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For the thermodynamical system described by the Langevin equation with the additive white

noise the expression for a generating potential as a dependence on a two{component super�eld

is determined. The usual component of this super�eld represents an order parameter, and the

Grassmannian one represents a selfconsistent �eld conjugated by this parameter.Within the �rst

order perturbation theory over particle interaction and unharmonicity the explicit expressions for

wave{frequency dependence of autocorrelators of the real order parameter and the corresponding

conjugated �eld are determined. The condition of stability breaking and the characteristic system

scale are found. For the complex order parameter a form of frequency dependence of the corre-

sponding correlators is determined numerically for di�erent parameters of the theory.
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I. INTRODUCTION

According to the Landau concept a transformation of

nonequilibrium thermodynamic system is unequivocally

represented by the order parameter (OP). Within the

framework of the microscopic theory of phase transitions

the appearance of an ordered state is caused by sponta-

neous symmetry breaking, resulting in switching on a

self-consistent �eld conjugated by the order parameter.

At development of the formal scheme of phase transi-

tions, where the values of the order parameter and the

self-consistent �eld change in a self-consistent manner

(at a stationary state they are connected by a func-

tional relation), the natural question appeared | will

they form a unique mathematical structure type of the

vector in a functional space? A positive answer to this

question is given by the �eld scheme developed below,

within the framework of which the order parameter and

self-consistent �eld will form a unique super�eld, the �rst

component of which is represented by usual (real or com-

plex) values, and the second by the Grassmannian ones.

From the very beginning it is necessary to note, that

the term \a super�eld" is used by use in the conditional

meaning. This �eld unites usual and Grassmannian vari-

ables, instead of various statistics. Within the framework

of the initial concept [1] a true super�eld has got not two

but four components, two of which have Bose charac-

ter, and two others | the Fermi one. Research of four{

components representation has shown [2], that Bose com-

ponents correspond to the condensate and uctuation

components of the order parameter, and Grassmannian

conjugated pair of Fermi components is related to the

antiphase boundaries. Obviously, in spatially homoge-

neous systems, where such boundaries are absent, four{

components representation of the super�eld become sur-

plus and, in essence, it is reduced to the two{components

super�eld. Respectively the pair of the Grassmannian

conjugated coordinates �, �� is reduced to sole �, and

the �eld scheme should be primarily developed.

Apart from the development of the appropriate for-

malism, the purpose of the o�ered work is in the deter-

mination of the physical meaning of the two{component

super�eld. As far as it has Bose character, then as was al-

ready mentioned above (see also [2]), its usual component

� is reduced to the condensate component of the order

parameter, and the Grassmannian one ' | to the uc-

tuation constituent. The correlator of these components

gives the usual Green function G(r; t) = h� (r; t)' (0; 0)i.

However, except the �eld ' it is possible to enter other

�eld � = ' � _�=2�, where the point means time deriva-

tive, � | degree of system nonequilibrium. Taking into

account, that the value 2�' represents an amplitude of

the uctuation component [2], it is possible to show,

that the new �eld � is reduced to the deterministic com-

ponent of the conjugated �eld. Further, this derivation

will be con�rmed by the direct calculations. Meaning in

mind the possible applications of the developed formal-

ism, we shall consider both the real �elds �, �, ', and the

complex one (see sections 2 and 3 respectively). In the

�rst case for �

4

{model, taking into account the interac-

tion and the �rst order power in unharmonicity series it

is possible the complete consideration. For the complex

�elds the calculation becoms much complicated and the

�nal results are reached only numerically.

II. THE PROBLEM FORMULATION

We shall proceed from the Langevin equation

_�(r; t) = �

@V

@�

�

+ �(r; t) ; (1)

which determining time{spatial dependence of the non-

conserved complex order parameter � (r; t). Here the
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point means time derivative, V (�) | synergetic poten-

tial, � (r; t) | stochastic component, normalized by con-

ditions of white noise

h�(r; t)i = 0; h�

�

(r; t)�(0; 0)i = 2��(r)�(t) ; (2)

where angular brackets mean averaging, � | the noise

intensity. In the right{hand part (1) before the �rst term

the operator �r

2

and the operator � (D=�)r

2

before �

in (2) appear for the case of conserved order parameter,

where D is di�usion coe�cient [2].

