the method described in sec-

tion 2. The in
uence of molecular elongation on latent

heat and order parameter is discussed. Section 4 con-

tains comparisons of our data with the experiments on

real nematics. We compare both latent heat and order

parameter at the NI transition. We also extrapolate the

temperature dependence of order parameter to get the

e�ective index �. Finally, this section summarizes our

general conclusions too.

II. MONTE CARLO SIMULATION OF

LEBWOHL{LASHER

MODEL

Here we present the details of Monte Carlo simula-

tions of the LL model in the vicinity of the NI transition.

We consider the system of 20

3

molecules con�ned to the

sites of simple cubic lattice with the periodic boundary

conditions. Each i-th molecule is characterized by the

unit vector ~u

i

directed along its long axis. Each direc-

tion ~u

i

is stored as a set of its Cartesian coordinates

(x

i

; y

i

; z

i

). Pairwise interactions between nearest neigh-

bours are considered to be of a simple anisotropic form

(1.1).

A simulations at each temperature is started from the

same initial perfectly ordered state along the OZ axis.

Then we allow each molecule to rotate to a new direc-

tion

~

u

0

i

. To satisfy the ergodicity condition we have to

move in the phase space of con�gurations by reasonable

steps. Thus, the new direction

~

u

0

i

can be chosen in the

following way:

~

u

0

i

= (x

0

i

; y

0

i

; z

0

i

) = (

x

i

+ � � p

1

l

u

0

;

y

i

+ � � p

2

l

u

0

;

z

i

+ � � p

3

l

u

0

);

(2.2)

where � < 1 is the restriction parameter, l

2

u

0

= (x

i

+ � �

p

1

)

2

+(y

i

+� �p

2

)

2

+(z

i

+� �p

3

)

2

stays for the normaliza-

tion of

~

u

0

i

, p

1;2;3

are the pseudorandom numbers from

�1 to +1, generated by [38]:

p

(
)

n+1

= 2:0 �

x

(
)

n+1

m

(
)

� 1:0; (2.3)

x

(int)

n+1

= (a

(int)

� x

(int)

n

) & m

(int)

: (2.4)

Here a = 16807, m = 2

31

� 1, index

(int)

denotes 32-bit

integer variable, index

(
)

denotes a 
oating{point vari-

able, & is bitwise AND operation between the integers.

We use three independent generators of (2.4) type for

each of p

1;2;3

started from a di�erent initial x

0

.

The acceptance or rejection of a new con�guration is

considered with the accordance of standard Metropolis

algorithm [38]. The restriction parameter � limits the

maximum possible rotation of the molecule when mov-

ing from the previous to new state and controls the

acceptance{rejection ratio. This is similar to the restric-

tion for the spherical polar angle when working in the

spherical frame [11]. One MC cycle is completed after

allowing all molecules to change their orientation. We

performed 10

5

cycles for the temperatures close to tran-

sition. The dimensionless single-molecule internal energy

is de�ned by:

U

�

=

< H >

N � �

(2.5)

(where H is de�ned in (1.1)). Our simulation data for U

�

is presented in �g. 1 and coincides well with others for

the same system size [11]. Simple statistical averaging for

calculating U

�

in (2.5) (open circles in �g. 1) produces a

curve with the change of slope at inverse transition tem-

perature �

NI

�. To �nd the latent heat of the transition,

we followed the common method of using histograms of
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the energy distribution [12]. In the vicinity of transition,

these histograms demonstrate two-hill shapes which in-

dicate the coexistence of isotropic and nematic phases

(�g. 2). Corresponding cumulants of these distributions

were discussed in detail previously [12]. We can separate

energy values of two phases by estimating maximums of

these histograms, which are shown in �g. 1 by triangles.

Our estimation for the latent heat in the case of the LL

model is �U = �U

�

" = 0:062", which is in agreement

with the values �U = 0:1" [10], �U = 0:07" [11] and

�U = 0:05" [12].

0.870 0.875 0.880 0.885 0.890 0.895 0.900 0.905

-1.2

-1.1

-1.0

-0.9

-0.8

b

b

b

b

b

b

b

b

b

b

b

��

U

�

LL model

6

�

NI

�

b

{ U

�

{ U

�

[11]

6

?

