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New method is developed for analytical treatment of modulated superstructures in model mag-

netic systems near criticality. We found the conditions for paramagnet{(in)commensurate transition

in the class of anisotropic Ising models with and without an external magnetic �eld and the critical

value of the latter. We derived a new representation of speci�c free energy for commensurate and

incommensurate con�gurations and found its hidden symmetry. The existence of the global solution

is proved for the incommensurate con�guration minimizing free energy. We found the condition for

the global solution's termination. The existence of phase transition from the incommensurate phase

into the ferromagnetic one is proved to depend on exchange integrals.
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I. INTRODUCTION

The importance of a comprehensive theoretical treat-

ment of modulated structures is well known [1]. The dif-

�culties of studying the phase diagram for such systems

are caused by the need to continue the free energy per lat-

tice site from the commensurate con�gurations to incom-

mensurate ones and constructing the extremum con�gu-

rations. The interest to this problem does not diminish

with time [2{7]. Here we deliver a new treatment of mod-

ulated structures in anisotropic Ising system near criti-

cality. We derive new representation for free energy of

both commensurate and incommensurate con�gurations

and �nd its hidden symmetry (Sec.II). In Sec.III and

IV we prove the existence of phase transition from the

paramagnetic state to the modulated structures with and

without external magnetic �eld. In Sec.IV we �nd the ex-

treme magnetic �eld for which modulated structures still

exist. In Sec.V we prove the existence of the global so-

lution for the incommensurate con�guration minimizing

the free energy and derive the condition for this solution

to terminate. In Sec.V the existence of the phase transi-

tion from the incommensurate phase into the ferromag-

netic one is proved to depend on exchange integrals. This

phase transition is of the �rst kind.

To be de�nite we illustrate the method on the ANNNI

model [8] but one can apply it for models with an ar-

bitrary number of interacting neighbors. The mean-�eld

free energy for three-dimensional ANNNI model is
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where m

i

is an average magnetic moment at i-th site

and takes values on the segment [�1; 1]. In the planes

normal to the x-axis the nearest neighbors only interact

ferromagnetically (J

0

< 0). Along the axis x the next-

nearest neighbors interact too, moreover the interactions

of the nearest neighbors (J

1

) and the next-nearest ones

(J

2

) can be either ferromagnetic or antiferromagnetic.

Just the relations between them are essential. Expres-

sion (1.1) is formal because speci�c free energy only has

the physical sense. Let us derive the explicit expression

for it.
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tice Z

3

with the periods N

1

; N

2

and N

3

. Denote by f�

k

g

the sequence of volumes from R

3

with N

k

sites from Z

3

and cover the volume �

k

by parallelepipeds congruent

to �

0

with their number inside �

k

being n

k

1

and the

one completely covering �

k

being n

k

2

. If the sequence �

k

tends to R

3

and �

k

� �

k+1

;

1

S

k=1

�

k

= R

3

; then

lim

k!1

�

n

k

2

� n

k

1

�

N

1

N

2

N

3

j�

k

j

= 0; (1.2)

where j�

k

j = N

k

is the number of sites in �

k

.

The speci�c free energy for commensurate con�gura-

tions in � of the periods N

1

, N

2

, N

3

with boundary con-

dition over � takes the form
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where the contribution of covering volumes n

k

2

� n
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accounting for the boundary conditions is denoted by

�
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.
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and so on are the average magnetic moments at sites i + 1; i � 1 along the corresponding

axes.

The thermodynamical limit of speci�c free energy for commensurate con�gurations is equal to
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Actually, the quasi-one-dimensional case is of interest, i.e., the con�gurations with the �xed average magnetic

moment at the sites of planes parallel to the plane Y OZ. The latter is valid for J

0

< 0 and a su�ciently low

temperature T . In that case speci�c free energy with m
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where �

0

o

is a piece of line with N

1

sites.