The basis for construction of the �eld scheme is a gen-

erating functional [1{3]

Zfu(r; t)g =

Z

Zf�(r; t)g exp

�

1

2

Z

(u

�

� + u�

�

) dr dt

�

D�; (3)

Zf�(r; t)g =

*

Y

(r;t)

�

�

_�(r; t) +

@V

@�

�

� �(r; t)

�

det

�

�

�

�

��

��

�

�

�

�

+

�

: (4)

Its variation over the test �eld u(r; t) gives the ob-

served correlators. Zfug represents functional Laplace

transformation of the dependence Zf�g, in which the ar-

gument of the �{function is equation (1). The determi-

nant in (4) in the Ito convention is reduced to the noise

intensity �, providing transition from continuous integra-

tion over � to �. Averaging over � is performed according

to the distribution

Pf�g / exp

�

�

1

4�

Z

j�(r; t)j

2

dr dt

�

; (5)

following from (2). Using the integral representation

�fx(r; t)g =

i1

Z

�i1

exp

�

�

Z

x'

�

dr dt

�

D' (6)

and performing averaging over (5), the functional (4)

takes the standard form

Zf�(r; t)g =

Z

exp [�Sf�(r; t); '(r; t)g] D'; (7)

where action S =

R

Ldr dt is determined by Lagrangian

L = '

�

( _� � ') + '

�

@V

@�

�

: (8)

Here and below, if the otherwise is not meant, the coor-

dinate r is measured in units of correlation length �, the

time t | in units of �

�1

, and the synergetic potential V

| in the scale �.

Let us enter the �eld �, determined by the equality

_� = 2�+ 2': (9)

Then Lagrangian (8) takes the form

L =

j _�j

2

4

� j�j

2

�

1

2

(�

�

_� � _�

�

�)

� �

�

@V

@�

�

+

_�

�

2

@V

@�

�

: (10)

After substituting into (7) the last term, which repre-

sents a complete derivative of V (�) with respect to t, in

functional (3) the multiplier appears

�Z =

Z

exp

�

�

1

2

Z

[V (�

f

)

� V (�

i

)] dr dtgD'D�

i

D�

f

; (11)

which is determined by the initial �

i

(r; t) and �nal

�

f

(r; t) �elds of the order parameter. This multiplier de-

scribes system relaxation from the state �

i

to �

f

. After

its separation it is possible to omit the last term in (10).

For representing the rest of the terms into a canonical

form let us introduce the super�eld

� = � + ��; (12)

where Grassmannian coordinate � has the usual proper-

ties

��

0

+ �

0

� = 0;

Z

d� = 0;

Z

�d� = 1: (13)

As a result we obtain Lagrangian

L =

Z

�

1

2

�

�

�

D� +�D�

�

�

+V(�)

�

d�; (14)
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where the superderivative operators are entered in the

following form

D = D

0

+D

1

; D = D

0

�D

1

;

D

0

= �

�

@

@�

+

�

4

@

2

@t

2

�

; D

1

=

�

1� �

@

@�

�

@

@t

: (15)

Component D

0

contains even order of the time deriva-

tive, D

1

| only odd order (the �rst). The equivalence of

the last term in (14) and the last member in (10) it is

possible is attained by performing a formal expand of the

dependence V (�) in Maclaurin's series and getting rid of

the supercoordinate � in degrees of super�eld (12) with

the help of equations (13). As to the rest of the terms,

their identity follows immediately after substituting (15)

into (14). Substituting the super�eld (12) into operators

(15), it is easy to see that they have the following prop-

erties:

D

2n

0

� = 2

�2n

@

2n

@t

2n

�;

D

n

1

� =

@

n

@t

n

�; n = 1; 2; : : : (16)

On the other hand, the action of the in�nitesimal oper-

ators e

"D

, e

"D

, "! 0 gives

e

"D

: �! �� "; t! t+ ";

e

"D

: �! �� "; t! t� ":

e

"D

: �� = " ( _� � �) ; �� = �

"

4

��;

e

"D

: ��

�

= �" ( _�

�

+ �

�

) ; ��

�

= �

"

4

��

�

: (17)

Thus, the operator D increases time, and D reduces it,

whereas they both reduce supercoordinate. According to

(17) the action of the operators e

"D

, e

"D

on the compo-

nent � leads to a change along the other one �, included

in the combination with the rate of change of the order

parameter _�. As to the action on the component �, it

is bound up with the second derivative �� of time depen-

dence of the order parameter.

