
�URNAL F�ZIQNIH DOSL�D�EN^

t. 1, } 3 (1997) s. 317{323

JOURNAL OF PHYSICAL STUDIES

v. 1, No 3 (1997) p. 317{323

ANYONS AND SYSTEMS OF PARTICLES WITH MAGNETIC

INTERACTIONS IN THE THERMODYNAMIC LIMIT

W. I. Skrypnik

Institute of Mathematics, 3 Tereshchenkivska Str., Kyiv, Ukraine

(Received June 14, 1996)

Gibbs states and dynamics are described for systems of charged particles interacting via e�ective

electromagnetic �eld, characterized by a (singular) vector potential with zero electrostatic compo-

nent(magnetic interaction). The mean{�eld type limit for the Gibbs (grand canonical) correlation

functions for the 2-d Chern{Simons (CS) system (the vector potential of the n-particle system is a

skew derivative of the Coulomb potential energy of the n-particle system) is performed. It is found

that the limit is not unique. For 1-d quantum system of particles with Maxwell{Boltzmann statistics

and analog of CS interaction ( the vector potential for the n-particle system is the derivative of the

1-d Coulomb potential energy of the system) the Gibbs reduced density matrices are found in the

thermodynamic limit. It is shown that in 1-d systems singular interactions may produce anyonic

statistics.
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I. INTRODUCTION

We consider a system of charged d-dimensional parti-

cles of r species interacting via an e�ective electromag-

netic �eld, which in the case of n particles is characterized

by the vector potential a

j

(X

n

) = fa

�

j

(X

n

)g, � = 1; :::; d,

depending on coordinates X

n

= (x

1

; :::; x

n

) 2 R

dn

of

the particles, with zero electrostatic component. It is

appropriate to call the interaction magnetic. The clas-

sical n particle system is described by the Hamiltonian

H(P

n

; X

n

), given by

H(P

n

; X

n

) =

1

2

n

X

j=1

jp

j

� a

j

(X

n

)j
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where P

n

= (p

1

; :::; p

n

) 2 R

dn

are momenta of particles,

jpj denotes the Euclidean norm of the vector p.
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�

(x) 2 C
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have the meaning of charges, e

k

2 R

and â is the operator of multiplication by the vector{

valued function a(x)(pair vector magnetic potential).

The last condition on a(x) means that its singularity

is not strong. If the components of this function are

integrable(nonintegrable) then the interaction is short-

range(long-range). The HamiltonianH(P

n

; X

n

) is an un-

bound function on R

nd

�R

nd

0

if the function a(x) is sin-

gular, R

nd

0

= R

nd

n

S

k<j

(x

j

= x

k

).

For quantum n particles with MB(Maxwell{

Boltzmann) statistics the corresponding Hamiltonian

_

H

n

is an operator de�ned on a dense set C

1

0

(R

nd

0

) in

L

2

(R

nd

)

_
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:

In the case of the smooth functions a

j

the correspond-

ing quantum Hamiltonian H

n

has the domain of the nd-

dimensional Laplacian. The simplest cases of the singu-

lar (smooth) interaction are described by the condition

of quasiintegrability (integrability) for n-particle system.

a

j

(X

n

) =

@

@x

j

U(X

n

);

U(X

n

) =

X

1�k<j�n

e

k

e

j

�(x

j
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); (1.2)

X

n

2 R

nd

0

(X

n

2 R

nd

);

or a(x)=

@�(x)

