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New method is developed for analytical treatment of modulated superstructures in model mag-
netic systems near criticality. We found the conditions for paramagnet—(in)commensurate transition
in the class of anisotropic Ising models with and without an external magnetic field and the critical
value of the latter. We derived a new representation of specific free energy for commensurate and
incommensurate configurations and found its hidden symmetry. The existence of the global solution
is proved for the incommensurate configuration minimizing free energy. We found the condition for
the global solution’s termination. The existence of phase transition from the incommensurate phase
into the ferromagnetic one is proved to depend on exchange integrals.
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I. INTRODUCTION

The importance of a comprehensive theoretical treat-
ment of modulated structures is well known [1]. The dif-
ficulties of studying the phase diagram for such systems
are caused by the need to continue the free energy per lat-
tice site from the commensurate configurations to incom-
mensurate ones and constructing the extremum configu-
rations. The interest to this problem does not diminish
with time [2-7]. Here we deliver a new treatment of mod-
ulated structures in anisotropic Ising system near criti-
cality. We derive new representation for free energy of
both commensurate and incommensurate configurations
and find its hidden symmetry (Sec.IT). In Sec.IIT and
IV we prove the existence of phase transition from the
paramagnetic state to the modulated structures with and
without external magnetic field. In Sec.IV we find the ex-
treme magnetic field for which modulated structures still
exist. In Sec.V we prove the existence of the global so-
lution for the incommensurate configuration minimizing
the free energy and derive the condition for this solution
to terminate. In Sec.V the existence of the phase transi-
tion from the incommensurate phase into the ferromag-
netic one is proved to depend on exchange integrals. This
phase transition is of the first kind.

To be definite we illustrate the method on the ANNNI
model [8] but one can apply it for models with an ar-
bitrary number of interacting neighbors. The mean-field
free energy for three-dimensional ANNNI model is

_ 1
F, = Z Jijmim; + §TZ((1 + m;) In(1 + m;)

i<j i

+(1—my)In(l —my)) + kY m, (1.1)

where m; is an average magnetic moment at i-th site
and takes values on the segment [—1,1]. In the planes
normal to the z-axis the nearest neighbors only interact
ferromagnetically (Jo < 0). Along the axis z the next-
nearest neighbors interact too, moreover the interactions
of the nearest neighbors (J;) and the next-nearest ones
(J2) can be either ferromagnetic or antiferromagnetic.
Just the relations between them are essential. Expres-
sion (1.1) is formal because specific free energy only has
the physical sense. Let us derive the explicit expression
for it.

Denote by Ao the parallelepiped from R?® of sizes
aNy,aN> and aN3, where a is lattice spacing, N1 X Ny X
N3 is the number of sites in Ag. We consider the set of
commensurate configurations on the integer-valued lat-
tice Z3 with the periods Ny, N5 and N3. Denote by {Ax}
the sequence of volumes from R? with N sites from 23
and cover the volume Aj by parallelepipeds congruent
to Ap with their number inside Aj being n¥ and the
one completely covering Ay being nf. If the sequence Ay,

o o]
tends to R® and Ay C Apy1, U Ax = R?, then
Pt

=1

. (TLI2c — n’f) N1N2N3
lim

=0, (1.2)

where |Ag| = Ny is the number of sites in Ay.

The specific free energy for commensurate configura-
tions in A of the periods Ny, Ny, N3 with boundary con-
dition over A takes the form
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F oxr
Tl 2|Ak| Z > (el ms +miz)

=1i€A,;

+ Jo (m§Ty +mi®s) + Jo (miY, +mi¥)) + Jo (mif, + miZ,))

F_'k
+ 2hm + T((1 + my) In(1 +my) + (1 — my) In(1 — mi))) + |A—1|
k

where the contribution of covering volumes n§ — n¥ accounting for the boundary conditions is denoted by FF.

mt,m3®,mY,,m¥, and so on are the average magnetic moments at sites i + 1, 7 — 1 along the corresponding
axes.