II. UNDERLYING SYMMETRY OF FREE ENERGY

Here we �nd the hidden one-parameter symmetry group of the free energy per lattice site in the space of commen-

surate and incommensurate con�gurations. At �rst we construct the new representation for speci�c free energy (1.3)

of commensurate con�gurations and extend it onto the set of incommensurate ones. To do this we introduce the set

of vectors X = fx

i

g

+1

i=�1

, where i 2 Z

1

and x

i

takes values in the set of real numbers, and the scalar product
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Lemma 1. For con�guration (2:1) the formula
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For the proof see [10].

If g(x) is some continuous function of x 2 [a; b], then
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k is the number of negative �

l

. For irrational q the averages I
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are expressed by the formula
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Due to Lemma 1 the speci�c free energy (1.3) has the form
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The free energy (2.6) is de�ned on the set of commensurate con�guratons. The following Lemma de�nes speci�c free

energy on the set of incommensurate con�gurations.

Lemma 2. The thermodynamical limit of the free energy exists for irrational q on the set of incommensurate
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As a result free energy of con�guration (2.1) with irrational q and arbitrary N is
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Let us �nd the symmetry group of free energy (2.6) for commensurate con�gurations of the period N
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1

2

l

X

k=0

C

k

l

�

jl�2kj;jrjN

1

�

jrjN

1

2

�

X

m=0

(�1)

m

C

2m

jrjN

1

a

jrjN

1

�2m

1

b

2m

1

:

Now we �nd the symmetry of free energy (2.7) for irrational q. At �rst we derive new representation for the free

energy. The polynomial coe�cients

I

p

(a

1

; b

1

; � � � ; a

N

; b

N

; a

0

) =

*

�;

 

N

X

l=1

�

a

l

e

1

(lq) + b

l

e

2

(lq)

�

+ a

0

�

!

p

+

are given by (2.5). The direct test gives

*

s

Y

k=1

e

1

(i

k

q)

m

Y

l=1

e

2

(j

l

q)

+

=

1

2�

2�

Z

0

d�

s

Y

k=1

cos i

k

�

m

Y

l=1

sin j

l

�;

from where

I

p

(a

1

; b

1

; � � � ; a

N

; b

N

; a

0

) =

1

2�

2�

Z

0

 

N

X

l=1

(a

l

cos l�+ b

l

sin l�) + a

0

!

p

d�:

I

p

is 2�-periodic function of �, therefore

I

p

(a

0

1

; b

0

1

; � � � ; a

0

N

; b

0

N

; a

0

) = I

p

(a

1

; b

1

; � � � ; a

N

; b

N

; a

0

);

where

a

0

l

= a

l

cos l�

0

+ b

l

sin l�

0

; b

0

l

= �a

l

sin l�

0

+ b

l

cos l�

0

; (2.13)

�

0

2 [0; 2�]:

Really

1

2�

2�

Z

0

 

N

X

l=1

�

a

l

cos l(�+ �

0

) + b

l

sin l(�+ �

0

)

�

+a

0

!

p

d� =

1

2�

2�

Z

0

 

N

X

l=1

(a

l

cos l�+ b

l

sin l�) + a

0

!

p

d�:

Therefore I

p

is invariant with respect to transformations (2.13) of group G operating in a 2N -dimensional space. Due

to the arbitrariness of � and convergence of free energy series for small a

l

and b

l

the free energy (2.7) is invariant of

group G.
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III. NEAR CRITICAL MODULATED

STRUCTURES (H = 0)

The existence problem for the extremum con�gura-

tions is non-trivial. Here we study it for small deviations

from the critical temperature. We prove the equivalence

of the existence problem for a nonzero solution to equa-

tions for the con�guration minimizing free energy and

that for the corresponding branching equations. We de-

rive the branching equations and prove the existence the-

orem for a nonzero solution. We investigate the model

with an external magnetic �eld and without it. The nec-

essary conditions of free energy minimum are equations

�a

l

�(lq)

�

1 + �

l;

[

N

1

+1

2

]

�

+ T h�; g

0

(x)e

1

(lq)i = 0;

�b

l

�(lq)

�

1� �

l;

[

N

1

+1

2

]

�

+ T h�; g

0

(x)e

2

(lq)i = 0; (3.1)

�a

0

�(0) + h+ T h�; g

0

(x)i =2 = 0; l = 1; N;

for rational q and

�a

l

�(lq) + T h�; g

0

(x)e

1

(lq)i = 0;

