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A scheme of the construction of the many-body microscopic metallic state theory which is based

on the two main principles, is proposed. The �rst principle consists in the use of the optimal repre-

sentation basic set with orths close to one-particle quantum states in di�erent electron subsystems

of metal. The second one consists in the choice of the corresponding reference system as a statistical

basis of description. The developed approach allows to describe di�erent functional subsystems of

electrons in metal as well as the e�ects of their mutual interaction with the correct allowance for

the many-particle correlation effects.

Key words: Basic approach, functional electron subsystems, ortogonalization, statistical oper-

ator reduction.
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I. INTRODUCTION

A transition from one-particle semifenomenological de-

scription to the many-particle microscopic one forms the

principal peculiarity of the modern metallic theory evo-

lution. The coexistence of two electron subsystems | lo-

calized and collectivised | determines the metallic state

speci�ty. It follows from the main problem of the micro-

scopic metal theory | the adequate description of both

electron subsystems with the allowance for their mutual

interacting e�ects.

It is well known that the precise description of both

isolated electron subsystems | localized and collec-

tivised | can be done with the help of quantum chem-

istry and the electron liquid methods, correspondingly.

There are twomain approaches to the allowance for inter-

action between these two di�erent electron subsystems in

the present-day theory of non-transition metals. The �rst

approach is based on the pseudopotential conception (or

model potential) [1, 2]. The second one | on the reduc-

tion of statistical operator in the exact electron{nuclear

model by the averaging over the localized electron states

[3]. In such metals the separation of electrons into two

di�erent subsystems is physically substantiated by the

existence of deep energy levels of localized electrons and

compact ionic cores. It follows that the localized electron

states are determinated clearly. Pseudopotentials (model

potentials) or the e�ective potentials of electron{ion in-

teraction are too weak here which makes it possible to use

of perturbation theory to take into account mutual in-

teraction between two electron subsystems [4]. However,

the pseudopotential description of such simplest metallic

systems is not adequate in the whole region of external

parameters (see [5]).

The success of the electron{ion model in the theory

of nontransition metals is due to the fact that the elec-

trons of ionic internal shells play a passive role in many

physical processes.

An essentially di�erent pattern arises in transition

metals where the localized d-electrons of external shell

play the active role in physical processes. In this case

the separation itself of the electrons into localized and

delocalized loses an absolute signi�cance, so does the

electron{ion model conception. A strong gibridization

between conductive and d-electrons is caused by a small

value of excitation energies. Its rigorous account cannot

be done in terms of pseudopotential or e�ective poten-

tials methods.

A particular interest represents the situation when

the ionic core changes itself with the variation of ex-

ternal parameters. It takes place for the systems with

changeable valency where the portion of f -electrons be-

comes delocalized or the f -state character itself changes

sharply (the collapse phenomenon). For the \anomalous"

f -systems the \localize | delocalize dualism" of electron

states comes forth with particular strength [5]. Above

we have considered pure metals. The important �eld of

metallic state theory forms metals with impurities. The

microscopic description of such objects becomes more

di�cult as far as we have no apriory information about

the character of the electron states localized in the im-

purities region. The presented examples certify that the

electron{ion model conception in its modern version is

far from universality.

In the present paper a general scheme of construct-

ing the many-particle microscopic metal state theory in

terms of renormalized perturbation theory is proposed.

It is well known that precise calculations of the physical

system characteristics are invariant over the representa-

tion basic-set. However, for the approximate calculations

(which are the only possible ones for many-particle sys-

tems) it is not the case | for di�erent basis we obtain

di�erent results. It follows from the essentiality of the

use of such a basis representation, having basic functions

close to one-particle wave functions of electron states of a

physical system (optimal basic-set). This provides for the

speedy convergentive perturbation theory. In the case of

metallic state such basic-set must include functions close

to one-particle wave functions in functionally di�erent
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isolated electron subsystems.

A rigorous account of the correlation e�ects in the iso-

lated electron subsystems, especially what concerns their

mutual inuence in terms of a basis-set, is impossible in

principle. This fact moves forward the problem of their

correct account with the help of an adequate formula-

tion of perturbation theory. A successive solution of this

problem fully depends on zero approximation which in

its turn depends on adequate reference system (statisti-

cal basis). The suggested approach is based on the use

of optimal basis of representation and on the choice of

adequate reference system.