The thermodynamical limit of specific free energy for commensurate configurations is equal to
Fj, = lim F— lim —1 Z (m»(Jl (m‘»’m +m?” )
k—oo |[Ag|  k—oo 2|Ay] ! +1 =1

+ JQ ( 7,+2 + ml 2) + JO ( 2+1 + m;)gl) + JO (m;?j_l + m;)il)) + 2hm7,

Ik
+ T (1 ma) In(1+my) + (1= my) In(1—my)) ) + Jim

]' or oxr
Fi = S GZA: (mi(h (g2, +miz,)

+ Jo (m&Ty +mi®y) + Jo (miY +mi¥y) + Jo (miF, +mi?y))

+ 2hm; + T((1 + mi) In(1 + my) + (1 — m;) In(1 — mi))).

Actually, the quasi-one-dimensional case is of interest, i.e., the configurations with the fixed average magnetic
moment at the sites of planes parallel to the plane YOZ. The latter is valid for Jy < 0 and a sufficiently low
temperature T'. In that case specific free energy with m7Y, = my¥, =m, = m??, = m, takes the form of

1
Fy, = 2—]\[1 (m,(]l (mi+1 + m,;l) + Js (mi+2 + mi,Q) + 4ng,) (].3)
ieh

+ 2hm; + T((1 +m) In(1 + m;) + (1 —my) In(1 — mi))),

where Al is a piece of line with Ny sites.

II. UNDERLYING SYMMETRY OF FREE ENERGY

Here we find the hidden one-parameter symmetry group of the free energy per lattice site in the space of commen-
surate and incommensurate configurations. At first we construct the new representation for specific free energy (1.3)
of commensurate configurations and extend it onto the set of incommensurate ones. To do this we introduce the set
of vectors X = {x;},7°__, where i € Z; and z; takes values in the set of real numbers, and the scalar product

i=—00"
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1
+ (#,€) = - >z (2.2)
00 ) 14
z 6_6‘”33(»1):15(2) i=1

i=—00

T1,22) = lim
{1, 22) €0 +oo holds, where x; is i-th component of the vector x.

—elil
i:X—:oo e For the proof see [10].
If g(z) is some continuous function of = € [a, b], then
with z € X, if || = ||>= (z,2) < 4+00. The vector is pe-

riodic of the period Ny if z; = x; for Vi € 2. Let :
N; be such arll) integer that ]l\}qil [Nl/lQ], where [] 1is the 9(x) = nhjgo Fn(2), (23)
integral part of ¢, and ¢ = m/N; is irreducible quotient.
Next we introduce where P, (z) is the sequence of polynomials approximat-
ing g(z) on [a,b] uniformly. We consider the function
e={ai}i>2, a; = 1 for Vi,
g(z)=1+2z)ln(14+2z)+ (1 —2)In(l —z)
e1(q) = {cosi2mq} 2 ., e2(q) = {sini2mq}; 2 . and its derivatives. If the configuration z = {x;}7°°__ is

Vectors such that

{e’el(q)a"'761(Nq)762(q)7"'762(Nq)} |x2| b 0T
then g(z) is defined correctly.
belong to the set X, form the orthogonal system and are Using representation (4.1) for any Np-periodic config-
periodic of the period N;. Any N;-periodic configuration  uration we calculate the averages
x can be expressed as

s m
[s,m = <H €1 ('qu H ]lq >
k=1 =1

(ae1(lq) + biez(lq)) + age. (2.1)

M-

=1

for any power n of this configuration. For ¢ = m/N; the
Lemma 1. For configuration (2.1) the formula averages I ,, are expressed as [10]

0, m=2M+1, M=0,12---,

[ (=nM2s2m 37 )3 R M Y G DL (2.4)
§,m r=0,%+1,, [NL] tkr—ﬂ:’Lkr ’
=+
m = 2M,
k is the number of negative 7;. For irrational ¢ the averages I; ,, are expressed by the formula
0, m=2M+1, M=0,1,2---,