�b

l

�(lq) + T h�; g

0

(x)e

2

(lq)i = 0; (3.2)

�a

0

�(0) + h+ T h�; g

0

(x)i =2 = 0:

for irrational q. Since

g

0

(x) = ln

1 + x

1� x

= 2

�

x+

x

3

3

+

x

5

5

+ � � �+

x

2n+1

2n+ 1

+ � � �

�

;

one may denote

g

0

(x) = 2x+ '

1

(x);

where

'

1

(x) = 2

�

x

3

3

+

x

5

5

+ � � �+

x

2n+1

2n+ 1

+ � � �

�

;

x 2 (�1; 1):

Lemma 3. For x being a nontrivial con�guration from

Hilbert space of con�gurations, satisfying (3:1) or (3:2)

for h = 0; and q satisfying inequality

�(q) > �(lq); l = 0; 2; 3; 4; � � � ; N � 1; N; �(q) > 0

critical temperature T

0

does not exceed �(q), i.e. T

0

�

�(q):

For the proof see [12].

Now consider the ANNNI model for h = 0. In that

case the critical temperature is equal to

T

0

= sup

0�q�1

�(q)

= sup

q

(�2J

1

cos 2�q � 2J

2

cos 4�q � 4J

0

) > 0:

One can express T

0

in terms of J

1

; J

2

; J

0

: From �

0

(q) = 0

it follows that

1) sin 2�q = 0; 2) J

1

+ 4J

2

cos 2�q = 0:

To be de�nite we assume J

1

< 0; J

2

> 0: Then in the

�rst case �

00

(q) < 0; if J

2

< �J

1

=4: Since q = 0; then the

branching starts from the ferromagnetic phase for J

1

; J

2

satisfying

T

0

0

= �2J

1

� 2J

2

� 4J

0

:

In the second case

cos 2�q

0

= �J

1

=4J

2

; jJ

1

=4J

2

j < 1; (3.3)

�

00

(q

0

) = 8J

2

�

J

2

1

=16J

2

2

� 1

�

< 0;

T

0

= J

2

1

=4J

2

+ 2J

2

� 4J

0

:

Let us consider the range of parameters for which T

0

>

T

0

0

: These are J

1

and J

2

satisfying the inequality r

2

>

4(�2r � 4) with r = J

1

=J

2

: The latter inequality holds

for all real r except for r = �4. But r < 0 and to satisfy

(3.3) we suppose

� J

2

=J

1

> 0:25: (3.4)

Thus, the modulated structures can occur only when in-

equality (3.4) holds.

Now we prove the small branching theorems for the

solutions to equations (3.1), (3.2) with h = 0. Let q be

irrational, then equations (3.2) transform into

a

1

=

�

1� t

2

�

t

�2




2x

3

=3 + �(x); e

1

(q)

�

;

b

1

=

�

1� t

2

�

t

�2




2x

3

=3 + �(x); e

2

(q)

�

;

a

l

=

(1� t

2

)�(q)

�(lq)� (1� t

2

)�(q)




2x

3

=3 + �(x); e

1

(lq)

�

; (3.5)

b

l

=

(1� t

2

)�(q)

�(lq)� (1� t

2

)�(q)




2x

3

=3 + �(x); e

2

(q)

�

;

a

0

=

(1� t

2

)�(q)

2

�

�(0)� (1� t

2

)�(q)

�




2x

3

=3 + �(x); �

�
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with

�(x) = 2

�

x

5

5

+ � � �+

x

2n+1

2n+ 1

+ � � �

�

;

T = T

0

(1� t

2

); T

0

= �(q):

We assume solutions of equations (3.5) to be expressed

as

a

1

= t�a

1

; b

1

= t

�

b

1

; a

l

= t

2

�a

l

; b

l

= t

2

�

b

l

; a

0

= t

2

�a

0

:

Then the equations for con�gurations minimizing free

energy become

�a

1

= F

(1)

1

(w) =

1� t

2

2�t

3

2�

Z

0

'

1

(�) cos�d�;

�

b

1

= F

(2)