For further problem solution it is necessary to substi-

tute Lagrangian (14) into the corresponding Euler equa-

tion. The expressions which will be obtained below is

substantially dependent on the complex properties of the

order parameter and the conjugated �eld. Let us start

with the more simple case.

III. REAL FIELDS

Here � = �

�

and the �rst term in integrand of Eq.(14)

takes the form of �D

0

�. Correspondingly, the motion

equation reads

D

0

� =

1

2

V

0

(�); (18)

where a prime means (variational) derivative on the cor-

responding argument. Substituting to expressions (12),

(15), with the use of Eq.(13) for a component of the su-

per�eld we obtain

�� = �2V

00

(�)�; (19a)

2� = �V

0

(�): (19b)

Taking into account the de�nition of the conjugated �eld

f = �V

0

(�), one can see, that the component of super-

�eld (12), corresponding to the Grassmann variable, is

reduced to the conjugated �eld: � =

1

2

f . Using this con-

dition in de�nition (9) of the �elds �, it is easy to notice,

that Eq.(9) plays a role of the averaged Langevin equa-

tion (1).

A system of equations (19a), (19b) allows to �nd com-

ponents of the super�eld �, � if the synergetic poten-

tial V (�) is known. In this way asymmetry of equations

(19a), (19b) with respect to the time derivatives order is

apparent. It vanishes, with the transition from the con-

jugated �eld to the uctuation �eld ' with the help of

relation (9). The corresponding equations take the form

of

_� = �V

0

(�) + 2'; (20a)

_' = V

00

(�)': (20b)

For further progress of the problem we shall pick out

interaction in the synergetic potential:

V f�g = V

0

f�g+ V

int

f�g;

V

0

f�g =

Z

�

1

2�

�

2

+

1

2

(r�)

2

�

drd�;

V

int

f�g =

Z Z

V

int

f�; �

0

gd�d�

0

;

V

int

f�; �

0

g =

1

2

Z Z

�(r

0

; t

0

; �

0

) �(r; t; �)

�v (r; r

0

) �(r; t; �) �(r

0

; t

0

; �

0

) dr dr

0

;

v (r; r

0

) = v (r) � (r� r

0

)� w (r� r

0

) : (21)

Here in kernel v(r; r

0

) the contributions are divided,

caused by self-action (unharmonicity) of v(r) and the

two{particle interaction w (r� r

0

), the sign of which

speci�es the attractive character. In accordance with (21)

the nonlinear component has the form of
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V

int

(�; �

0

) = U(�; �

0

)�W (�; �

0

): (22)

In the �rst term, representing self-action, it is natural to put t = t

0

, � = �

0

. As a result we obtain the expression

U(�; �

0

) =

1

2

�(t� t

0

)(�� �

0

)

Z

v(r)�

4

(r; t; �)dr; (23)

where the multiplier � � �

0

corresponds, in accordance with (13), to the Grassmannian �{function. Below the su-

persymmetric perturbation theory will be constructed on the basis of this expression. Obviously, by this it is not

necessary to use coordinate representation. On the contrary, it is convenient to use the spatial Fourier transform in

the second term of (22), which represents a two{particle interaction. As a result it takes the form of

W (�; �

0

) =

1

2

X

k;k

0

;q

�

�k+q

(t

0

; �

0

) �

k

(t; �)w

k�k

0

�

�k

0

(t; �) �

k

0

�q

(t

0

; �

0

): (24)

In the mean{�eld approximation the sum over q is reduced to sole term q = 0, and the pair of multipliers, corre-

sponding to the various arguments, is replaced by average

hC

k

(t; �; t

0

; �

0

)i = h�

�k

(t; �)�

k

(t

0

; �

0

)i : (25)

