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Gibbs states and dynamics are described for systems of charged particles interacting via effective
electromagnetic field, characterized by a (singular) vector potential with zero electrostatic compo-
nent(magnetic interaction). The mean—field type limit for the Gibbs (grand canonical) correlation
functions for the 2-d Chern-Simons (CS) system (the vector potential of the n-particle system is a
skew derivative of the Coulomb potential energy of the n-particle system) is performed. It is found
that the limit is not unique. For 1-d quantum system of particles with Maxwell-Boltzmann statistics
and analog of CS interaction ( the vector potential for the n-particle system is the derivative of the
1-d Coulomb potential energy of the system) the Gibbs reduced density matrices are found in the
thermodynamic limit. It is shown that in 1-d systems singular interactions may produce anyonic

statistics.
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I. INTRODUCTION

We consider a system of charged d-dimensional parti-
cles of r species interacting via an effective electromag-
netic field, which in the case of n particles is characterized
by the vector potential a;(X,) = {a}(X,)}, v =1,...,d,

depending on coordinates X, = (z1,...,z,) € R of
the particles, with zero electrostatic component. It is
appropriate to call the interaction magnetic. The clas-
sical n particle system is described by the Hamiltonian
H(Py, Xy), given by

H(P,, X,)

Z Ipj —

n|,

where P, = (p1,...,pn) € R™ are momenta, of particles,
|p| denotes the Euclidean norm of the vector p.

Za i — Tk)ejer, (1.1)

where a”(z) € C*(RE),RS = RI\0 and aC5e(RY) =
Cs°(RY), e, have the meaning of charges, e, € R
and a is the operator of multiplication by the vector—
valued function a(x)(pair vector magnetic potential).
The last condition on a(x) means that its singularity
is not strong. If the components of this function are
integrable(nonintegrable) then the interaction is short-
range(long-range). The Hamiltonian H (P,, X,,) is an un-
bound function on R x R2? if the function a(x) is sin-

gular, Ry? = R\ | (z; = zy).
k<j

For quantum n particles with MB(Maxwell-
Boltzmann) statistics the corresponding Hamiltonian
H,, is an operator defined on a dense set Cg°(R7%) in

L2 (]Rnd)

1 2
5; ax] — a;(Xn))"

In the case of the smooth functions a; the correspond-
ing quantum Hamiltonian H,, has the domain of the nd-
dimensional Laplacian. The simplest cases of the singu-
lar (smooth) interaction are described by the condition
of quasiintegrability (integrability) for n-particle system.

() = 5U(K),
UXn) = Y erejp(z; — i), (1.2)
1<k<j<n

X, e Ri4(X, € R"),

or a(w)zag(f), r € RO, (z € RY) ie. the pair vector
magnetic potential a(x) is a gradient of pair (scalar) mag-
netic potential ¢(x) (a smooth function), which can be
a multivalued function for the singular interaction such
that exp{i¢(z)} is a bona-fide function. It is not difficult
to check that

H,, = exp{il, }HO exp{—il,}, (1.3)
where U, is the operator of multiplication by the func-
tion U(X,,), HY is the minus one-half nd-dimensional
Laplacian, restricted to C5°(R2?). This equality holds
for a smooth interaction if the dots over H,,, H? are re-
moved (the interaction is gauged out). There exists the
selfadjoint extension H,, of H,, given by the equality

exp{—tH,} = exp{iU,} exp{—tH’} exp{—iU,}, (1.4)
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where exp{—tH?} is the free diffusion semigroup whose
infinitesimal generator coincides with the minus one-half
nd-dimensional Laplacian. Bose (Fermi) statistics corre-
spond to the case of symmetrical(antisymmetrical) wave
functions. There are other selfadjoit extensions which in-
troduce interaction, for example, through J-pair poten-
tial into H? in the right side of (1.4), but we’ll not con-
sider them in what follows.