1

(w) =

1� t

2

2�t

3

2�

Z

0

'

1

(�) sin�d�; (3.6)

�a

l

= F

(1)

l

(w) =

A

l

2�t

2

2�

Z

0

'

1

(�) cos�d�;

�

b

l

= F

(2)

l

(w) =

A

l

2�t

2

2�

Z

0

'

1

(�) sin�d�; (3.7)

�a

0

= F

(0)

0

(w) =

A

0

2�t

2

2�

Z

0

'

1

(�)d�

with

w = ft; z; �a

1

;

�

b

1

g; z = f�a;

�

bg =

�

f�a

2

;

�

b

2

g; � � � ; f�a

N

;

�

b

N

g; �a

0

�

;

A

l

=

(1� t

2

)�(q)

�(lq)� (1� t

2

)�(q)

; l � 2;

A

0

=

(1� t

2

)�(q)

2

�

�(0)� (1� t

2

)�(q)

�

;

'

1

(�) = '

1

 

t

2

N

X

l=2

(�a

l

cos l�+

�

b

l

sin l�) + t

2

�a

0

+ t(�a

1

cos�+

�

b

1

sin�)

!

:

To prove small branching theorem for nonlinear equa-

tions (3.5), let us proceed by steps. At �rst we prove the

existence of a unique nontrivial solution to system (3.7).

Let us introduce the norm

jzj = max

2�l�N

�

fj�a

l

j; j

�

b

l

jg; j�a

0

j

�

and the radius A ball centered at the point

z

0

=

�

f�a

0

2

;

�

b

0

2

g; � � � ; f�a

0

N

;

�

b

0

N

g; �a

0

0

�

in the 2N � 1-dimensional space of vectors z, where

�a

0

l

=

A

l

2�t

2

2�

Z

0

'

1

�

t(�a

1

cos�+

�

b

1

sin�)

�

cos�d�;

�

b

0

l

=

A

l

2�t

2

2�

Z

0

'

1

�

t(�a

1

cos�+

�

b

1

sin�)

�

sin�d�;

�a

0

0

=

A

l

2�t

2

2�

Z

0

'

1

�

t(�a

1

cos�+

�

b

1

sin�)

�

d�:

Let jf�a;

�

bgj � A and maxfj�a

1

j; j

�

b

1

jg � A with A be de-

termined later. In operator form (3.7) is

z = F (w); (3.8)

with the nonlinear operator F given by the r.h.s. of (3.7).

Theorem 1. If maxfj�a

1

j; j

�

b

1

jg � A; then there ex-

ists � > 0 such that 0 < t < � and the system (3:8) is

uniquely solvable by continuously di�erentiable function

of t; �a

1

;

�

b

1

in their ranges of values.

For the proof see [10]. The similar theorem is valid for

rational q.

Theorem 2. For all irrational q that guarantee the

validity of

min

l

j�(lq)� �(q)j = � > 0

308



COMPREHENSIVE ANALYSIS OF MAGNETIC SUPERSTRUCTURES : : :

there is �

1

> 0 such that a nonzero solution to system

(3:5) exists for 0 � t < �

1

if h = 0. The action of

group G (2:13) on this solution gives di�erent solutions

of the system (3:5) that are continuously di�erentiable

functions of t.

For the proof see [10].

Theorem 3. For all rational q there is �

0

1

> 0 such

that there exists nonzero solution of system (3:1) for

0 � t < �

0

1

if h = 0. The action of group (2:11) on

this solution gives di�erent solutions to equations (3:1)

that are continuously di�erentiable functions of t.

For the proof see [11].

IV. NEAR CRITICAL MODULATED

STRUCTURES (H 6= 0)

Here we consider the case h 6= 0 and display the

phase transition from the paramagnetic state to the

spatially inhomogeneous commensurate con�guration or

the incommensurate one below the critical magnetic

�eld. In the external magnetic �eld systems (3.1) and

(3.2) have a nonzero solution in the set of vectors

f(a

1

; b

1

); � � � ; (a

N

; b

N

); a

0

g such that

N

X

l=1

�

ja

l

j+ jb

l

j

�

+ ja

0

j < 1:

The solution has the form f(0; 0); � � � ; (0; 0); �a

0

g with �a

0

solving the equation

� �a

0

�(0) + Tg

0

(�a

0

)=2 + h = 0: (4.1)

We assume that

x = �x+ �a

0

�; �x =

N

X

l=1

�

a

l

e

1

(lq) + b

l

e

2

(lq)

�

+ a

0

0

�;

g

0

(x) =

+1

X

k=1

g

(k)

(�a

0

)

(k � 1)!