Performing in (24) designate k

0

on �k

0

, for second term (22) we obtain

W (t; �; t

0

; �

0

) =

1

2

X

k;k

0

�

�k

(t; �)�

k

(t

0

; �

0

)w

k;k

0

C

k

0

(t� t

0

; �� �

0

);

w

k;k

0

� w

k+k

0

+ w

2k

�

k;k

0

: (26)

As will be shown below, the supercorrelator (25)

gives the basic observed values | the structural factor

h�(r; t)�(0; 0)i and susceptibility h�(r; t)'(0; t)i. There-

fore it is necessary to pass from the motion equation

(18) for the super�eld �

k

to the appropriate equation

for the supercorrelator C

k

(z; z

0

), where z designates a

set of values t, �. With this purpose we shall pick out

bare component C

(0)

k

(z; z

0

), which obeys the equation

L

k

(z)C

(0)

k

(z; z

0

) = �(z � z

0

);

L

k

(z) � D

0

� (2�

k

)

�1

; (27)

�(z) � ��(t); �

k

� �(1 + k

2

)

�1

:

After time Fourier transformation its solution takes the

form of

C

(0)

!k

=

�2�

�1

k

(�� �

0

) + 4 + ��

0

!

2

!

2

+ �

�2

k

: (28)

Peculiarity of this expression consists in the presence of

terms containing multipliers �

0

, �, �

0

, ��

0

. Taking into

account properties (13) it is easy to see, that such struc-

ture is inherent of not only bare, but also of all super-

correlators.

Therefore it is convenient to introduce basic supercor-

relators B

�

, T

�

, which is determined by equalities

B

�

(�; �

0

) = �� �

0

; T

�

(�; �

0

) = 1� ��

0

: (29)

Using the multiplication rule

A(�; �

0

) =

Z

B(�; �

00

)C(�

00

; �

0

)d�

00

; (30)

it is easy to see, that operators (29) obey the multiplica-

tion table:

B

+

B

�

T

+

T

�

B

+

B

�

B

+

T

�

T

+

B

�

B

+

B

�

�T

+

�T

�

T

+

T

�

T

+

B

�

B

+

T

�

T

+

T

�

�B

+

�B

�
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On the other hand, representing super�eld (12) as a

vector{column with components �, �, we obtain the ma-

trix representation [5]

kB

�

k =

�

�1 0

0 1

�

; (31)

kT

�

k =

�

0 1

�1 0

�

;

j�j =

�

�

�

�

:

The relations obtained above show that the operators

B

�

, T

�

will form complete basis for the decomposition

of the supercorrelators. So, expression (28) is written

down as

C

(0)

= g

(0)

0

B

+

+ g

(0)

1

B

�

+ S

(0)

0

f

�

T

+

+ S

(0)

1

T

�

;

g

(0)

0

= 0; g

(0)

1

= �

2�

1 + (!�)

2

;

S

(0)

0;1

=

1

2

(2�)

2

� (!�)

2

1 + (!�)

2

; (32)

where for the sake of brevity the indeces !, k are omit-

ted. Substituting super�eld (12) into de�nition (25), with

the account of (29) one can see, that the components

g

�

= g

0

� g

1

, S

�

= S

0

� S

1

give the observed correla-

tors:

h��i = S

+

; h��i = g

�

; (33)

h��i = g

+

; h��i = S

�

:

In accordance with (32) in linear approximation they

have a standard form

g

(0)

�

= �g

(0)

+

=

2�

1 + (!�)

2

; (34)

S

(0)

+

=

(2�)

2

1 + (!�)

2

; S

(0)

�

=

(!�)

2

1 + (!�)

2

:

Taking into account (9) from Eqs.(34) we obtain usual

expression for response function h�'i = 2� (1 + i!�)

�1

.

The relation S

(0)

+

= 2�g

�

corresponds to the uctuation{

dissipation theorem, and decreasing the autocorrelator

S

(0)

�

/ !