I =4 (FD)M2757™ 32600ttt 0 (—1)F, M= 2M. (2.5)
tk!: :l:ik/
T =%j

Due to Lemma 1 the specific free energy (1 3) has the form
Fy = (e, f(m)) /2, where f(m) = {f(my)} £ . with

f(m;) =my (J1 (Mig1 +mi—1) + Jo(miga + mi—2) + 4Jom; + Qh)

+ T((l +mi) In(1 +my) + (1 —m;) In(1 — mi)).
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For
N
m = Z aer(lg) + biex(lq)) + aoe
=1

we have

Fh——%<m Am)—l—h(e m)-}—;T(C g( ) ___< Z<(1+6l[N1+1]) al (1_6l7[¥]) b12><1>(l(I)

N
+ ag<1>(0)> + hag + %T <e,g (Z(alel(lq) + bea(lq)) + a06> > , (2.6)

=1
where A is the operator defined as
(Am); = — (Ji(mip1 + mi—1) + J2(mig2 + mi—2) + 4Jom;),

and the function g is

n—oo

2 4 o
g(m) = (14+m)In(14+m)+ (1 —=m)In(l —m) = lim 2 (%+%+---+m7>
provided that

N
Z (lai| + ba]) + |ao| < 1.
=1

For the ANNNI model
®(q) = —2(J1 cos2mq + J; cos dmq + 2.Jp)

and for the case when all the neighbors interact

+oo
®(q) = -2 (Z J; cos 2miq + 2J0> .

i=1

The free energy (2.6) is defined on the set of commensurate configuratons. The following Lemma defines specific free
energy on the set of incommensurate configurations.

Lemma 2. The thermodynamical limit of the free energy exists for irrational q¢ on the set of incommensurate
configurations

+oo

m = Z(alel(lq) + bleg(lq)) + age
=1

provided that

+o0

Z(|al| + |bl|) + Jag| < 1.

=1

For the proof see [10].
As a result free energy of configuration (2.1) with irrational ¢ and arbitrary N is

11 1 al
F = -3 (5 > (a7 +b7)@(lg) + ag<1>(0)> +hao + 5T <e,g (Z(alel(lq) + brea(lq)) + aoe> > : (2.7)
=1
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Let us find the symmetry group of free energy (2.6) for commensurate configurations of the period N;. To do this

we apply the previous representation of free energy (1.3). Due to Ni-periodicity of m = {m;}/>°

N1
Z(mi(J1 (Mit1 +mi—1) + Jo (Migo + mi_s) + 4Jom;)

i=1

1

Fp=—
h=9N,

Ny
1
+ 2hm; + Tg(mi)) =N, Z (mi+s (1 (Migsgr +Migs—1)
i1

+ Jo (mi+s+2 + mi+s,2) + 4J0mi+s) + thi+s + Tg(mi+s)) = F,f (28)

Exploiting this invariance in the new representation we convert expression (2.8) into

N N
Fy = —% <Z(azei(lq) +bie3(lg)) + aoe, Y (wei(lq) + bies(lg)) ®(lg) + ao¢(0)6> (2.9)

=1 =1

N N
+h <e, Z(alei(lq) + bies(lq)) + aoe> + %T <e,g (Z (aef(lq) + bies(lg)) + aoe> > :

=1 1=1
Using explicitly
ef(lq) = e1(lg)cos2nmlsq — ex(lq) sin 2wlsgq,
es(lq) = ei(lg)sin2rnlsq + e2(lq) cos2mlsq

in (2.9) we have

N N
Fi=F =g <Z(aiei(lq) + bje3(lg)) + aoe, 3 (ajel (lq) + bies(lq)) ®(lg) + ao¢(o>e> (2.10)

=1 =1
N 1 N
th < S (el lg) + bes () + > oir < g (Z(aiei(lq) + bes(l)) + ) > ,
=1 =1

where

a; = a; cos 2mlsq + by sin 27lsq, by = —ay sin 27lsq + by cos 27lsq, (2.11)

qg=m/Ny, s=0,1,---, Ny.