�x

k�1

= g

0

(�a

0

)�+ g

00

(�a

0

)�x+ '

2

(�x);

g

0

(�a

0

�) = g

0

(�a

0

)�; �x� = �x; '

2

(�x) =

+1

X

k=3

g

(k)

(�a

0

)

(k � 1)!

�x

k�1

:

Then system (3.1) becomes

a

l

�

T=

�

1� �a

2

0

�

� �(lq)

��

1 + �

l;

[

N

1

+1

2

]

�

+ T h�; '

2

(�x)e

1

(lq)i = 0;

b

l

�

T=

�

1� �a

2

0

�

� �(lq)

��

1� �

l;

[

N

1

+1

2

]

�

+ T h�; '

2

(�x)e

2

(lq)i = 0;

2a

0

0

�

T=

�

1� �a

2

0

�

� �(0)

�

+ T h�; '

2

(�x)i = 0; l = 1; N; (4.2)

and system (3.2) becomes

a

l

�

T=(1� �a

2

0

)� �(lq)

�

+ T h�; '

2

(�x)e

1

(lq)i = 0;

b

l

�

T=(1� �a

2

0

)� �(lq)

�

+ T h�; '

2

(�x)e

2

(lq)i = 0; (4.3)

2a

0

0

�

T=(1� �a

2

0

)� �(0)

�

+ T h�; '

2

(�x)i = 0:

The spatially inhomogeneous solution to systems (3.1),

(3.2) exists if systems (4.2), (4.3) have a nonzero solution.

The �rst degeneration of the spectrum of the linearized

part of the nonlinear operator (4.2) or (4.3) occurs when

T=

�

1� �a

2

0

�

� �(q) = 0;

��a

0

�(0) + Tg

0

(�a

0

)=2 + h = 0:

(4.4)

If there exists a solution to system (4.4), then zero solu-

tion for systems (4.2), (4.3) bifurcates. It means a tran-

sition from the paramagnetic phase to the modulated

structure. As a result system (4.4) gives single equiva-

lent equation

T = �(q)�

�(q)h

2

�

�(0)�

1

2

T (1� T=�(q))

�

1

2

g

0

�

p

1� T=�(q)

��

2

: (4.5)

From (4.5) it follows Lemma 4. The critical magnetic

�eld for phase transition from the paramagnetic state to

the modulated structure is equal to j�(0)j.

For the proof see [12].

Having in mind that mean-�eld theory critical expo-

nent � equals 1=2 we suppose the deviation from the
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critical temperature to be standard. Therefore

�

2

(T; h) = �(q)� T=

�

1� �a

2

0

�

;

where �a

0

solves equation (4.1). If T

0

(h) solves equation

(4.5), then �

2

(T

0

(h); h) = 0.

In terms of the new variables system (4.3) for the ir-

rational q takes the form of

��

2

a

1

+ T h�; '

2

(�x)e

1

(q)i = 0;

��

2

b

1

+ T h�; '

2

(�x)e

2

(q)i = 0;

(4.6)

a

l

�

�(q)� �(lq)� �

2

�

+ T h�; '

2

(�x)e

1

(lq)i = 0;

b

l

�

�(q)� �(lq)� �

2

�

+ T h�; '

2

(�x)e

2

(lq)i = 0; (4.7)

2a

0

0

�

�(q)� �(0)� �

2

�

+ T h�; '

2

(�x)i = 0:

We seek the solution of systems (4.6), (4.7) in the form

of

a

1

= �~a

1

; b

1

= �

~

b

1

; a

l

= �

2

~a

l

; b

l

= �

2

~

b

l

; a

0

0

= �

2

~a

0

0

:

Then we rewrite (4.6), (4.7) as

~a

1

= F

(1)

1

( ~w) =

T

�

3

+1

X

k=3

g

(k)

(�a

0

)

(k � 1)!