@x

, x 2 R

d

n0, (x 2 R

d

) i.e. the pair vector

magnetic potential a(x) is a gradient of pair (scalar) mag-

netic potential �(x) (a smooth function), which can be

a multivalued function for the singular interaction such

that expfi�(x)g is a bona-�de function. It is not di�cult

to check that

_

H

n

= expfi

^

U

n

g

_

H

0

n

expf�i

^

U

n

g; (1.3)

where

^

U

n

is the operator of multiplication by the func-

tion U(X

n

),

_

H

0

n

is the minus one-half nd-dimensional

Laplacian, restricted to C

1

0

(R

nd

0

). This equality holds

for a smooth interaction if the dots over H

n

, H

0

n

are re-

moved (the interaction is gauged out). There exists the

selfadjoint extension H

n

of

_

H

n

, given by the equality

expf�tH

n

g = expfi

^

U

n

g expf�tH

0

n

g expf�i

^

U

n

g; (1.4)
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where expf�tH

0

n

g is the free di�usion semigroup whose

in�nitesimal generator coincides with the minus one-half

nd-dimensional Laplacian. Bose (Fermi) statistics corre-

spond to the case of symmetrical(antisymmetrical) wave

functions. There are other selfadjoit extensions which in-

troduce interaction, for example, through �-pair poten-

tial into H

0

n

in the right side of (1.4), but we'll not con-

sider them in what follows.

Our motivation to study the systems with magnetic

(singular) interaction, satisfying (1.2), is explained by

the fact, that among them there is the remarkable 2-

d system with CS(Chern{Simons) magnetic interaction,

corresponding to case [1]

U(X

n
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U
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(X
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X

1�k<j�n

e
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�

C

(x
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� x
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); �

C

(x) = ln jxj;

where �

�

is the skew symmetrical tensor and the sum-

mation is meant over the repeating indices. This system

is a result of the reduction, that eliminates the electro-

magnetic potential from the equation of motion, of the

3-d CS (pure topological) electrodynamics, in which the

Lagrangian contains a topological CS term instead of

the Maxwellian term. It is evident that for it the con-

dition of quasiintegrability (1.2) holds. It turns out that

the operator expfi

^

U

n

g, which is the operator of mul-

tiplication by the function expfi�U

CS

(X

n

)g, has the

remarkable property: it changes the statistics. That is,

expfi��

CS

(x)g=(

x

jxj

)

�

=�

�

0

(x) and the function
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satis�es the anyonic statistics(e

j

are charges)
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if  

�

is symmetrical(�=+) or antisymmetrical (�=-). In

two dimensions the change of statistics is given by the

function C -valued function �

0

(x); x 2 C . The analog

of this function exists in one dimension, namely, �(x)

=

x

jxj

=+(-)1, if x > 0(x < 0). So, the anyonic statis-

tics exists in one dimension also, since (1.6) holds if the

function �(x) is put into (1.5) instead of the function

�

0

(x) and all variables x

j

are one-dimensional. Equal-

ity sin arccos �(x)=

p

1� �

2

= 0, yields the identity

�

�

(x)= expfi� arccos �(x)g=expfi�'

�

(x)g. It is clear

that the operator of di�erentiation commutes with

the operator of multiplication by the function �(x)

on C

1

0

(Rn0). From this it follows that n-dinensional

Laplacian commute with the operator expfi�

^

U

�n

g on

C

1

0

(R

n

0

), where

^

U

�n

is the operator of multiplication by

U

�

(X

n

)=

P

1�k<j�n

'

�

(x

j

� x

k

). As a result, the opera-

tor H

(�)

�n

=expfi�

^

U

�n

gH

0

n

expf�i�

^

U

�n

g is the selfadjoint

extension of

_

H

0

n

from C

1

0

(R

n

0

) with an obvious domain.

This Hamiltonian, restricted to the subspaces of sym-

metrical or antisymmetrical functions, describes anyons

in one dimension. The derivative of '

�

(x) does not ex-

ist and there are no corresponding collective electromag-

netic potentials a

j

(X

n

).

1-d anyons for �=1 and one sort of particles with

the unit charge have predecessors, namely, impenetra-

ble bosons, introduced by Girardau in 1961 [2]. The ab-

sence of a generalized condensation for 1-d impenetra-

ble bosons was proved by Schultz [3](the grand partition

function for the impenetrable bosons coincides with the

grand partition function of free fermions).