So for rational ¢ free energy (2.6) is invariant under discrete transformation group (2.11). Here we describe the
polynomial invariants of discrete rotation group. Consider averages

N1

1
(a1 cos 2msq + by sin 27r.9q)l = Pi(ay,by).

Ny

s=1

P(ay,by) is homogeneous polynomial invariant. Really

N1 Nl
1
Py(a}, b)) = A E (a) cos2msq + b} sin 271sq) = A E (a1 cos 2 (s1 + s)q + by sin 27 (s1 + s)q)'
L= L=t
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Ny
=N (a1 cos 2wsq + by sin 27rsq)l = P(ay,b1).
1 s=1

After calculating the average P;(a1,b1) we have [11]

N;
1
P(ay, b)) = A Z (a) cos 2msq + b sin 2sq)’ (2.12)
s=1
e 2
Ni—2m
:2—2 a1+b2 ch(s” 2k],|r| Ny Z (=1)™ C‘ [N, @ l e me

m=0

Now we find the symmetry of free energy (2.7) for irrational gq. At first we derive new representation for the free
energy. The polynomial coefficients

N

I,(a1,b1, - ,an,bn,ag) = <e, (Z(alel(lq) + biea(lg)) + 0,0€> >

=1

are given by (2.5). The direct test gives

s m 2m s m
<He1(ikq [Ie qu> W/d¢Hcosik¢Hsinjz¢>,
k=1 =1 0 k=1 =1

from where

N p
1
Ip(al,bl,...’aN,bN,aO):%/ (Z(alcosl¢+blsinl¢)+a0> do.
o \=1

I, is 2m-periodic function of ¢, therefore

Ip(ay, by, -+ aly, by, a0) = Ip(ai,bi, -+, an, by, ao),
where
a; = a; cos lgo + by sin Ly, by = —aysinlgg + by coslay, (2.13)
¢o € [0,27].
Really

N p 2m N p
/ <Z aycosl(p + ¢o) + bysini(p + ¢0))+a0> d¢ = x / <Z(al coslo + by sinle) + a0> do.
=1

2T
o \i=1

Therefore I, is invariant with respect to transformations (2.13) of group G operating in a 2N-dimensional space. Due
to the arbitrariness of ¢ and convergence of free energy series for small ¢; and b; the free energy (2.7) is invariant of
group G.
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III. NEAR CRITICAL MODULATED
STRUCTURES (H = 0)

The existence problem for the extremum configura-
tions is non-trivial. Here we study it for small deviations
from the critical temperature. We prove the equivalence
of the existence problem for a nonzero solution to equa-
tions for the configuration minimizing free energy and
that for the corresponding branching equations. We de-
rive the branching equations and prove the existence the-
orem for a nonzero solution. We investigate the model
with an external magnetic field and without it. The nec-
essary conditions of free energy minimum are equations

~a®(lg) (1496, xi0y) + T (e,9'(@)es 1g)) = 0,

~bi2(lq) (1 =8, ) + T (e, g @)ex(l)) =0, (3.1)

—ag®(0) +h +T (e, ¢'(x)) /2=0, I=1N,
for rational ¢ and

—a;®(lq) + T (e, 9'(x)e1 (Ig)) = 0,
—bi®(lq) + T (e, g'(x)ex2(lq)) = 0,

—ao®(0) + h+ T (e, g'(x)) /2 = 0.

(3.2)

for irrational ¢. Since

1+
n
1—2

$3 $5 1.2n+1
=2+ —4+—+---+ +-e ],

g'(z) =1

3 5 2n +1

one may denote

g'(x) = 2z + 1 (z),

xz € (—1,1).

Lemma 3. For x being a nontrivial configuration from
Hilbert space of configurations, satisfying (3.1) or (3.2)
for h =0, and q satisfying inequality

®(q) > @(lg),

1=0,2,3,4,--,N—1,N, ®(q) >0

critical temperature Ty does not exceed ®(q), i.e. Top <
®(q).

For the proof see [12].