�

k�1

D

�; (�)

k�1

e

1

(q)

E

;

~

b

1

= F

(2)

1

( ~w) =

T

�

3

+1

X

k=3

g

(k)

(�a

0

)

(k � 1)!

�

k�1

D

�; (�)

k�1

e

2

(q)

E

; (4.8)

~a

l

= F

(1)

l

( ~w) =

T

�

2

�

�

2

+�(lq)� �(q)

�

+1

X

k=3

g

(k)

(�a

0

)

(k � 1)!

�

k�1

D

�; (�)

k�1

e

1

(lq)

E

;

~

b

l

= F

(2)

l

( ~w) =

T

�

2

�

�

2

+�(lq)� �(q)

�

+1

X

k=3

g

(k)

(�a

0

)

(k � 1)!

�

k�1

D

�; (�)

k�1

e

2

(lq)

E

;

~a

0

0

= F

(0)

0

( ~w) =

T

2�

2

�

�

2

+�(0)� �(q)

�

+1

X

k=3

g

(k)

(�a

0

)

(k � 1)!

�

k�1

D

�; (�)

k�1

E

; (4.9)

where

~w = f�; ~z; ~a

1

;

~

b

1

g; ~z = f~a;

~

bg =

�

f~a

2

;

~

b

2

g; � � � ; f~a

N

;

~

b

N

g; ~a

0

0

�

;

�

�

�

=

 

�

N

X

l=2

�

~a

l

e

1

(lq) +

~

b

l

e

2

(lq)

�

+ �~a

0

0

�+ ~a

1

e

1

(q) +

~

b

1

e

2

(q)

!

:

Let us consider the norm

j~zj = max

2�l�N

fj~a

l

j; j

~

b

l

j; j~a

0

0

jg

and the radius A ball centered at the point

~z

0

=

�

f~a

0

2

;

~

b

0

2

g; � � � ; f~a

0

N

;

~

b

0

N

g; ~a

0

0

0

�

in the set of vectors ~z, where

~a

0

l

=

T

�

2

+�(lq)� �(q)

+1

X

k=3

g

(k)

(�a

0

)

(k � 1)!

�

k�3




�; (� � �)

k�1

e

1

(lq)

�

;
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~

b

0

l

=

T

�

2

+�(lq)� �(q)

+1

X

k=3

g

(k)

(�a

0

)

(k � 1)!

�

k�3




�; (� � �)

k�1

e

2

(lq)

�

;

~a

0

0

0

=

T

2

�

�

2

+�(0)� �(q)

�

+1

X

k=3

g

(k)

(�a

0

)

(k � 1)!

�

k�3




�; (� � �)

k�1

�

;

(� � �) = (~a

1

e

1

(q) +

~

b

1

e

2

(q)):

Let F ( ~w) be a nonlinear operator given by the right part

of system (4.9), then this system turns to be

~z = F ( ~w) : (4.10)

Theorem 4. Let

min

l

j�(lq)� �(q)j = � > 0; l = 0; 2; 3; 4; � � � ; N � 1; N;

and �

0

> 0 satis�es the inequality

max

l

T

j�

2

+�(lq)� �(q)j

(2N � 1)��

�

+1

X

k=3

jg

(k)

(�a

0

)j

(k � 2)!

�

k�3

�

(2N � 1)A�+ 2A

�

k�2

< 1;

then for all � 2 [0; �

0

] and ~a

1

;

~

b

1

; h such that

~a

2

1

+

~

b

2

1

� A

2

; jhj < j�(0)j;

there exist the critical temperature T

0

(h) and an inter-

val

�

T

0

(h)��

2

; T

0

(h)

�

on which the solution of nonlinear

equations (4:10) exists being a continuously di�erentiable

function of � 2 [0; �

0

] and ~a

1

;

~

b

1

for ~a

2

1

+

~

b

2

1

� A

2

.

For the proof see [12].A similar theorem is valid for the

rational q.