�U

�

= 0:062

{ U

�

iso

{ U

�

nem

Fig. 1. Dimensionless single-molecule internal energy U

�

in the vicinity of the NI transition for the Lebwohl{Lasher

model (open circles | averaged energy, triangles | separated

energies of coexisting phases, open squares | data from [11],

�U

�

| dimensionless latent heat).
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Fig. 2. Histograms for internal energy distribution in the

vicinity of the NI transition for the Lebwohl{Lasher model.
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Fig. 3. Determining of the NI transition temperature from

the peak heat capacity for the Lebwohl{Lasher model.

The change of slope for U

�

at the transition region

leads to a peak in the single-molecule heat capacity c

�

V

(�g. 3):

c

�

V

=

1

N

�

@ < H >

@T

�

V

= �(��)

2

�

@U

�

@(��)

�

V

:

To �nd this derivative, we used both di�erentiation of cu-

bic splain interpolation between U

�

points with respect

to �� [11] and di�erentiation of linear interpolation be-

tween U

�

points. Both methods coincide well and give a

peak for c

�

V

at �

NI

� = 0:887. This result is close enough

to the previous results of �

NI

� = 0:894 [10], �

NI

� = 0:887

[11], and �

NI

� = 0:890 [12]. It should be noted that this

procedure is very sensitive to the accuracy of energy data

points. Therefore, the calculation of c

�

V

is useful primar-

ily for estimating transition temperature and is not ac-

curate enough to compare it with the experimental data.

One of the most important aims of MC simulation of

the LL model is to evaluate a scalar order parameter [1]:

S �< P

2

>=< P

2

(cos �

i

) >; (2.6)

where �

i

is the angle between the long axis of the i-

th molecule and the director (preferred direction of ne-

matic ordering). As it was pointed out by Fabbri and

Zannoni [12], director can 
uctuate from one simulation

cycle to another. Thus, the order parameter is calculated

with respect to the instantaneous preferred direction af-

ter a given cycle. This is normally done [10{12] by the

method proposed by Viellard{Baron [17]. According to

this method, the tensor order parameter [1]:

S

ij

=

3

2

0

@

< x

2

i

> �1=3 < x

i

y

i

> < x

i

z

i

>

< y

i

x

i

> < y

2

i

> �1=3 < y

i

z

i

>

< z

i

x

i

> < z

i

y

i

> < z

2

i

> �1=3

1

A

(2.7)

is calculated after each MC cycle and its eigenvalues �

i

are found. Diagonalization of S

ij

corresponds to switch-

ing from the laboratory frame to the director frame. The

largest eigenvalue of S

ij

de�nes the scalar order param-

eter

S = max(�

i

):

The evaluation of S during simulations shows a dra-

matic increase of its 
uctuations in the transition region.

A typical behaviour of S as the function of the Monte
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Carlo cycles at �� = 0:886 is shown in �g. 4. It is evi-

dent that this �gure shows the jumps between two co-

existing phases, namely, isotropic and nematic, occuring

simultaneously at this temperature. To separate the val-

ues for the order parameter in two coexisting phases, as

before, we use histograms of the order parameter distri-

bution. This is possible only for some temperature points

with recognizable peaks. For other temperatures, the his-

togram maxima are not so well de�ned.

The behaviour of the order parameter as the function

of temperature is shown in �g. 5. We found that the or-

der parameter in the nematic phase is S

NI

= 0:240 whose

value is close to the previous ones of S

NI

= 0:333 [10],

S

NI

= 0:270 [11], and S

NI

= 0:270 [12]. Most of the ex-

perimental values for S

NI

are between 0:3 and 0:45 [39].

It should be noted that the curve for S in the vicinity of

�

NI

is very steep so the value of S

NI

is very sensitive to

the accuracy of �

NI

.

Thus, we reproduced here a standard computational

method for the simulation of the LL model in the vicinity

of the NI transition [9{12]. That is why we will omit cor-

responding explanations in the next section which con-

tain the original results. As the result, by using a unique

simulational scheme, we will be able to compare simula-

tions of the LL and the MLL models more adequately.