Now consider the ANNNI model for A = 0. In that
case the critical temperature is equal to

To = sup ®(q)
0<¢<1

= sup(—2J; cos 2wq — 2.J5 cos dmq — 4.Jy) > 0.
q

One can express Ty in terms of Ji, Ja, Jo. From ®'(q) =0
it follows that

1) sin2mq = 0; 2) Jy+4Jycos2mq = 0.

To be definite we assume J; < 0, Jo > 0. Then in the
first case ®"(q) < 0, if Jo < —J; /4. Since ¢ = 0, then the
branching starts from the ferromagnetic phase for Ji, J>
satisfying

Ty = —2J1 — 2Jy — 4.Jp.
In the second case

cos 2mqy = —J1/4J2, |J1/4J2| <1, (33)

®"(q0) = 8J> (J7/16J5 — 1) <0,

To = J2 4Ty + 25 — 4.J.

Let us consider the range of parameters for which T >
T,. These are J; and J, satisfying the inequality r> >
4(—2r — 4) with r = J;/.Jo. The latter inequality holds
for all real r except for r = —4. But r < 0 and to satisfy
(3.3) we suppose

— Jg/Jl > 0.25. (34)

Thus, the modulated structures can occur only when in-
equality (3.4) holds.

Now we prove the small branching theorems for the
solutions to equations (3.1), (3.2) with h = 0. Let ¢ be
irrational, then equations (3.2) transform into

ar = (1-)t72(22°/3 + ¢(z), e1(q)) ,

b= (1—12) 172 (22%/3 + ¢(x), e2(q))
_ (=% 8 o

T 3(g) - (1-2)®(q) (22° /3 + o(x),e1(lq)), (3.5)
_ (1 =1)%(g) p o

= d(lg) — (1 —2)®(q) (227 /3 + ¢(2), e2(q)) ,

Qo (1 _tQ)qJ(q)

= 1'3 Z), €
= 30 — A - Py e
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with

x5 1'2n+1
—9(2 L ...
o() <5+ tomr1 >

T=To(1-1%), To=2e(q).

We assume solutions of equations (3.5) to be expressed

as

a; =tay, by = tEl, a; = t2(_ll, b = t2l_)l, ag = t2C_L0.

Then the equations for configurations minimizing free

energy become

a; = F1(1 1 —t / ) cos pd o,
0

b = F2 (w 1 —t / ) sin ¢dg, (3.6)
0

27
A
- 4 / 01(-) cos pdd,

0

27
b= 7 w) = 5tz [ sin oo, (37)

with

w = {t,Z,C_Ll,El}, z = {dag} = ({62752}7"'7{61\[751\[}:&0) )

. (1-1)%(g)
=S —a-_ee 2
(1-2)2(g)

A= 3@ -1 -P)3)

N
w1(:) =1 (t2 Z(dl coslp + by sinlg) + t2ag + t(a; cos ¢ + by sin ¢)> .

=2

To prove small branching theorem for nonlinear equa-
tions (3.5), let us proceed by steps. At first we prove the
existence of a unique nontrivial solution to system (3.7).

Let us introduce the norm
2] = max ({larl ]} laol)
and the radius A ball centered at the point

= ({dgvl;g} {aN’b } )
in the 2N — 1-dimensional space of vectors z, where

2m
A -
aj = ﬁ / @1 (t(a1 cos ¢ + by sin ¢)) cos gpdg,

0

2T

B A B
b = 2ml52 /cpl (t(@1 cos ¢ + by sin ¢)) sin pdg,

0
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27T
A - .
b = oty [ o (torcont by sin)

0

Let |{a,b}| < A and max{|a|,|b1|} < A with A be de-
termined later. In operator form (3.7) is

z = F(w), (3.8)

with the nonlinear operator F' given by the r.h.s. of (3.7).

Theorem 1. If max{|a|,|b1|} < A, then there ex-
ists a > 0 such that 0 < t < a and the system (3.8) is
uniquely solvable by continuously differentiable function
of t,d@1,by in their ranges of values.

For the proof see [10]. The similar theorem is valid for
rational q.