Remark. Continuous di�erentiability with respect to

the variables � and ~a

1

;

~

b

1

results from continuous dif-

ferentiability of the successive approximations and their

uniform convergence to the solution.

Theorem 5. For all irrational q that guarantee the

validity of

min

l

j�(lq)� �(q)j = � > 0

there is such �

1

> 0, that system (4:3) is solvable for

0 < � < �

1

; jhj < j�(0)j:

The action of group G (2:13) on this solution gives dif-

ferent solutions of system (4:3) being continuously di�er-

entiable functions of �.

For the proof see [12].

Theorem 6. For those rational q, for which N

1

6= 3,

there is �

0

> 0 such that a nonzero solution to system

(4:2) exists for

0 � � < �

0

; jhj < j�(0)j:

The action of group (2:11) on this solution gives di�erent

solutions to system (4:2) being continuously di�erentiable

functions of �.

For the proof see [13].

V. GLOBAL INCOMMENSURATE EXTREMUM

ForN = 1 conditions of Theorems 4 and 5 hold. In this

case one can construct not only a solution near the crit-

ical temperature but also the global solution. For N = 1

con�guration (2.1) takes the form of

x = a

1

e

1

(q) + b

1

e

2

(q) + a

0

�: (5.1)

The speci�c free energy for this con�guration is

F

h

= �

1

2

�

1

2

�

a

2

1

+ b

2

1

�

�(q) + a

2

0

�(0)

�

+ ha

0

+

1

2

T h�; g (x)i : (5.2)

Having calculated the average

h�; g (x)i =

1

2�

2�

Z

0

g (u cos'+ a

0

) d'

with u =

�

a

2

1

+ b

2

1

�

1

2

we have [14]

F

h

= �

1

2

�

1

2

u

2

�(q) + a

2

0

�(0)

�

+ ha

0

+

T

2

�

2�

p

(1 + a

0

)

2

� u

2

�

p

(1� a

0

)

2

� u

2

� 2 ln 2

+(1 + a

0

) ln

�

1 + a

0

+

p

(1 + a

0

)

2

� u

2

�
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+(1� a

0

) ln

�

1� a

0

+

p

(1� a

0

)

2

� u

2

�

�

: (5.3)

For h = 0 the free energy is

F = �

1

4

u

2

�(q) + T

�

1�

p

1� u

2

+

ln

�

1 +

p

1� u

2

�

� ln 2

�

: (5.4)

The equation for the con�guration minimizing the free

energy (5.4) is

�

1

2

�(q) +

T

1 +

p

1� u

2

= 0: (5.5)

From here we obtain the global solution

u

2

= 1� (2T=�(q)� 1)

2

; (5.6)

terminating at u

2

= 1, i.e. the termination temperature

is equal to �(q)=2: Taking into account (5.6) we write

the free energy of the incommensurate phase (5.4) as

F = T

�

1� T=�(q) + ln

�

T=�(q)

�

�

: (5.7)

The con�guration minimizing the free energy (5.3) sat-

is�es equations

�(q)+T

 

1

1 + a

0

+

p

(1 + a

0

)

2

� u

2

+

1

1� a

0

+

p

(1� a

0

)

2

� u

2

!

=0;

�a(0) + h+

T

2

ln

1 + a

0

+

p

(1 + a

0

)

2

� u

2

1� a

0

+

p

(1� a

0

)

2

� u

2

=0 (5.8)

or

a

0

=

T

�(q)

sinh

�

2T

�1

(a

0

�(0)� h)

�

� tanh

�

T

�1

(a

0

�(0)� h)

�

u

2

=

�

2(1 + a

0

)�

T

�(q)

�

1 + exp

�

2T

�1

(a

0

�(0)� h)

�

�

�

�

T

�(q)

�

1 + exp

�

2T

�1

(a

0

�(0)� h)

�

�

: (5.9)

Theorem 7. There exists the global solution minimizing free energy (5:3) for a rather small h.

For the proof see [14].