0 10 20 30 40 50 60 70 80 90 100
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0.3

0.4

MC cycles �10

�3

S

Fig. 4. Typical behaviour of the order parameter S vs

Monte Carlo cycles for temperatures close to the NI transition

tempetature (the case of Lebwohl{Lasher model, �� = 0:886).
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Fig. 5. Order parameter S near the NI transition for the

Lebwohl{Lasher model (triangles | present data, squares |

data from [11])

III. MODIFIED LEBWOHL{LASHER MODEL

As one can see, the LL model quantitative describes

the NI transition in the liquid crystal materials. But the

values for latent heat �U , as well as nematic order pa-

rameter at transition point S

NI

given by the LL model,

are �xed and cannot cover the entire interval of typical

experimental values for real nematics [39]. In order to

improve the physics of this model, one has to include

additional parameters connected with the details of the

intermolecular interaction. We propose that this can be

done by using more realistic Berne{Pechukas (BP) po-

tential [24]. In case we still retain the lattice, only the

angular part of this potential will be used. This brings

the additional parameter of molecular elongation into the

model.

BP potential has the Lennard{Jones form with the

orientational dependent strength and range parameters

[24]:

V

BP

(~u

i

; ~u

j

; ~r) = 4�

ij

�

�

�

ij

r

�

12

�

�

�

ij

r

�

6

�

; (3.8)

where

�

ij

= �

0

�

1� �

2

(~u

i

� ~u

j

)

2

�

�1=2

; (3.9)

and

�

ij

= �

0

�

1�

�

2

�

(r̂ ~u

i

+ r̂ ~u

j

)

2

1 + �(~u

i

~u

j

)

+

(r̂ ~u

i

� r̂ ~u

j

)

2

1� �(~u

i

~u

j

)

��

�1=2

:

(3.10)

The anisotropy of molecules is characterized by the

anisotropy parameter:

� =

a

2

� 1

a

2

+ 1

; a =

�

k

�

?

; (3.11)

where �

k

; �

?

are major and minor axes of ellipsoids of

revolution, and a is the elongation parameter. The dis-

tance r = �

ij

is, to good accuracy, the separation at

which two molecules of relative orientation speci�ed by

unit vectors ~u

i

; ~u

j

; r̂ touch.

Let us �nd BP potential in the limit of small

anisotropy � � 1. To this end, one can perform an ex-

pansion of the square root in (3.9) in powers of � and

keep leading terms:

lim

��1

V

BP

(~u

i

; ~u

j

; ~r) = �

3

2

�

4

3

�

0

�

2

�

�

�

ij

r

�

6

(3.12)

�

�

�

ij

r

�

12

��

cos

2

�

ij

�

�

4�

0

�

�

�

ij

r

�

6

�

�

�

ij

r

�

12

��
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Let us denote the distance dependent term by �:

� =

4

3

�

0

�

2

�

�

�

ij

r

�

6

�

�

�

ij

r

�

12

�

: (3.13)

It is evident that in the case of:

1: �� 1;

2:

�

ij

r

= const.

(3.14)

this limit reproduces the simple anisotropic potential of

Maier{Saupe type:

lim

��1

V

BP

(~u

i

; ~u

j

; ~r) = ��P

2

(cos �

ij

) + const. (3.15)

Due to retaining the lattice, we need only the angular

part of BP potential V

BPA

(�

ij

). For the convinience we

normalize it in such a manner that, at � = 0 and � =

�

2

this potential coincides with the Maier{Saupe one:

V

BPA

(�

ij

) = �

�

2

"

3�

 

1

p

1� �

2

cos

2

�

ij

� 1

!

� 1

#

;

(3.16)

where

� =

p

1� �

2

1�

p

1� �

2

= 2

a

(a� 1)

2

: (3.17)

We will refer to lattice model with the potential (3.16)

as the modi�ed Lebwohl-Lasher (MLL) model. Within

this model, one can consider more or less elongated

molecules by varying the elongation parameter a. For

larger values of a the interaction potential (3.16) becomes

more harder with the increasing of angle �. On the other

hand, the LL model can be reproduced from the MLL

model in the case of almost spherical molecules a ! 1

(� � 1). To verify this fact numerically, we performed

the simulation of the MLL model for a = 1:1 and got

exactly the same results as in the previous section.