Our motivation to study the systems with magnetic
(singular) interaction, satisfying (1.2), is explained by
the fact, that among them there is the remarkable 2-
d system with CS(Chern—Simons) magnetic interaction,
corresponding to case [1]

U(Xn) = aUCS(Xn) =« Z ¢C’S(xj — xk),
1<k<j<n

2

¢cs(x) = arctan x_l z=(z',2?) =2 +ix® € C,
x

Z ejerdc(z; — zr), ¢c(x) =1In|z,

1<k<j<n

where €”7 is the skew symmetrical tensor and the sum-
mation is meant over the repeating indices. This system
is a result of the reduction, that eliminates the electro-
magnetic potential from the equation of motion, of the
3-d CS (pure topological) electrodynamics, in which the
Lagrangian contains a topological CS term instead of
the Maxwellian term. It is evident that for it the con-
dition of quasiintegrability (1.2) holds. It turns out that
the operator exp{iUn}, which is the operator of mul-
tiplication by the function exp{iaUcs(X,)}, has the
remarkable property: it changes the statistics. That is,
exp{iaq&os(x)}:(ﬁ)a:eg’(x) and the function

Vo (Xn, ()n) = expliaUcs(Xy) }1 (Xn, (€)n)

= [T ol 2™ o (X (@) (15)
1<k<j<n
satisfies the anyonic statistics(e; are charges)
Yo (T1, €150 Thy k3 o3 Ty €55 vy Ty €9) = (1.6)

= 6(_1)a6j6szy(xlael; wy Ljy €55 eey Ty €k -'-axnaen)a

if 1, is symmetrical(e=+) or antisymmetrical (e=-). In
two dimensions the change of statistics is given by the
function C-valued function €p(z),z € C. The analog
of this function exists in one dimension, namely, e(z)
==L, if 2 > 0(z < 0). So, the anyonic statis-
tics exists in one dimension also, since (1.6) holds if the
function €(z) is put into (1.5) instead of the function
eo(x) and all variables z; are one-dimensional. Equal-
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ity sinarccose(xz)= V1—¢€> = 0, yields the identity
€*(z)= exp{iaarccose(x)}=exp{iap.(z)}. It is clear
that the operator of differentiation commutes with
the operator of multiplication by the function e(x)
on C§°(R\0). From this it follows that m-dinensional
Laplacian commute with the operator exp{iaﬁ*n} on
C2°(R?), where U,, is the operator of multiplication by
U Xn)= > w«(x; — x1). As a result, the opera-
1<k<j<n

tor Hiz):exp{iaﬁ*n}Hg exp{—ial,,} is the selfadjoint
extension of H? from C§°(R}) with an obvious domain.
This Hamiltonian, restricted to the subspaces of sym-
metrical or antisymmetrical functions, describes anyons
in one dimension. The derivative of @, (z) does not ex-
ist and there are no corresponding collective electromag-
netic potentials a;(X,).

1-d anyons for a=1 and one sort of particles with
the unit charge have predecessors, namely, impenetra-
ble bosons, introduced by Girardau in 1961 [2]. The ab-
sence of a generalized condensation for 1-d impenetra-
ble bosons was proved by Schultz [3](the grand partition
function for the impenetrable bosons coincides with the
grand partition function of free fermions).

The case of 2-d anyons is very interesting for physi-
cists who expect that anyonic condensation (anyons can
create clusters that are either bosons or fermions), if it
exists, looks like Bose condensation and can be used
as an explanation of a high temperature superconduc-
tivity [4-5]. Up till now only lattice approximation for
anyons were treated rigorously in the framework of Lat-
tice Electrodynamics(Maxwellian term is not neglected,
so, roughly speaking, the anyons interact via electrostatic
forces) [6]).

Quantum system with CS magnetic interaction and
MB statistics loses properties, connected with phase
transitions, since the grand partition function for it co-
incides with the grand partition function of the free par-
ticle systems. But if one is interested in the behavior of
reduced density matrices for quantum systems with the
Bose or Fermi statistics in some scaling limit, for which
the role of the statistics in qoestion is negligible, then it
is desirable to find the limit of reduced density matrices
for the quantum systems with MB statistics and, even,
that of correlation functions for the classical systems.

There is a remarkable example of 1-d system with
CS-type magnetic interaction, corresponding to the 1-
d Coulomb magnetic interaction, for which ¢(z) = A|z|.
The 1-d anyons, interacting through this pair magnetic
potential can be considered as an analog of the 2-d free
anyons. It is interesting that such a system can be de-
rived in the same way from the 2-d quasi-topological
Electrodynamics as the CS particle system from the 3-d
Electrodynamics (the term Apd; Ay is considered in the
Lagrangian instead of the Maxwellian term).