The case of 2-d anyons is very interesting for physi-

cists who expect that anyonic condensation (anyons can

create clusters that are either bosons or fermions), if it

exists, looks like Bose condensation and can be used

as an explanation of a high temperature superconduc-

tivity [4{5]. Up till now only lattice approximation for

anyons were treated rigorously in the framework of Lat-

tice Electrodynamics(Maxwellian term is not neglected,

so, roughly speaking, the anyons interact via electrostatic

forces) [6]).

Quantum system with CS magnetic interaction and

MB statistics loses properties, connected with phase

transitions, since the grand partition function for it co-

incides with the grand partition function of the free par-

ticle systems. But if one is interested in the behavior of

reduced density matrices for quantum systems with the

Bose or Fermi statistics in some scaling limit, for which

the role of the statistics in qoestion is negligible, then it

is desirable to �nd the limit of reduced density matrices

for the quantum systems with MB statistics and, even,

that of correlation functions for the classical systems.

There is a remarkable example of 1-d system with

CS-type magnetic interaction, corresponding to the 1-

d Coulomb magnetic interaction, for which �(x) = �jxj.

The 1-d anyons, interacting through this pair magnetic

potential can be considered as an analog of the 2-d free

anyons. It is interesting that such a system can be de-

rived in the same way from the 2-d quasi-topological

Electrodynamics as the CS particle system from the 3-d

Electrodynamics (the term A

0

@

1

A

1

is considered in the

Lagrangian instead of the Maxwellian term).

So, in order to describe anyonic systems in two dimen-

sions and their analogs in one dimension from di�erent

angles we have to consider at �rst the problems, arising

from considering the classical and quantum systems with

di�erent magnetic interactions and usual statistics in the

thermodynamic limit.
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It turns out that the problem of the thermodynamic

limit for classical dynamics, for Gibbs(grand canonical)

correlation functions and Gibbs reduced density matri-

ces for systems with magnetic long-range interactions is

nontrivial even for the simplest cases((1.2), (1.4) hold).

We demonstrate that the Gibbs correlation functions in

the mean{�eld type limit for classical system with the

CS magnetic interaction and the reduced density matri-

ces for 1-d system with Coulomb pair magnetic poten-

tial and MB statistics have unexpected properties: in the

�rst case the limit is not unique and in the second on the

diagonal the functions coincide with the reduced density

matrices of free particle systems and o� the diagonal they

are non-zero if the di�erences of special variables sit on

the lattice. We came to the conclusion that long-range

interaction may be unremovable by the gauge transfor-

mation in the thermodynamic limit.

II. CLASSICAL DYNAMICS

The equation of motion for integrable classical n-

particle system (a

j

satis�es the condition (1.2) with a

smooth function U) is given by [7]

_x

j

(t) =

@

j

H(P

n

; Q

n

)

@x

j

= m

�1

(p

j

� a

j

(X

n
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_p

j

(t) = �

@H(P

n

; Q

n

)

@p

j

= m

�1

n

X

k=1

([p

k

� a

k

(X

n

)]; @

j

a

k

(X

n

)):

where the dot over variables in the lefthandside of the

equation means time derivative, the partial derivative in

x

j

we often denote by @

j

and (.,.) is the scalar product

of the d-dimensional Euclidean space.

Now, let the condition of integrability hold

@

j

a

k

(X

n

) = @

k

a

j

(X

n

); a

j

2 C

1

(R

nd

): (2.1)

It is not di�cult to check that the generalized velocities

v

j

= p

j

� a

j

(X

n

) commute with respect to the Poisson

bracket

fv

j

; v

k

g =

n

X

l=1

[(

@

l

v

j

@x

l

;

@v

k

@p

l

)� (

@v

j

@p

l

;

@v

k

@x

l

)]