To investigate the in
uence of molecular elongation on

the NI transition, we performed simulations for the cases

a = 3 and a = 5 (used also in hard particles simulations

[19,20]). All simulations are done using the method de-

scribed in the previous section. We observed a stronger

�rst order NI transition in both cases of a = 3 and a = 5

as compared to the LL model. The energy in the case

of a = 3 is presented in �g. 7. To separate the energies

of isotropic and nematic phases, we used histograms of

energy distribution. The NI transition in the a = 5 case

demonstrates a very strong �rst order nature with a rel-

atively large latent heat �U = 0:474" and the absence

of coexisting phases (see �g. 8). The latter fact can be

explained by the large potential barrier between the two

phases, which cannot be easily overcome during simula-

tions.
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y

| in-

verse temperature of data extrapolation to �t power-law de-

pendence).

model �

NI

� �U S

NI

LL 0.887 0:062� 0.240

MLL (a=3) 0.9437 0:111� 0.285

MLL (a=5) 1.062 0:474� 0.460

Table 1. Inverse transition temperature �

NI

�, latent heat

�U , and order parameter at transition S

NI

for the NI transi-

tion in the Lebwohl{Lasher (LL) and the modi�ed Lebwohl{

Lasher (MLL) models.

The behaviour of the order parameter S in the case

of the LL and the MLL models is shown in �g. 9. We

obtained larger values for S

NI

with the increasing of a.

The di�erence between S

NI

in the cases of a = 5 and

a = 3 is much more essential than that in the cases of

a = 3 and the LL model. The behaviour of S in the case

of a = 5 demonstrates a much stronger �rst order tran-

sition as compared to other cases. We collected values

for the inverse transition temperature �

NI

�, latent heat

�U , and order parameter at transition S

NI

in table 1.

Due to these results, it can be pointed out unambigu-

ously that the NI transition in the MLL model becomes

a stronger �rst order one with the increasing of elonga-

tion parameter a. It is interesting to note that computer

simulations of lattice model with anisotropic dispersion

forces also gave a stronger �rst order transition as com-

pared to the LL model [23]. It is known [22] that as the

shape becomes more elongated, we expect to see pro-

gressive strengthening of transition towards the Onsager

limit [7]. These results shed new light on the comparison

of MC data to the entire set of experimental data on the

NI transition.

IV. COMPARISON WITH THE EXPERIMENTAL

DATA

Our data for the NI transition temperature, latent heat

and the order parameter obtained within the MLL model

can be compared with the experimental data on real ne-

matics. For example, a set of experiments on 13 nemat-

ics in the vicinity of the NI transition was collected by

Haller [39]. Let us discuss the behaviour of the order pa-

rameter S in the vicinity of the NI transition (�g. 9).

The order parameter has some non-zero value S

NI

at

the NI transition temperature and rapidly goes to zero

when the temperature is increased. As was pointed out

in [39], one can extrapolate the gradual decrease of S un-

til it becomes zero at a hypothetical second order phase

transition temperature T

y

. Such extrapolation yields the

following relation after scaling of experimental data [39]:

S = (1� T=T

y

)

�

; (4.18)

where � is the critical index for the order parameter in

a hypothetical second order transition at T = T

y

. In

our case we can write the similar power law in terms of

inverse temperature:

S = S

0

(��� �

y

�)

�

(4.19)
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pared to the experimental data. Circles are the particular

data for MBBA, rombs { for PAA, crosses { all others (all

experimental data are taken from [39]).
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�

in logarith-
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We performed several comparisons of our results with

the experimental data. First, we compared the values

for S

NI

obtained for the LL and the MLL models with

238



INVESTIGATION OF NEMATIC{ISOTROPIC PHASE TRANSITION IN LIQUID CRYSTALS : : :

the experimental set of the respective values for S

NI

.