So, in order to describe anyonic systems in two dimen-
sions and their analogs in one dimension from different
angles we have to consider at first the problems, arising
from considering the classical and quantum systems with
different magnetic interactions and usual statistics in the
thermodynamic limit.
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It turns out that the problem of the thermodynamic
limit for classical dynamics, for Gibbs(grand canonical)
correlation functions and Gibbs reduced density matri-
ces for systems with magnetic long-range interactions is
nontrivial even for the simplest cases((1.2), (1.4) hold).
We demonstrate that the Gibbs correlation functions in
the mean—field type limit for classical system with the
CS magnetic interaction and the reduced density matri-
ces for 1-d system with Coulomb pair magnetic poten-
tial and MB statistics have unexpected properties: in the
first case the limit is not unique and in the second on the
diagonal the functions coincide with the reduced density
matrices of free particle systems and off the diagonal they
are non-zero if the differences of special variables sit on
the lattice. We came to the conclusion that long-range
interaction may be unremovable by the gauge transfor-
mation in the thermodynamic limit.

II. CLASSICAL DYNAMICS

The equation of motion for integrable classical n-
particle system (a; satisfies the condition (1.2) with a
smooth function U) is given by [7]

a' nyyYn _
#j(t) = JH(;; o) "(pj — aj(Xn)),
8 n»y n
i) = Gl

=m S (e — an(X)], 9jai(X,)).

k=1

where the dot over variables in the lefthandside of the

equation means time derivative, the partial derivative in

z; we often denote by 9; and (.,.) is the scalar product
of the d-dimensional Euclidean space.

Now, let the condition of integrability hold

djar(Xyn) = 0ka;(X,), aj € C(R™). (2.1)

It is not difficult to check that the generalized velocities

v; = p; — a;j(X,,) commute with respect to the Poisson
bracket

_ 3y Qs Ouwy  Dv; v
fopod =3[0 50 = (5.0 50

=1
= 8jak(Xn) - 8ka]'(Xn) =0
From {v3, v} = 2v;{v;, v} = 0it follows that {H,v;} =

0, i.e. the functions v; are integrals of motion. From the
first equation of motion it follows that

z;(t) = z; + m™ ' t(p; — a;(X,))

where (p;, ;) are initial momenta and coordinates. Sub-
stituting the equation for z; and (2.1) into the equation
for momenta we obtain

Bi(t) = Y @k(8)Bka; (Xn) = a;(Xn).
k=1

Hence the solution of the m-particle equation of motion
is given by

zj(t) = zj + m™ " t(p; — a;(Xy)),

pi(t) = pj + a;(Xn(t)) — a;(Xn).

(2.2)

The equation of motion for the infinite particle system
is written as follows

aj(t) =m~ (p;(t) — a;(X(t)),5 > 0,

i) =m™ Y ([pe(t) — ar(X ()]0;ax (X (1)),

k>0

(2.3)

where P = (p1,.Pny-)y X = (T1,eey Ty oen),
a;j(X)=Y" e;jel(8¢)(x; —x1). Let R? be the space R x
>0

]R?od, where Ry is the space of locally finite configu-

rations from the infinite Cartesian product of R?. It is
not difficult to see that the Hamiltonian diverges on the
above space, but the equation of motion makes sense if
a;(X) are finite for all j. Let us assume that ¢ is strictly
short-range. Then the infinite sum, defining a;(X) is con-
vergent, for the initial sequence X from ]RJ%Od. If for ev-
ery moment the right side of the equation of motion for
momenta is well defined (a collapse is excluded) then
the equality holds p;(t) = a;(X(¢)), so the sequence
of generalized velocities are integrals of motion. From
the first equation of motion it follows now that z;(t) =
z; + m't(p; — a;(X)). And we see that the following
formulae define the solution of the equation of motion
for the infinite particle system

z;(t) = z; +m~ ' t(p; — a;(X)),

pi(t) = pj +a;(X (1)) — a;(X).