Theorem 2. For all irrational q that guarantee the
validity of

min|®(lg) - (q)| =6 >0
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there is ay > 0 such that a nonzero solution to system
(3.5) exists for 0 < t < a1 if h = 0. The action of
group G (2.13) on this solution gives different solutions
of the system (3.5) that are continuously differentiable
functions of t.

For the proof see [10].

Theorem 3. For all rational q there is of > 0 such
that there exists nonzero solution of system (3.1) for
0 <t < o if h =0. The action of group (2.11) on
this solution gives different solutions to equations (3.1)
that are continuously differentiable functions of t.

For the proof see [11].

IV. NEAR CRITICAL MODULATED
STRUCTURES (H #0)

Here we consider the case h # 0 and display the
phase transition from the paramagnetic state to the
spatially inhomogeneous commensurate configuration or
the incommensurate one below the critical magnetic
field. In the external magnetic field systems (3.1) and
(3.2) have a nonzero solution in the set of vectors

{(a1,b1),---,(an,bn), a0} such that
N
> (lal + [br]) +Jao| < 1.
=1

The solution has the form {(0,0),---,
solving the equation

(0, 0), (_10} with C_L()

—ao®(0) + Tg'(ap)/2+ h = 0. (4.1)
We assume that

N
T = T + age, Z aer(lg) + biex(lq)) + age,
=1

+00 (k) a
gl(;zj) = Z '?k _( 10))' g1 — g'(do)e + g”(do)f + 902(5:)’
k=1 ’
+00 (k) ao )
g'(ace) = g'(ao)e, ze=z, (1) 5 !(Jk _( 1))! k

Then system (3.1) becomes

ar(T/ (1~ a3) = 2(1)) (1+6,x1)) + T (s pa(@)er (1)) = 0,
28]

b (7/ (1=a3) = 0(0)) (1= 8, jvups) ) + T (e p2(@)ea(l0)) =0,

ay (T/ (1 - ag

and system (3.2) becomes

a; (T/(1—ag) — ®(lg)) + T (e, 2(T)er (Ig)) =0,
b (T/(1—ag) — ®(lg)) + T (e, p2(T)ea(lq)) =0, (4.3)
2a) (T/(1 —ag) — ®(0)) + T (e, p2()) = 0.

The spatially inhomogeneous solution to systems (3.1),
(3.2) exists if systems (4.2), (4.3) have a nonzero solution.
The first degeneration of the spectrum of the linearized
part of the nonlinear operator (4.2) or (4.3) occurs when

—®(g)

24+ h (4.4)

~
QQ\
—~ QI
I §w
=)
SN
gl

If there exists a solution to system (4.4), then zero solu-

) = (0)) + T (e, oo

—_

z)=0, I=1N, (4.2)

tion for systems (4.2), (4.3) bifurcates. It means a tran-
sition from the paramagnetic phase to the modulated
structure. As a result system (4.4) gives single equiva-
lent equation

T =%(q) -
o(q)h?
LT (1-T/8() * g (VI-T/3(@) ))

~. (45)
(<1>(0) -

From (4.5) it follows Lemma 4. The critical magnetic
field for phase transition from the paramagnetic state to
the modulated structure is equal to |®(0)].

For the proof see [12].

Having in mind that mean-field theory critical expo-
nent § equals 1/2 we suppose the deviation from the
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critical temperature to be standard. Therefore ar (®(q) — ®(lq) — X*) + T (e, 2(2)e1(lg)) = 0,

N(T,h) = ®(q) — T/ (1 —a3), b (B(q) — @(lg) — X°) + T (e, 02(T)e2(lq)) =0,  (4.7)
where @ solves equation (4.1). If To(h) solves equation 20y (2(q) = 2(0) = 3%) + T (6, ¢2(2)) = 0.

(4.5), then \*(Ty(h), h) = 0.
We seek the solution of systems (4.6), (4.7) in the form

In terms of the new variables system (4.3) for the ir- of

rational ¢ takes the form of
ap = Ay, by =Aby, a; = X2a;, b= X\b, a) =\a).