2

in a hydrodynamic limit ! ! 0 justi�es the

separation conjugated �eld. Using Fourier{images for the

moment of time t = 0 we obtain

S

(0)

+

(0) = 2�; g

(0)

�

(0) = �1; (35)

S

(0)

�

(0) = (2�)

�1

(C � 1);

where term C ! 1 corresponds to ultra{violet diver-

gence of the autocorrelator of the conjugated �eld at

t ! 0. Obviously, the given divergence is stipulated by

the peculiarity of the mean �eld approximation and re-

ally C < 1. Further the magnitude C will be obtained

according to physical reasons.

For the transition from bare correlators to the ex-

act ones it is necessary to take into account interaction

(22) which is written down in approximation to the self-

consistent �eld. In order to prevent nonlinear terms in

expression for Wf�g we accept C ' C

(0)

. As a result,

the Dyson equation is written down as

C

�1

=

�

C

(0)

�

�1

��� wC

(0)

; (36)

where � means the self{energy function. Carrying out

the decomposition type of (32) for the �, C

� = �

0

B

+

+ �

1

B

�

+�

0

T

+

+�

1

T

�

;

C = g

0

B

+

+ g

1

B

�

+ S

0

T

+

+ S

1

T

�

; (37)

after the substitution in (36) we obtain

Dg

�

= g

(0)

�

+

�

�

�

+ wg

(0)

�

�

�;

DS

�

= S

(0)

�

�

�

�

�

+ wS

(0)

�

�

�;

D � 1�

h�

�

+

g

(0)

+

+ �

�

g

(0)

�

�

+

�

�

+

S

(0)

�

+�

�

S

(0)

+

�i

+�(�

+

�

�

� �

+

�

�

)� w

n�

g

(0)

+

g

(0)

+

+ g

(0)

�

g

(0)

�

+ 2S

(0)

+

S

(0)

�

�

��

h�

�

+

S

(0)

�

+�

�

S

(0)

+

�

�

�

�

+

g

(0)

�

+ �

�

g

(0)

+

�io

+ w

2

�

2

;

� � S

(0)

+

S

(0)

�

� g

(0)

+

g

(0)

�

: (38)
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Here bare components g

(0)

�

, S

(0)

�

are given by expres-

sions (34).

So as to �nd the components �

0;1

, �

0;1

, which deter-

mine self{energy function (37), let us use the �rst order of

the perturbation theory over unharmonicity (23). With

this purpose it is necessary to �nd second derivative of

the functional Zf�(r; t; �)g type of (7) over super�eld

�(r; t; �). Then there will by a carry out decomposition

of Zf�(r; t; �)g over the components of the actions corre-

sponding to contribution (23). Accepting the kernel v(r)

to be independent on the coordinate, we obtain the �rst

correction to the supercorrelator(25) as

C

(1)

(z; z

0

) = �

v

4

�

�(z)

Z

�

4

(z

1

)dz

1

�(z

0

)

�

0

; (39)

where z is a set of the values r, t, �, and averaging will

be carried out over a free �eld. It is necessary to use the

Wick theorem , representing average over six multipliers

� by product of the three bare supercorrelators type of

(25). Taking into account, that the number of possible

coupling to such supercorrelators resulting in (39) equals

12, we obtain

C

(1)

(z; z

0

) =

Z

C

(0)

(z; z

1

)�(z � z

0

)C

(0)

(z

1

; z

0

)dz

1

;

(40)

where the self{energy part is determined by equality

�(z � z

0

) = �3v�(z � z

0

)C

(0)

(z

1

; z

1

): (41)

Using the de�nition of basic correlators (29), we come to

the expression

�(t) = �3vB

�

C

(0)

(t = 0)�(t): (42)

Substituting here Fourier{image of decomposition (32),

in accordance with (35) and the table of multiplication

of basic supercorrelators we obtain

�

0

= �3vg

(0)

0

(0)�(t) = 0; (43)

�

1

= �3vg

(0)

1

(0)�(t) = 3v�(t);

�

0;1

= 3vS

(0)

0;1

(0)�(t) = 3v�

�

1� (2�)

�2

(C � 1)

�

�(t):

The use of expressions (34), (43) in equalities (38) gives

the following result for correlators (33):

Dg

�

= �

2�

1 + (!�)

2

�

(1� 6v�) �

4w�

2

1 + (!�)