II. MODEL AND BASIS OF REPRESENTATION

Let us consider the electron{nuclei model of the elec-

troneutral metallic system which consists of M sorts

of nuclei with the charge Q

a

e(1 � a � M) and N

e

electrons in the volume V in the thermodynamic limit

N

e

; V ! 1; N

e

V

�1

= const. In order to simplify the

calculations we shall use the adiabatic approximation for

the ionic subsystem, describing the ions in coordinate

representation. With the same aim we shall neglect the

relativistic e�ects too. In that case the Hamiltonian of

the considered model in coordinate representation takes

the form of

^

H =

^

H

nucl

(R)�

N

e

X

j=1

�h

2

r

2

2m

(2.1)

�

M

X

a=1

Q

a

e

2

N

a

X

i=1

N

e

X

j=1

jr

j

�R

a

i

j

�1

+

N

e

X

i 6=j=1

e

2

jr

j

� r

i

j

�1

:

Here,

^

H

nucl

(R) is the Hamiltonian of nuclei subsystem;

R

a

j

is the radius{vector of the j-th nuclei of sort a;m and

e is the mass and the charge of the electron. To carry out

the construction of this model, we shall assume proceed-

ing from general physical considerations, that there may

exist n functional di�erent subsystems of localized elec-

trons (n �M) and a subsystem of collectivised electrons

in the model. Here, the condition of properly de�ned

localized states cannot be satis�ed ( small excitation en-

ergies or a large radius of the corresponding localized

states may take place). Such localized electrons subsys-

tems can conform to the electrons of ionic cores, d- and

f -electrons, to the electrons localized in the impurity re-

gion,vacancy, etc.

We shall construct the optimal basis of func-

tions f	

�

(r)g from the plane wave basis f'

k

(r)g �

fV

�1=2

exp(ikr)g and n subspaces of the atomic-like lo-

calized functions f�

�

a

(r�R

a

j

)g. Here �

a

is a set of quan-

tum numbers of state and the wave-function is centered

on the j-th nuclei of the sort a. The functions �

�

a

(r�R

a

j

)

may be considered as well known, or be determined si-

multaneously. We shall consider that the overlap inte-

grals

S

�

a

�

b

(R

a

i

�R

b

j

) = h�

�

a

(r �R

a

i

) j�

�

b

(r�R

b

j

)i (2.2)

are equal to �

�

a

;�

b

at a = b; i = j, and their values in

the other cases are much smaller in magnitude in com-

parison with the unit. It serves as a justi�cation for the

approximate orthogonalization procedure for the func-

tions of these subspaces on the basis of forming their

linear combinations

	

a;i

�

a

(r) =

X

b;�

b

;j

U

b;a

�

b

;�

a

(i; j) �

�

b

(r�R

b

j

): (2.3)

The transformation coe�cients U

b;a

�

b

;�

a

(i; j) are presented

in the form of expansion in terms of overlap integrals. In

order to follow the given accuracy further we must stick

to the same approximation as for U

b;a

�

b

;�

a

(i; j). Let us con-

struct the basis of functions in the form of

f	

�

(r)g = f	

�

1

(r)g � f	

�

2

(r)g � � � � (2.4)

�f	

�

n

(r)g � f	

�

n+1

(r)g;

where n subspaces f	

�

s

(r)g represent the whole func-

tions set (2.3) and the subspace f	

�

n+1

(r)g � f	

k

(r)g

is constructed due to methods of papers [7, 8] on the

base of f	

�

s

(r)g (1 � s � n) and a plane waves basis

f'

k

(r)g. It must be noted here that the wave-vector k

takes on all values, allowed by Born{Carman's boundary

conditions, but for the set fk

s

g, which contains as many

vectors, as many functions 	

�

s

(r) were introduced into

the basis f	

�

(r)g. Functions 	

�

(r) form a complete and

orthonormal system (basis) so far as

X

�

	

�

�

(r

1

) 	

�

(r

2

) = �(r

1

� r

2

); (2.5)

h	

�

0

j	

�

00

i = �

�

0

;�

00

;

and �

a;b

- the Kroneker symbol, �(a � b) | the Dirac

delta-function (� � f�

1

; �

2

; : : : ; �

n

;kg). In the case when

nuclei form a crystal lattice in order to avoid the degener-

ation it is sensible to introduce into basis (2.4) instead of

functions f	

�

s

(r)g the corresponding subspace of Bloch

functions.

The functions 	

�

(r) arise as a result of the canonical

transformation of the plane wave basis and proceeds by

the unitary operator

^

U :

	

�

(r) =

^

U'

q

(r) =

�

	

�

s

(r) q 2 fk

s

g;

	

k

(r) q 62 fk

s

g:

(2.6)

They are eigenfunctions of a linear Hermitian operator

^

� =

^

U

^

T

^

U

+

and obviously the spectrum of the opera-

tor

^

� coincides with the spectrum of the kinetic energy

operator

^

T = ��h

2

r

2

=2m.