—)\2a1 + T <6, 2(@)61( )) = 0,
v it (4.6)

—A2by + T (€, pa2(Z)e2(q)) Then we rewrite (4.6), (4.7) as

+0 (k) @0) by .
i = FO@) = 53 2Bt () e g),

X 2 (k1)
i T g®@E) ., )
m=ﬂszpgaf&v (0" eala), (4.5
o T = 99 (@) jor /o gk
= F ) = S e T a (e — 8(0) g ek (0.0 Mea)),
. e k) (g 1
b= K ) ’ S Ikt (7 eali),

ar&@m>2pW+¢ Zg e (), (4.9)

where

N
() = (AZ(&,el(lq) + 5[62(lq)) + Aage + are(q) + 5192(‘1)> :
=2

Let us consider the norm

21 = mas {lal, b, g}

and the radius A ball centered at the point
Zo = ({6’(2)7 Bg}a T {d?\h B(])\f}a dOO)

in the set of vectors Z, where

~0 g k—1
ay = 22 + & lq Z e,(---) el(ZQ)>a
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(k)
_(I)()Zg (ao )/\k 3< (___)k—

"es(lg)),

50 T +o0
"X+ 3(lg) = (k- 1)!

~'0 T

° 2N+ 2(0) — 8(q)) = (k—1)!

(---) = (are1(q) + brea(q)).

Let F (w) be a nonlinear operator given by the right part
of system (4.9), then this system turns to be

Z=F (w). (4.10)
Theorem 4. Let
min |#(1q) -

q)(q)|:6>0’ l:0a273747"'7N—1,N7

and Ao > 0 satisfies the inequality

R mETr .

—1AX+24)"7 <1,

then for all X € [0, \o] and a,, by, h such that

ai +b < A%, || < |9(0)],
there exist the critical temperature To(h) and an inter-
val (To(h)—X2,To(h)) on which the solution of nonlinear
equations (4.10) exists being a continuously differentiable
function of X € [0, Xo] and ay, by for a2 + b < A%

For the proof see [12].A similar theorem is valid for the
rational q.
Remark. Continuous differentiability with respect to
the variables A and aq,b; results from continuous dif-
ferentiability of the successive approximations and their
uniform convergence to the solution.

Theorem 5. For all irrational q that guarantee the
validity of

min [®(lg) — ®(q)] =6 >0

there is such Ay > 0, that system (4.3) is solvable for
0< A< A, b <|2(0)]

The action of group G (2.13) on this solution gives dif-
ferent solutions of system (4.3) being continuously differ-

— g® (50)/\1;73 (e, (-

_)k71> ,

entiable functions of \.

For the proof see [12].

Theorem 6. For those rational q, for which Ny # 3,
there is Ag > 0 such that a monzero solution to system
(4.2) exists for

0< A< N, || <|2(0)]
The action of group (2.11) on this solution gives different
solutions to system (4.2) being continuously differentiable
functions of A.

For the proof see [13].

V. GLOBAL INCOMMENSURATE EXTREMUM

For N =1 conditions of Theorems 4 and 5 hold. In this
case one can construct not only a solution near the crit-
ical temperature but also the global solution. For N =1
configuration (2.1) takes the form of

z = are1(q) + biez(q) + age. (5.1)
The specific free energy for this configuration is
1/1,, 9
Fy = 313 (af +b7) ®(q) + a3®(0)
1
+ hao + §T (€,9(x)). (5.2)

Having calculated the average

2m
1
(€9() = - [ glucosp+a)dy
0
1
with u = (af + b?)* we have [14]