= @

j

a

k

(X

n

)� @

k

a

j

(X

n

) = 0

From fv

2

j

; v

k

g = 2v

j

fv

j

; v

k

g = 0 it follows that fH; v

j

g =

0, i.e. the functions v

j

are integrals of motion. From the

�rst equation of motion it follows that

x

j

(t) = x

j

+m

�1

t(p

j

� a

j

(X

n

))

where (p

j

; x

j

) are initial momenta and coordinates. Sub-

stituting the equation for x

j

and (2.1) into the equation

for momenta we obtain

_p

j

(t) =

n

X

k=1

_x

k

(t)@

k

a

j

(X

n

) = _a

j

(X

n

):

Hence the solution of the n-particle equation of motion

is given by

x

j

(t) = x

j

+m

�1

t(p

j

� a

j

(X

n

)); (2.2)

p

j

(t) = p

j

+ a

j

(X

n

(t))� a

j

(X

n

):

The equation of motion for the in�nite particle system

is written as follows

_x

j

(t) = m

�1

(p

j

(t)� a

j

(X(t)); j > 0; (2.3)

_p

j

(t) = m

�1

X

k>0

([p

k

(t)� a

k

(X(t)]@

j

a

k

(X(t));

where P = (p

1

; :::; p

n

; ::); X = (x

1

; :::; x

n

; ::::),

a

j

(X)=

P

l>0

e

j

e

l

(@�)(x

j

�x

l

). Let

^

R

d

be the space R

1d

�

R

1d

f

, where R

1

f

is the space of locally �nite con�gu-

rations from the in�nite Cartesian product of R

d

. It is

not di�cult to see that the Hamiltonian diverges on the

above space, but the equation of motion makes sense if

a

j

(X) are �nite for all j. Let us assume that � is strictly

short-range. Then the in�nite sum, de�ning a

j

(X) is con-

vergent for the initial sequence X from R

1d

f

. If for ev-

ery moment the right side of the equation of motion for

momenta is well de�ned (a collapse is excluded) then

the equality holds _p

j

(t) = _a

j

(X(t)), so the sequence

of generalized velocities are integrals of motion. From

the �rst equation of motion it follows now that x

j

(t) =

x

j

+ m

�1

t(p

j

� a

j

(X)). And we see that the following

formulae de�ne the solution of the equation of motion

for the in�nite particle system

x

j

(t) = x

j

+m

�1

t(p

j

� a

j

(X));

p

j

(t) = p

j

+ a

j

(X(t))� a

j

(X):

It is clear that the transformation Z, de�ned by

Z(P;X) = (P �A

�

; X), reduces the solution to the free

particle dynamics on R

1d

� R

1d

f

, where A

�

is the se-

quence fa

j

g. It is evident, also, that for long-range forces

it is di�cult to �gure out what are the con�gurations for

which a

j

(X) and a

j

(X(t)) are �nite. It is one of the rea-

sons to consider the BBGKY hierarchy [8].
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III. CLASSICAL GIBBS SYSTEMS AND MEAN{FIELD TYPE LIMIT

Let us consider Gibbs (grand{canonical) correlation functions for the d-dimensional system in a compact domain

�, de�ned by

�

�

(P

m

; X

m

; (e)

m

) = z

(e)

m

�

�1

�

X

n�0

(n!)

�1

X

(e

0

)

n

expf��((e

0

)

n

)g

Z Z

�

dP

0

n

dX

0

n

expf��H(P

m

; P

n

;X

m

; X

0

m

)g;

where

�((e)

n

) =

n

X

k=1

�

e

k

; �

�

= expfV (�)

X

e

z

e

g; z

(e)

m

=

m

Y

s=1

z

e

s

;

�

e

, z

e

are chemical potential and activity of the particles with the charge e, correspondingly, V (�) is the volume of

the domain �. integrating by P

0

n

is performed over R

nd

and summation by e

0

is over E

c

frg that is a set of r elements

on a line. We omit the dependence of H on (e)

n

in our notations.