We transform the Hamiltonian (2.1) from coordinate

representation to another one using basis (2.4):
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^

H =

^

H

nucl

(R) +

X

�

1

;�

2

X

s

b

�

1

;�

2

a

+

�

1

;s

a

�

2

;s

(2.7)

+

1

2V

X

�

1

;:::;�

4

X

s

1

;s

2

V

�

1

;�

2

;�

3

;�

4

a

+

�

1

;s

1

a

+

�

2

;s

2

a

�

3

;s

2

a

�

4

;s

1

;

where the following symbols for matrix elements are

used:

b

�

1

;�

2

= T

�

1

;�

2

� V

�1

M

X

a=1

Q

a

X

q

V

q

S

a

�q

R

�

1

;�

2

(q);

V

�

1

;�

2

;�

3

;�

4

= V

�1

X

q

R

�

1

;�

4

(q) R

�

2

;�

3

(�q); (2.8)

R

�

1

;�

2

(q) = V

1=2

h	

�

1

j'

q

	

�

2

i;

T

�

1

;�

2

= h	

�

1

j

^

T j	

�

2

i ; S

a

q

=

N

a

X

j=1

exp (iqR

a

j

):

Here, V

q

� 4�e

2

q

�2

and operators a

�;s

are up to the ba-

sic functions (s = �1=2 is spin variable). The use of the

basis f	

�

g gives a possibility for possessing description

of all electron subsystems.

III. REFERENCE SYSTEM AND

RENORMALIZED PERTURBATION THEORY

The ultimate aim of this consideration is the calcu-

lation of partition function by means of averaging over

electron variables in grand canonical ensemble

Z(�) = Sp �̂ = Spfexp[��(

^

H � �

^

N)]g = exp [��
(�)];

(3.1)

where � is the chemical potential variable, N =

P

�;s

a

+

�;s

a

�;s

is the operator of total number of electrons in

the system, 
(�) is the grand thermodynamic potential.

There are some electron subsystems among the consid-

ered (n+1) ones, which are su�ciently isolated and have

a weak inuence on other subsystems, which play an ac-

tive role in physical processes. A subsystem of localized

electrons in nontransition metals, a subsystem of core

electrons in d- or f -metals, etc. can serve as examples of

such a su�ciently isolated system. This substantiates the

reduced description of model (2.7) and the calculation of

its partition function in step-by-step form. It demands

the calculation of partitial functions just over the elec-

tron states of some L subsystems (over L subspaces of

the basis (2.4))

Z

L

(�) = Sp

1;:::;L

fexp [��(

^

H � �

^

N)]g =

^

P

L

; (3.2)

L � n+ 1:

The partial underintegrated partitial function Z

L

(�) de-

termines the e�ective statistical operator

^

P

L

for other

(n+1�L) subsystems or the e�ective Hamiltonian of a

reduced model which deals with the mentioned (n+1�L)

electron subsystem.In particular, when only one subsys-

tem is of special interest a reduction of the statistical op-

erator over all subsystems, except that of (L = n), can

be done. At L = n+1 formulae (3.2) de�nes a complete

partition function of the whole model. Consequently by

de�nition

Z(�) = Sp

n+1

Z

n

(�) (3.3)

= Sp

n;n+1

Z

n�1

(�) = ::: = Sp

1;:::;n+1

�̂:

In some sense the procedure proposed here is the quan-

tum analogue of the step-by-step integration method

used for the calculation of partition function of the clas-

sic Ising model (see [9]). We shall explain this by giving

examples. For the pure nontransition metal the reduc-

tion over the states of the localized electron subsystem

results in the microscopic electron{ion model. In the case

of pure transition metal the reduction over the core elec-

tron states brings to the model which describes subsys-

tems of d- and f -electrons in the e�ective �eld of ions.

In the presence of the hydrogen impurities in metal the

mentioned reduction over the states of all electron sub-

systems of the pure metal gives the e�ective Hamiltonian

for the electron subsystem in the �eld of protons and

metallic \atoms". Statistical averaging over the states

of the collectivised electron subsystem in the nontran-

sition metals gives the o�-beat quantum ionic model of

metal. A statistical reduction procedure was used in the

papers [3, 10] for the transition from the exact electron{

nuclei model of the nontransition metal to an approxi-

mate electron{ion model.