—u?®(q) + a%@(O)) + hag

+§<2—\/(1+a0)2—u2—\/(1—a0)2—u2—21n2

+(1+ao)ln(1+ao+m)
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+(1 —ag)In (1 —ap+ /(1 —ag)? — u? )) (5.3) From here we obtain the global solution

w’ =1-(2T/3(q) —1)°, (5.6)
For h = 0 the free energy is
F = _1u2q)(q) +T (1 —V1—-u2+ terminating at u? = 1, i.e. the termination temperature
4 is equal to ®(q)/2. Taking into account (5.6) we write
I (1 N m) I 2) ‘ (5.4) the free energy of the incommensurate phase (5.4) as
F=T(1-T/%(g) +1n(T/3(q))). :
The equation for the configuration minimizing the free [®(@) + n( / (Q)) (5:7)
energy (5.4) is
1 T The configuration minimizing the free energy (5.3) sat-
- §<I>(q) _ = (5.5) . f i
1+vV1—uw? isfies equations
1 1
O(q)+T + =
1+ap++/(1+ap)?—u> 1—ag++/(1—ag)®—u?

T 1 Ja Y
~a(0) +h+ 5 In a0t VL +ao) —u

1—ap+ /(1 —ap)? —u2 (5:8)
ag = % sinh (27" (ap®(0) — h)) — tanh (T~ ' (ag®(0) — h))
2 _ T —1
u (2(1 o)~ g (1 + exp (27" (ap®(0) — h))))
X % (1 + exp (2T (ao®(0) — h))> (5.9)

Theorem 7. There exists the global solution minimizing free energy (5.3) for a rather small h.

For the proof see [14].

Theorem 8. The global solution minimizing free energy (5.3) terminates when the amplitude of incommensurate
configuration is

w=(a? +83)% =1 - |aol,

where ag solves the equation

Vol 2o ] _

(5.10)

For the proof see [14].
Theorem 9. There exists phase transition of the first kind from the incommensurate phase into the ferromagnetic
one. For h # 0 the existence condition of phase transition is

D(q) < (1= a0 — (1+v/aw) (2(1+ (1+ o) In(1+v/ao) = V/ao — In2)
+ (1= ao)In(1 - ao)))712(<1>(0)(1 + o) — 2h),
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where ay and h solve equation (5.10). For h = 0 this condition has the form of

B(q) < ®(0)/(In2 — 1/2).

For the proof see [14].
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BUYEPIIHUI AHAJII3 MATHETHUX HAOCTPYKTYP
B AHISBOTPOITHUX CUCTEMAX

M. lonuap, B. Kosupcekuii, I'. Taitnyk
Biddia mamemamuurozo modearosarhsi Inemumymy meopemuunol Gizuky
imeni M. M. Bozoawbosa HAH Yxpainu, Yxpaina, 252148, Kuis, eya. Memponaoziuna, 146

PosBuryTO HOBHII MeTON AHAITHYHOrO PO3IVISLY MOLYJ/ILOBAHUX HAACTPYKTYD Y MOIE/THHUX MArHeTHHX CH-

creMax, GJIM3BKUX 0 KPUTHYHOCTL. BeTaHOBIEHO YMOBH 1yTa epexomy napamarner—(me)cmiBmipra dasa y xaaci

aHI30TPOMHUX Momesteil [3iHra 3 30BHINIHIM MAarHETHUM TIOJIEM Ta 0€3 HhOT0. HAIEHO HOT0 KPUTHYHOTO 3HAYECHHSI.

BuBeneno HOBe IpenCTAaBIEHHS MTUTOMOI BLIbHOI eHepril /1/1s CIiBBUMIPDHUX Ta HECHiBBUMIPpHUX KOH(DIrypamiii Ta

BUSABJIEHO 1I MpuUxoBaHy cuMerpioo. [JoBemeHo iCHyBaHHSA TJI006aIbHOrO PO3B’A3KY JIsT HECHIBBUMIPHOI KOHMDIry-

pamii, mo wmixiMi3ye BibHY eHepriio. BcramoBseHi yMOBH 3HHKHEHHS TVIODAJIBHOTO po3B’s3ky. [loBemeHo, 1o

icHyBanHs ($a30BOTO MEPEXOLY Bil HeCHiBBUMIpHOL 10 depomarHeTHOl dha3n 3aJI€XKNUTH Bi OOMIHHAX IHTErDaJIiB.
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