Now, integrating over P

0

n

, we obtain

�

�

(P

m

; X

m

; (e)

m

) = z

(e)

m

�

�1

�

X

n�0

(n!)

�1

X

(e

0

)

n

z

(e

0

)

l

Z

�

dX

0

n

expf�

�

2

m

X

k=1

jp

k

� a

k

(X

m

; X

0

n

)j

2

g:

Using the Fourier transform in momentum variables, we obtain

�

�

(P

m

; X

m

; (e)

m

) = z

(e)

m

(2�)

�

md

2

Z

dQ

m

expf�

jQ

m

j

2

2

g expfi

p

�

m

X

k=1

[(q

k

; p

k

) + e

k

a

�

m

(x

k

)]g�̂

�

(Q

m

; X

m

);

where

�̂

�

(Q

m

; X

m

) = expf

X

e

z

e

Z

�

(exp[i

p

�ea

�

m

(x)]� 1)dxg;

a

�

m

(x) =

m

X

k=1

(q

k

; a(x� x

k

))e

k

;

(.,.) is the scalar product of the d-dimensional Euclidean

space, and if x = x

j

then the term, corresponding to

k = j, is not taken into account in the expression for

a

�

m

(x).

It is evident that we can pass to the thermodynamic

limit � ! R

d

if the function ja(x)j is integrable. The

functions

�(P

m

; X

m

; (e)

m

) = lim

�

�

�

(X

m

; P

m

; (e)

m

)

in this case are expressed through formula (3.1) in which

instead of the functions �̂

�

their limits are present(trivial

estimate shows that they exist).

The problem of the existence of the Gibbs correlation

functions for classical systems with long-range magnetic

interactions in the thermodynamic limit remains opened.

It can be solved for some cases in the mean{�eld type

limit.

By mean{�eld type limit we mean the limit " ! 0

for the correlation functions �

"

with rescaled activity

(

z

�

), compact domain B

R(")

, where B

R

is a sphere of

radius R, vector magnetic potential a

"

(x) = "



a

"

(x) (for

the case a(x) =

a

0

(x)

jxj

�2s

; s > 0; a

0

is a regular function,

a

"

(x) =

a

0

(x)

(jxj

2

+�

2

("))

s

, �(") = "

�

.

For the usual systems of particles when, instead of

the magnetic potential a(x), a usual pair potential is

rescaled, by multiplying by ", or in the same way the

inverse temperature �, the mean �eld limit corresponds

to a high temperature low density limit. For the mag-

netic interaction the same is true: if the inverse temper-
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ature is rescaled by "

2

and a

"

(x) is used instead of a

"

(x)

then the same result is obtained, if the former rescaling

is used and the momenta are rescaled also ("

�

P

m

) (in

[9] the mixed case of rescaling was considered and the

corresponding rescaling of momenta is meant in the def-

inition of the rescaled correlation functions �

"

). For the

usual systems with a regular short-range potential, if a

rescaled temperature tends to zero faster than ", than the

interaction dies out in the mean{�eld limit. The same is

also true for a regular short-range pair magnetic inter-

action, as it is seen from the above representation. If

the square of the singular short-range potential diverges

than a stronger rescaling of the temperature is necessary

to kill the divergence.

In the following theorem we show that for the long-

range CS magnetic interaction the mean{�eld type limit

exists for �

"

only if the power of " in the rescaled tem-

perature is greater than unity. We also show that the

limit is not unique and depends on the way R(") tends

to in�nity.