For the Z(�) calculation we use the renormalized per-

turbation theory, proceeding from the statistical opera-

tor to the interaction presentation on the basis of some

operator

^

H

L

0

. As a result of this procedure we obtain

Z

L

(�) = Z

0

L

(�) h

^

S

L

i

0

;

Z

0

L

(�) = Sp

1;:::;L

e

��

^

H

L

0

; (3.4)

^

S

L

= T exp f�

�

Z

0

d�

0

[

^

H(�

0

)�

^

H

L

0

(�

0

)� �

^

N(�

0

)]g:

Here Z

0

L

(�) is the partition function of the model

with the Hamiltonian

^

H

L

0

, the symbol h: : :i

0

stands

for a statistical averaging over this model states, T

is the symbol of ordinary chronological ordering [11],

and

^

H(�

0

);

^

N(�

0

);

^

H

0

(�

0

) | corresponding operators in

the interaction presentation. Both in papers [3, 10] and

[12, 13] (devoted to the electron liquid model) in the

capacity of the operator

^

H

L

0

the Hamiltonian of non-

interacting particles (or quasiparticles) | the diagonal
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quadratic Hamiltonian of the type

P

�;s

"

�

a

+

�;s

a

�;s

was

used. Such a choice is justi�ed in the case of a weak in-

teraction both between electrons inside some subsystem

and between di�erent subsystems. In the general case we

shall choose the nondiagonal operator in the capacity of

operator

^

H

L

0

^

H

L

0

=

X

�

1

;�

2

s

("

�

1

;�

2

� � �

�

1

;�

2

) a

+

�

1

;s

a

�

2

;s

; (3.5)

1 � L � n+ 1;

where �

1

; �

2

2 f�

1

; : : : ; �

L

g. The matrix elements "

�

1

;�

2

can be obtained by some approximation from the ini-

tial Hamiltonian, or they are considered as variational

parameters which are obtained self-consistently in the

process of solving the problem. Really the thermody-

namic potential 
(�) forms a functional on the unknowns

"

�

1

;�

2

. However, it is obvious that with the allowance of

perturbation theory for all diagrams the series 
(�) be-

comes invariant over the

^

H

L

0

choice and independent on

"

�

1

;�

2

:

� 
(�)

� "

�

1

;�

2

= 0: (3.6)

For approximate calculations which are practically the

only possible ones formula (3.6) becomes the extremum

condition for thermodynamic potential and determines

the system of equations for the unknown matrix elements

"

�

1

;�

2

.

The nondiagonal terms of the operator

^

H

L

0

take into

account the gibridization e�ects both between di�erent

basic states inside one subsystem and between di�erent

electron subsystems. This becomes su�ciently important

in the case of d- and f -metals, the presence of impurity,

etc. However, the calculation of h

^

S

L

i

0

on the use of inter-

action presentation on the basis of nondiagonal operator

(3.5) becomes too di�cult. In order to avoid this di�-

culty we diagonalize

^

H

L

0

by transition from the operators

a

�;s

to \quasiparticle" Fermi operators c

�;s

on the base

of canonical transformation

a

�;s

=

X

�

�

�;�

c

�;s

; (3.7)

c

�;s

=

X

�

�

�;�

a

�;s

; f�g � f�g:

The transformation coe�cients �

�;�

determine the one-

particle spectrum of the model system described by

Hamiltonian

^

H

L

0

:

E

�

=

X

�

1

;�

2

["

�

1

;�

2

� � �

�

1

;�

2

]�

�

�

1

;�

�

�

2

;�

: (3.8)

And for the determination of the coe�cients �

�;�

we ob-

tain the following system of equations:

X

�

1

;�

2

["

�

1

;�

2

� � �

�

1

;�

2

]�

�

�

1

;�

1

�

�

2

;�

2

= 0 at �

1

6= �

2

;

X

�

�

�

�

2

;�

�

�

1

;�

= �

�

1

;�

2

: (3.9)

In terms of quasiparticles the Hamiltonian

^

H

L

0

takes the

form of:

^

H

L

0

=

X

�;s

E

�

c

+

�;s

c

�;s

; (3.10)

which is in conformity with the unitary transformation

of subspace f	

�

1

g� f	

�

2

g+ : : :+ f	

�

L

g of basis (2.4).