It is clear that the transformation Z, defined by
Z(P,X) = (P — Ay, X), reduces the solution to the free
particle dynamics on R x RP?, where Ay is the se-
quence {a;}. It is evident, also, that for long-range forces
it is difficult to figure out what are the configurations for
which a;(X) and a;(X(t)) are finite. It is one of the rea-
sons to consider the BBGKY hierarchy [8].
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III. CLASSICAL GIBBS SYSTEMS AND MEAN-FIELD TYPE LIMIT

Let us consider Gibbs (grand—canonical) correlation functions for the d-dimensional system in a compact domain

A, defined by

pA(PmaXmQ (e)m) =

i Z(n'

n>0 (5 )n

where

k=1

"> exp{Bu((e

=Yt Ea=exp{VA) Yz} 20

}//dP dX exp{— ,BH(Pm,Pn,Xm,X )}

m
=[I=.
s=1

e, ze are chemical potential and activity of the particles with the charge e, correspondingly, V' (A) is the volume of
the domain A. integrating by P;l is performed over R*? and summation by e is over E_.{r} that is a set of r elements
on a line. We omit the dependence of H on (e),, in our notations.

Now, integrating over P;L, we obtain

—_—— ! /6 " ’
pA(Pm,Xm,(e)m —2 e 12 n' Z Z(e/)l/aneXp{_EZM)k _ak(Xm,Xn)|2}.
k=1

nz0 (e)n

A

Using the Fourier transform in momentum variables, we obtain

A (Pons X €)= 2002 % [ dQumexp{=L Ly exp (/B3 e 1u) + ents )]} @ Ko,
k=1

where

ﬁA(Q’H’L:Xm)

= exp{z Ze /(exp[i\/ﬁea;‘n(az)] — 1)dz},
A

m
Z ar, a(z — z))e,

k=1

(.,-) is the scalar product of the d-dimensional Euclidean
space, and if £ = z; then the term, corresponding to
k = j, is not taken into account in the expression for

a* (z).

It is evident that we can pass to the thermodynamic
limit A — R? if the function |a(z)| is integrable. The
functions

PPy Xins (€)m) = litm p* (Xon, Pr; (€)m)

in this case are expressed through formula (3.1) in which
instead of the functions p* their limits are present (trivial
estimate shows that they exist).

The problem of the existence of the Gibbs correlation
functions for classical systems with long-range magnetic
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interactions in the thermodynamic limit remains opened.
It can be solved for some cases in the mean—field type
limit.

By mean—field type limit we mean the limit e — 0
for the correlation functions p. with rescaled activity
(%), compact domain Bp(.), where Bg is a sphere of
radius R, vector magnetic potential a(x) = €”a.(x) (for

0
the case a(z) = |“|(_m2)s,s > 0,a°

is a regular function,

al(z v
U/E(f) = m, (8) =€".

For the usual systems of particles when, instead of
the magnetic potential a(x), a usual pair potential is
rescaled, by multiplying by e, or in the same way the
inverse temperature (3, the mean field limit corresponds
to a high temperature low density limit. For the mag-
netic interaction the same is true: if the inverse temper-
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ature is rescaled by €27 and a.(z) is used instead of a° (z)
then the same result is obtained, if the former rescaling
is used and the momenta are rescaled also (77 P,,) (in
[9] the mixed case of rescaling was considered and the
corresponding rescaling of momenta is meant in the def-
inition of the rescaled correlation functions p.). For the
usual systems with a regular short-range potential, if a
rescaled temperature tends to zero faster than €, than the
interaction dies out in the mean—field limit. The same is
also true for a regular short-range pair magnetic inter-
action, as it is seen from the above representation. If
the square of the singular short-range potential diverges
than a stronger rescaling of the temperature is necessary
to kill the divergence.

In the following theorem we show that for the long-
range CS magnetic interaction the mean—field type limit
exists for p. only if the power of £ in the rescaled tem-
perature is greater than unity. We also show that the
limit is not unique and depends on the way R(e) tends
to infinity.

Let us consider the CS case, i.e.d=2 and a%(z) =

2
S ox%eV,y = % and the temperature is not rescaled(this
o=1

rgscaling is equivalent to the rescaling of [9])

Theorem 1
Let v < £ and Y zce = 0 (neutrality). If

1)lim e?In R(e) = 0, then
e—0

lim €™ p. (P, X (€)m) = 2(e)m eXp{_§|Pm|2};

e—0
2)if R(e) = exp{roe—?2}, then

lim €™ pe (P, Xims (€)m)
e—0

= Z(e) 27T /de exp{ |Qm| \/Bz(qlhpk)}
k=1

pA(Xm|Ym) = EXlz(e)m Z

n>0 317

where Z, coincides with the numerator in (1.4) for the case m=o, the sums in e

Ze 18 the activity of the particle with the
the operator Pﬁ

Z 2 m/ ) (X X[V, X,,)dX,,

The reduced density matrices in our case are functions in ey, ..