Let us consider the CS case, i.e.d=2 and a

0�

(x) =

2

P

�=1

x

�

�

��

;  =

3

2

and the temperature is not rescaled(this

rescaling is equivalent to the rescaling of [9])

Theorem 1

Let � <

1

2

and

P

e

z

e

e = 0 (neutrality). If

1)lim

"!0

"

2

lnR(") = 0, then

lim

"!0

"

m

�

"

(P

m

; X

m

; (e)

m

) = z

(e)

m

expf�

�

2

jP

m

j

2

g;

2)if R(") = expfr

0

"

�2

g, then

lim

"!0

"

m

�

"

(P

m

; X

m

; (e)

m

)

= z

(e)

m

(2�)

�m

Z

dQ

m

expf�

jQ

m

j

2

2

+ i

p

�

m

X

k=1

(q

k

; p

k

)g

� expf�(

X

e

z

2

e

e)�r

0

B(Q

m

(e); Q

m

(e))g;

Q

m

(e) = 2

m

X

j=1

q

j

e

j

;

where B( ;  ) =

2�

R

0

( 

2

cos(') +  

1

sin('))

2

d'.

A similar result can be obtained for regular long-range

potentials �, whose fourth power is an integrable func-

tion, demanding that the expression

"



Z

B

R(")

�

2

(x)dx

has a limit as " approaches zero. A special care is needed

if the potential is singular: it is necessary to estimate

short-distance and long-distance divergence of integrals

of powers of the potential.

IV. QUANTUM SYSTEMS

Now we consider the system in the compact domain �

with the Dirichlet boundary condition on its boundary,

i.e.with the Hamiltonian H

n;�

P

t

n;�

= expf��H

n;�

g

= expfi

^

U

�

n

gP

t

0(n;�)

expf�i

^

U

�

n

g (4.1)

where the semigroup P

t

0(n;�)

is generated by the n-

dimensional Laplacian with the Dirichlet boundary con-

dition on the boundary of �. Let us de�ne the reduced

density matrices for our systems of r sorts of particles

with the M-B statistics.

�

�

(X

m

jY

m

) = �

�1

�

z

(e)

m

X

n�0

(n!)

�1

X

e

0

1

;:::;e

0

n

z

(e

0

)

m

Z

�

P

�

(�)

(X

m

; X

0

n

jY

m

; X

0

n

)dX

0

n

; (4.2)

where �

�

coincides with the numerator in (1.4) for the case m=o, the sums in e

0

j

are performed over the set E

c

frg,

z

e

is the activity of the particle with the \charge" e, � is the inverse temperature, P

�

(�)

(X

n

jY

n

) is the kernel of

the operator P

�

n;�

. The reduced density matrices in our case are functions in e

1

; :::; e

m

, since the Hamiltonian is

diagonal in variables that describe the inner degree of freedom. In order to simplify notations we do not indicate this

dependence in �

�

.The following equality is true

�

�

(X

m

jY

m

) = expfi[U

�

(X

m

)� U

�

(Y

m

)]gz

(e)

m

P

�

0(�)

(X

m

jY

m

)expfG

�

(X

m

; Y

m

)g;

G

�

(X

m

; Y

m

) =

X

e

z

e

Z

�

fexpfi[

m

X

j=1

ee

j

(�(x

j

� x)� �(y

j

� x)]g � 1gP

�

0(�)

(xjx)dx:
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where P

�

0(�)

(xjy) is the integral over the Wiener measure concentrated on paths, starting from x and arriving in y at

the moment �, of the characteristic function of paths that are inside �, P

�

0(�)

(X

m

jY

m

)=

m

Q

s=1

P

�

0(�)

(x

s

jy

s

).

If � is an integrable function than it is easy to pass to the thermodynamic limit in the above expression. The

limiting density matrices for a regular short-range magnetic potential � are given by

�(X

m

jY

m

) = expfi[U(X

m

)� U(Y

m

)]gz

(e)

m

P

�

0

(X

m

jY

m

)expfG(X

m

; Y

m

)g; (4.3)

G(X

m

; Y

m

) = (2��)

�

d

2

X

e

z

e

Z

fexpfi[

m

X

j=1

ee

j

(�(x

j

� x)� �(y

j

� x)]g � 1gdx:

where P

�

0

(xjy) is the kernel of the semigroup generated

by the one-half d-dimensional Laplacian and the integra-

tion is performed over the d-dimensional space. In gen-

eral it is unclear whether it is possible to use the formulae

for long-range potentials in the thermodynamic limit.