Really, the electron �eld operator projection on this sub-

space can be represented both in 	

�

and is some new

functions

~

	

�

(r) which correspond to the operators c

�;s

:

^

	

(�)

(r) =

X

�

a

�;s

	

�

(r) =

X

�

c

�;s

~

	

�

(r): (3.11)

With the allowance for orthogonality of functions, both

	

�

(r) and

~

	

�

(r), we obtain the following transformation

rules

~

	

�

(r) =

X

�

�

�;�

	

�

(r); (3.12)

	

�

(r) =

X

�

�

�;�

~

	

�

(r):

Thus, the transformation from the operators a

�;s

to c

�;s

means the substitution of the initial basis (2.4) with a

new basis

f

~

	

�

g = f

~

	

�

1

g � f

~

	

�

2

g � : : :� f

~

	

�

L

g � (3.13)

� f	

�

L+1

g � : : :� f	

�

n

g � f	

k

g:

Obviously, the transformation from f	

�

g to f

~

	

�

g| ba-

sis can be presented in the form of

~

	

�

(r) =

^

� 	

�

(r) (3.14)

Taking into account the eigenvalue equation for the op-

erator

^

� one can �nd that the basis f

~

	

�

g is formed by

eigenfunctions of the linear Hermitian operator

^

W =

^

�

^

�

^

�

+

�

^

�

^

U

^

T

^

U

+

^

�

+

: (3.15)

The operator

^

� is the unitary operator which is de�ned

by matrix clements �

�;�

on the subspace f	

�

1

g � : : : �

f	

�

L

g and on the additional complement f	

�

L+1

g�: : :�
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f	

k

g coinsides with the unit operator. Using the �rst

formula (3.7) we transfer

^

S

L

(see (3.4)) from a

�;s

to op-

erators c

�;s

(�

0

) on the basis of interaction representation

with Hamiltonian (3.10). The choice of operator (3.5)

makes it possible to speed up the convergence of a per-

turbation theory series. As a result of reduction (3.2) we

obtain the e�ective statistical operator in the form of

^

P

L

= exp f��

^

H

nucl

(R)� �


L

(�)� �

^

H

ef

(a

�;s

)g;

(3.16)

where 


L

(�) is the grand thermodynamic potential of

extracted L subsystems, and

^

H

ef

(a

�;s

) is the e�ective

Hamiltonian for all other electron subsystems of the

physical system.

All well known methods of optimal basis construction

[7, 8, 14, 15] are based on the purely mathematical princi-

ple: the plane wave basis and a subspace of localized func-

tions are used; further their certain linear combinations

form the basic functions which satisfy formal mathemat-

ical conditions of orthogonality and completeness (2.5).

In this way the optimal basis construction, being purely

mathematical, absolutely disregards the speci�c physical

problems, in particular, the interaction between the dif-

ferent electron subsystems is neglected. Here it must be

noted, that with the help of linear combinations of the

initial basis functions (2.4) a continuum of mathemati-

cally equivalent optimal basis can be formed and their

use brings to different physical results. In this situation

some physical principle must be formulated which con-

sists in the allowance for a speci�c physical system for

an optimal basis choice. It consists in the imposition

of an additional (except (2.5)) conditions set, which is

to consider on the basis level the allowance for inter-

action between di�erent electron subsystems, a strong

convergence of renormalized perturbation theory series,

etc. Mathematically it corresponds to zeroing the most

important matrix elements which accounts for the inter-

action between subsystems, or in the general case it cor-

responds to the diagonalization of the Hamiltonian

^

H

L

0

.

This procedure is the logical generalization of the purely

mathematical condition of mutual orthogonality for the

basic functions (second formula in (2.4)), which in its

turn is only a formal reason to consider the nondiagonal

matrix elements to be small.

The basic approach suggested in this paper combines

in the only possible way two important aspects: optimal

representation basis and statistical basis (reference sys-

tem). It provides for the speeding up of the convergency

of the perturbation theory series with the allowance for

various many-particle correlation e�ects.
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BAZISNI� P�DH�D U M�KROSKOP�QN�� TEOR�Õ METAL�V

V. B. Solov'�n

�nstitut f�ziki kondensovanih sistem Nac�onal~noÝ akadem�Ý nauk UkraÝni

UkraÝna, UA{290011, L~v�v, vul. Svnc�c~kogo, 1

Zaproponovano shemu pobudovi bagatoqastinkovoÝ m�kroskop�qnoÝ teor�Ý metal�qnogo stanu, �ka �run-

tut~s� na dvoh zasadah. Po-perxe, vikoristann� optimal~nogo bazisu predstavlenn�, orti �kogo bliz~k�

do odnoqastinkovih stan�v v okremih p�dsistemah elektron�v metalu. Po-druge, vib�r v�dpov�dnoÝ bazisnoÝ

sistemi �k statistiqnogo bazisu opisu. Rozvinuti� p�dh�d dozvol� adekvatno opisati �k okrem� funkc�o-

nal~n� p�dsistemi elektron�v metalu, tak � efekti Ýh vzamnogo vplivu z vrahuvann�m bagatoqastinkovih

korel�c��nih efekt�v.
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