X exp{—(z z2e)BroB(Qm(e), Qm(e))},

m
e)=2 Z g;ie;,
=1

2T

Of (1h2 cos(p) + 91 sin(p))?dep.

A similar result can be obtained for regular long-range
potentials ¢, whose fourth power is an integrable func-
tion, demanding that the expression

where B(¢,¢) =

has a limit as ¢ approaches zero. A special care is needed
if the potential is singular: it is necessary to estimate
short-distance and long-distance divergence of integrals
of powers of the potential.

IV. QUANTUM SYSTEMS

Now we consider the system in the compact domain A
with the Dirichlet boundary condition on its boundary,
i.e.with the Hamiltonian H,,

P, s = exp{—fHn 1}

= cap{iU;} Pl cap{—iU}) (4.1)

where the semigroup PO('n, A) is generated by the n-
dimensional Laplacian with the Dirichlet boundary con-
dition on the boundary of A. Let us define the reduced
density matrices for our systems of r sorts of particles
with the M-B statistics.

(4.2)

; are performed over the set E.{r},

“charge” e, ( is the inverse temperature, P(A) (X,|Yn) is the kernel of

.,€m, since the Hamiltonian is

diagonal in varlables that describe the inner degree of freedom. In order to simplify notations we do not indicate this

dependence in p*.The following equality is true

PN (X Vi) = exp{i[U*(X,n) — U* (Vi

GA(Xm, Yin)

->= / feapdil zee]

)]}Z(e)mPoB(A) (X |Yim)exp{Ga(Xm,Ym)},

) = §ly; — )]} ~ 1}PL, (ala)da
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where Poﬁ( A) (z|y) is the integral over the Wiener measure concentrated on paths, starting from x and arriving in y at

the moment (3, of the characteristic function of paths that are inside A, Pf(A) (Xm|Ym)= H1 P[’)B(A) (xs|ys)-
o

If ¢ is an integrable function than it is easy to pass to the thermodynamic limit in the above expression. The
limiting density matrices for a regular short-range magnetic potential ¢ are given by

P(Xm| Vi) = exp{ilU(Xpn) = U(Ven)[}2(e)n Py (Xom|Vin)exp{ G (Xom, Vi) },

(4.3)

G(Xm, Vi) = (278) 2 2 /{exp{i[z eej(¢p(zj — =) — dy; — )]} — 1}da.

where Poﬁ (z|y) is the kernel of the semigroup generated
by the one-half d-dimensional Laplacian and the integra-
tion is performed over the d-dimensional space. In gen-
eral it is unclear whether it is possible to use the formulae
for long-range potentials in the thermodynamic limit.
Let us consider the 1-d system with the potential

It .
Gr(Xm,Yim) = Zze{/(exp{ieZes/\Ha: —zj| -
e I s=1

¢(z) = A|z| on the interval A=[-L, L]. It turns out that
only for such a system from the systems with long-range
magnetic interactions we can easily pass to the thermo-
dynamic limit in the expression for p* = plFl, G =G}.
Let us put I _y=max(min)(X,, ;). Then

&= yl1} — P, (ala)de

L

I
+(exp{iez esA\[zs —ys]}— 1) / Poﬁ(L) (z|z)dx + (exp{—iez esA\[zs —ys] — 1) /Pf(L) (x|z)dx}.
s=1 L s=1

It is clear that last two integrals are zero if e; € yZ
and

zj —y; € 2\ 1y 2. (4.4)

If the former condition is not satisfied then the integrals

tens to —oo and the density matrices tend to zero in

the thermodynamic limit(L tends to co). As a result the
following theorem is true

Theorem 2

Let e; € Z. Then, if the condition (4.4) is satisfied, the
reduced density matrices for 1-d system with the pair
magnetic potential ¢(z) = A|z| in the thermodynamic
limit are given by (4.3) in which

G(Xm, Vi) = (270) % (4.5)

Iy .
<3z, / {explie S eaNl — 2] — |z — g ]} — 1}d,
e I s=1
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I+

where [ (_y = max(min)(X,,,Yy,). If the condition (4.4)
is not satisfied, then the reduced density martices pl*]
tend to zero for L — oo.