This is illustrated in �g. 10, where one can see that the

typical experimental values for S

NI

turned out to be

inside the interval between the values obtained for the

MLL model at a = 3 and a = 5. Let us consider some

typical nematogens. For example, from the rough steric

point of view, the molecules of p-methoxybenzylidene-n-

butylaniline (MBBA) correspond to the elongation a = 3

and molecules of p-azoxyanisole (PAA) to a = 4. The

experimental values for MBBA S

NI

= 0:283; 0:332 [39]

are indeed close enough to our result S

NI

= 0:285

for a = 3 case, and the experimental values for PAA

S

NI

= 0:38; 0:39 [39] (�lled rombs in �g. 10) are exactly

at the middle of the results for a = 3 and a = 5. One

other method of comparing our results for the order pa-

rameter to the experiment lies in extrapolating our data

in the nematic phase to the point �

y

� and �nding the

power law (4.19). For this purpose, we plotted the de-

pendence of S as the function of �� in the nematic phase

in logarithmic scale (�g. 11). The best �ts were found

with the value of exponent � � 0:2 (solid lines in �g. 11).

This value agrees well with the experimental data being

in the interval of � 2 [0:17; 0:225] [39].

Also comparable to the experiment is the latent heat

�U , which coincides in our case with the enthalpy of

the transition �H . We can use the experimental data

obtained from studying thermal behaviour of 8CB by

adiabatic scanning calorimeter [37]. The result for the

NI transition enthalpy is �H = 612J=mol at transition

temperature T

NI

= 40:8

�

C. Fitting the transition tem-

perature obtained for the LL and the MLL models to this

value, one can get the energetic parameter � and then the

value for transition enthalpy. We get �H = 143:23J=mol

for the LL model, �H = 272:83J=mol for the MLL

model (a=3) and �H = 1311:1J=mol for the MLL model

(a=5). Despite the poor accuracy of this data, we can

state that the experimental value for �H is between our

results found for the MLL model at a = 3 and a = 5, so

our results give a reasonable interval as compared to the

experiment.

Thus, the modi�ed Lebwohl{Lasher model being the

lattice model of elongated molecules interacting via the

soft potential of Berne{Pechukas type was proposed. The

standard Metropolis Monte Carlo algorithm was used to

simulate this system in the vicinity of nematic{isotropic

transition. To separate the coexisting phases, the his-

togram technique was used. The behaviour of the internal

energy, heat capacity and order parameter in the vicin-

ity of transition was investigated. As compared to the LL

model, the additional parameter of molecular elongation

a is present, and the in
uence of this parameter on the

phase transition is investigated. Simulations for the cases

of molecules elongation a = 3 and a = 5 showed unam-

biguously that the nematic to isotropic transition be-

comes a stronger �rst order one with the increasing of a.

Comparing our results to the experimental data showed

that many real nematics in the vicinity of nematic{

isotropic transition can be described well by the proposed

model with the elongation of molecules from a = 3 to

a = 5.
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DOSL�D�ENN� FAZOVOGO PEREHODU NEMATIK{�ZOTROPNA R�DINA V

R�DKIH KRISTALAH XL�HOM KOMP'�TERNOGO EKSPERIMENTU

NA �RATKOVIH MODEL�H

�. M. �l~nic~ki�

�nstitut f�ziki kondensovanih sistem NAN UkraÝni

UkraÝna, UA{290011, L~v�v, vul. Sv
nc�c~kogo, 1

Dosl�d�eno �ratkov� model� �z vidov�enih molekul, �k� vza
mod��t~ m�� sobo� za dopomogo� poten-

c��l�v tipu Ma�era{Zaupe ta Berne{Pequkasa. Za dopomogo� model�vann� metodom Monte Karlo do-

sl�d�eno poved�nku vnutr�xn~oÝ energ�Ý, teplo
mnost� ta skal�rnogo parametru vpor�dkuvann� v okol�

perehodu nematik{�zotropna (N�) sistema. Pokazano, wo pri zrostann� vidov�enn� molekul N� pereh�d

sta
 sil~n�xim perehodom perxogo rodu. Rezul~tati por�vn��t~s� �z �nximi danimi komp'�ternogo mo-

del�vann� ta z eksperimentom. Pokazano, wo poved�nka bagat~oh nematik�v v okol� N� perehodu mo�e buti

opisana zaproponovano� modell� �z v�dnosnim vidov�enn�m molekul v�d 3 do 5.
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