Theorem 8. The global solution minimizing free energy (5:3) terminates when the amplitude of incommensurate

con�guration is

u =

�

a

2

1

+ b

2

1

�

1

2

= 1� jâ

0

j;

where â

0

solves the equation

�(q)

4

ln

1 +

p

ja

0

j

1�

p

ja

0

j

(1� ja

0

j)�

�(0)ja

0

j+ jhj

1 +

p

ja

0

j

= 0: (5.10)

For the proof see [14].

Theorem 9. There exists phase transition of the �rst kind from the incommensurate phase into the ferromagnetic

one. For h 6= 0 the existence condition of phase transition is

�(q) <

�

1� â

0

�

�

1 +

p

â

0

��

2

�

1 +

�

1 + â

0

�

ln

�

1 +

p

â

0

�

�

p

â

0

� ln 2

�

+

�

1� â

0

�

ln

�

1� â

0

��

�

�1

2

�

�(0)

�

1 + â

0

�

� 2

^

h

�

;
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where â

0

and

^

h solve equation (5:10). For h = 0 this condition has the form of

�(q) < �(0)=(ln 2� 1=2):

For the proof see [14].

[1] W. Selke, Phys. Rep. 170, 213 (1988).

[2] M. H�gh Jensen, P. Bak, Phys. Rev. B 27, 6853 (1983).

[3] K. Nakanishi, J. Phys. Soc. Jpn. 58, 1296 (1989).

[4] N. S. Gonchar, W. H. Kozyrski, Ukr. Math. J. 43, 1509

(1991).

[5] C. S. O. Yokoi, Phys. Rev. B 43, 8487 (1991).

[6] N. S. Gonchar, W. H. Kozyrski, Ukr. Phys. J. 36, 1857

(1991).

[7] N. S. Gonchar, W. H. Kozyrski, Ukr. Phys. J. 37, 449

(1992).

[8] J. Villain, J. Phys. Chem. Solids 11, 303 (1959).

[9] N. S. Gonchar, W. H. Kozyrski, Preprint ITP-87-5R,

Kiev, 1987.

[10] N. S. Gonchar, W. H. Kozyrski, Preprint ITP-90-51R,

Kiev, 1990.

[11] N. S. Gonchar, H. G. Hajduk, W. H. Kozyrski, Preprint

ITP-95-2U, Kiev, 1995.

[12] N. S. Gonchar, H. G. Hajduk, Preprint ITP-94-31U,

Kiev, 1994.

[13] H. G. Hajduk, Preprint ITP-95-22U, Kiev, 1995.

[14] H. G. Hajduk, Preprint ITP-95-5U, Kiev, 1995.

VIQERPNI� ANAL�Z MAGNETNIH NADSTRUKTUR

V AN�ZOTROPNIH SISTEMAH

M. Gonqar, V. Kozirs~ki�, G. Ga�duk

V�dd�l matematiqnogo model�vann� �nstitutu teoretiqnoÝ f�ziki

�men� M. M. Bogol�bova NAN UkraÝni, UkraÝna, 252143, KiÝv, vul. Metrolog�qna, 14b

Rozvinuto novi� metod anal�tiqnogo rozgl�du modul~ovanih nadstruktur u model~nih magnetnih si-

stemah, bliz~kih do kritiqnost�. Vstanovleno umovi dl� perehodu paramagnet{(ne)sp�vm�rna faza u klas�

an�zotropnih modele� �z�n�a z zovn�xn�m magnetnim polem ta bez n~ogo. Zna�deno �ogo kritiqnogo znaqenn�.

Vivedeno nove predstavlenn� pitomoÝ v�l~noÝ energ�Ý dl� sp�vvim�rnih ta nesp�vvim�rnih konf��urac�� ta

vi�vleno ÝÝ prihovanu simetr��. Dovedeno �snuvann� global~nogo rozv'�zku dl� nesp�vvim�rnoÝ konf��u-

rac�Ý, wo m�n�m�zu v�l~nu energ��. Vstanovlen� umovi zniknenn� global~nogo rozv'�zku. Dovedeno, wo

�snuvann� fazovogo perehodu v�d nesp�vvim�rnoÝ do feromagnetnoÝ fazi zale�it~ v�d obm�nnih �nte�ral�v.
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