We can show that the analog of this theorem holds
for systems with the Bose and Fermi statistics for small
values of activities(to be published). We expect that our
results can also be generalized to the case of impenetra-
ble bosons in one dimension which are simplest examples
of 1-d anyons.

ACKNOWLEDGMENTS

The author is grateful to the Organizing Committee of
the 28" Torun Symposium on Mathematical Physics for
inviting him to the Symposium where the above results
were reported in the fall of 1995. The author is grateful
also to profs. J. T. Lewis and L. A. Pastur for discussions.



ANYONS AND SYSTEMS OF PARTICLES WITH MAGNETIC...

[1] R. Jackiw, S-Y Pi, Phys. Rev. D 15, 3500 (1990). 177 (1989).

[2] M. Girardeau, J. Math. Phys. 1, 516 (1960). [7] W. Skrypnik, Preprint DIAS STP-92-12.

[3] T. Schults, J. Math. Phys. 4, 666 (1963). [8] W. Skrypnik, Ukrainian Math. Journ. 47, 853 (1995).

[4] E. Fradkin, Field theories of condensed matter systems [9] W. Skrypnik, Ukrainian Phys. Journ. 40, 133 (1995).
(Addison-Wesley Publishing Company, 1991). [10] W. Skrypnik, Ukrainian Math. Journ. 47, 1686 (1995).

[6] J. Lykken, J. Sonnenschein, N. Wess, Preprint TAUP- [11] W. Skrypnik, Preprint, DIAS-95-21 (to be published in
1858-91. “Math.Physics, Analysis, Geometry”).

[6] J. Frohlich., P. Marchetti, Commun. Math. Phys. 121,

AHIOHN I CUCTEMHU YACTHUHOK 3 MATHETHVMMU B3A€MOIIAMN
vy TEPMO,H,I/IHAMI‘—IHIfI TPAHUIII

B. I. Cxpunnux
Inemumym mamemamury, Yrpaina, 252000, Kuis, sya. Tepewenkiscvra, 3

Omucano I'i66GcoBi cTany Ta IMHAMIKY IJ1A CHCTEM 3apAMKEHUX JaCTHHOK, MO B3AEMOIIIOTH uepes eeKTHBHe
€JIEKTPOMATHETHE TIOJIE, MO XAPAKTEPU3yEThCA (CHHI'YJIIPHAM) BEKTOPHUM MOTEHIIAIOM 3 HYJIBOBOIO EJIEKTPO-
CTATWYHOIO KOMIIOHEHTOIO (MArHeTHa, B3a€MOis). Bukonane HaOIMKEHHSA TUITY CEPEIHBOTO TOJIA AJIA Ti66COBIX
Kopesanifinnx Gynkuiit (y Bemmkomy kanoniaaoMmy ancam6si) mra 2-d cucremu Yepua—Cimona (BeKTOpHUIT MO~
TEHIIIAJT N-9aCTUHKOBOL CHCTEMH € TIOXIIHOK KYJIOHIBCHKOL IIOTEHIIA/IbHOI €HEPrii N-9aCTHHKOBOI CHCTEMN).

BHalimeno, mo usg rpaHung He € egmHa. j1a 1-d KBaHTOBOI CHCTEMHM YaCTHHOK 31 cTaTMCTHKOK Makcpesra—
Bossnvana i anasiorom B3aemomii Yepua—Cimona (BeKTopl-mﬁ MOTEeHIIA CUCTEeMH T-J9aCTUHOK € TMOXimHOIO 1-d
KYJIOHIBCHKOI TIOTEH I ATHHOI €HEpPTii CHCTEMT ) B TEPMOAMHAMIYHI{f TPAHUII OTPUMAHO MPUBEAEHI MATPHI TyCTHHI
['i66ca. Iokaszano, mo B 1-d cucTeMax CHHTY/ISPHI B3a€MOIil MOXKYTh CIPUYMHATH AHIOHHY CTATHCTHKY.
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