Let us consider the 1-d system with the potential

�(x) = �jxj on the interval �=[-L, L]. It turns out that

only for such a system from the systems with long-range

magnetic interactions we can easily pass to the thermo-

dynamic limit in the expression for �

�

= �

[L]

, G

L

=G

�

.

Let us put l

+(�)

=max(min)(X

m

; Y

m

). Then

G

L

(X

m

; Y

m

) =

X

e

z

e

f

l

+

Z

l

�

(expfie

m

X

s=1

e

s

�[jx� x

j

j � jx� y

j

j]g � 1)P

�

0(L)

(xjx)dx

+(expfie

m

X

s=1

e

s

�[x

s

� y

s

]g � 1)

l

�

Z

�L

P

�

0(L)

(xjx)dx + (expf�ie

m

X

s=1

e

s

�[x

s

� y

s

]� 1)

L

Z

l

+

P

�

0(L)

(xjx)dxg:

It is clear that last two integrals are zero if e

j

2 Z

and

x

j

� y

j

2 2��

�1



�2

Z: (4.4)

If the former condition is not satis�ed then the integrals

tens to �1 and the density matrices tend to zero in

the thermodynamic limit(L tends to 1). As a result the

following theorem is true

Theorem 2

Let e

j

2 Z. Then, if the condition (4.4) is satis�ed, the

reduced density matrices for 1-d system with the pair

magnetic potential �(x) = �jxj in the thermodynamic

limit are given by (4.3) in which

G(X

m

; Y

m

) = (2��)

�

1

2

(4.5)

�

X

e

z

e

l

+

Z

l

�

fexpfie

m

X

s=1

e

s

�[jx� x

j

j � jx� y

j

j]g � 1gdx;

where l

+(�)

= max(min)(X

m

; Y

m

). If the condition (4.4)

is not satis�ed, then the reduced density martices �

[L]

tend to zero for L!1.

We can show that the analog of this theorem holds

for systems with the Bose and Fermi statistics for small

values of activities(to be published). We expect that our

results can also be generalized to the case of impenetra-

ble bosons in one dimension which are simplest examples

of 1-d anyons.
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AN�ONI � SISTEMI QASTINOK Z MAGNETNIMI VZA�MOD��MI

U TERMODINAM�QN�� GRANIC�

V. �. Skripnik

�nstitut matematiki, UkraÝna, 252000, KiÝv, vul. Terexenk�vs~ka, 3

Opisano ��bbsov� stani ta dinam�ku dl� sistem zar�d�enih qastinok, wo vzamod��t~ qerez efektivne

elektromagnetne pole, wo harakterizut~s� (sin�ul�rnim) vektornim potenc��lom z nul~ovo� elektro-

statiqno� komponento� (magnetna vzamod��). Vikonane nabli�enn� tipu seredn~ogo pol� dl� ��bbsovih

korel�c��nih funkc�� (u velikomu kanon�qnomu ansambl�) dl� 2-d sistemi Qerna{S�mona (vektorni� po-

tenc�al n-qastinkovoÝ sistemi  poh�dno� kulon�vs~koÝ potenc��l~noÝ energ�Ý n-qastinkovoÝ sistemi).

Zna�deno, wo c� �ranic� ne  dina. Dl� 1-d kvantovoÝ sistemi qastinok z� statistiko� Maksvela{

Bol~cmana � analogom vzamod�Ý Qerna{S�mona (vektorni� potenc��l sistemi n-qastinok  poh�dno� 1-d

kulon�vs~koÝ potenc��l~noÝ energ�Ý sistemi) v termodinam�qn�� granic� otrimano priveden� matric� gustini

��bbsa. Pokazano, wo v 1-d sistemah singul�rn� vzamod�Ý mo�ut~ spriqin�ti an�onnu statistiku.
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