2

�

;

DS

+

=

(2�)

2

1 + (!�)

2

�

(1� 6v�)�

4w�

2

1 + (!�)

2

�

;

DS

�

=

(!�)

2

1 + (!�)

2

�

(2�)

2

1 + (!�)

2

�

3v

2�

(C � 1) + w

(!�)

2

1 + (!�)

2

�

: (44)

The hydrodynamic limit ! ! 0 should give condition

S

�

! 0, therefore in the last expressions in the (44) it

is necessary to put C = 1. As a result the autocorrelator

of the conjugated �eld takes the form of

DS

�

=

(!�)

2

1 + (!�)

2

�

1�

4w�

2

1 + (!�)

2

�

: (45)

Accordingly, for the denominator D in linear approxima-

tion over v we �nd

D ' (1� 6v�) �

8w�

2

� 6v�(3 + 4w�

2

)

1 + (!�)

2

+

8w�

3

(2w� � 9v)

[1 + (!�)

2

]

2

: (46)

The condition D = 0 results in the dispersion law

! = �i�

�1

ef

, from which the e�ective relaxation time is

determined as follows:

�

ef

= �

�

1� 6v�

1 + 12v� � 4w�

2

�

1

2

: (47)

From here it is visible, that at 4w�

2

� 12v� = 1 we

have �

ef

=1, and the system gets instable, which corre-

sponds to phase transition to the order state. Returning

to the measure units and taking into account a Cure ratio

� = (2�)

�1

, we �nd a point of stability breaking

�

c

= w � 6v: (48)

Thus, in agreement with the usual theory of phase transi-

tions (see [4]) the two{particle interaction promotes sys-

tem ordering, and prevents unharmonicity.

IV. COMPLEX FIELDS

Varying the action corresponding to Lagrangian (14)

over �

�

, � we obtain the motion equations for the com-

plex conjugated �elds:

L

00

�(z

0

) = 2

�V

int

��

�

(z

0

)

; L

00

� D

1

� (2�)

�1

; (49a)

L

11

�

�

(z

0

) = 2

�V

int

��(z

0

)

; L

11

� �D

1

� (2�)

�1

: (49b)
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It is signi�cant that they di�er in sign of the operator

D

1

of the �rst time derivative and do not contain opera-

tor D

0

of the even degrees @

n

=@t

n

, n = 0; 2. As the latter

appeared in the motion equation (18) for the real �eld

it is necessary to complete systems (49a), (49b) by the

equations

L

10

�(z

0

) = 2

�V

int

��

�

(z

0

)

; L

10

= D

0

� (2�)

�1

; (50a)

L

01

�

�

(z

0

) = 2

�V

int

��(z

0

)

; L

01

= D

0

� (2�)

�1

: (50b)

In contrast to Eqs.(49a), (49b) here transition to the

complex conjugated �eld, meaning conversion of time,

does not change sign before the operator D

0

.

Let us multiply equations (49a), (50b) by �(z), and

(49b), (50a) by �

�

(z), then substitute there the nonlin-

ear components (23), (24) and carry out averaging of the

obtained expressions. Then, splitting nonlinear terms by

means of the Wick theorem, we obtain

L

��

(�; �

0

)C

�

(�; �

0

) = �

�

�(�; �

0

)

+wC

01

(�; �)C

�

(�; �

0

) + �

��

(�; �

0

)C

�

(�; �

0

): (51)

Here all the values have got matrix structure, reected by

Greek indeces, accepting values 0, 1 (over the repeated

indeces summation is meant). So, the supercorrelator

(25) has matrix elements

C

00

(z; z

0

) = h�(z)�(z

0

)i ;

C

01

(z; z

0

) = h�(z)�

�

(z

0

)i ;

C

10

(z; z

0

) = h�

�

(z)�(z

0

)i ;

C

11

(z; z

0

) = h�

�

(z)�

�

(z

0

)i ; (52)

where indeces specify the number of complex conjugated

signs at the corresponding multipliers �. As well as in

case of real order parameter, each of these elements is

decomposed over the basic operators B

�

, T

�

. Desig-

nating the matrix with elements (52) as

b

C, it is pos-

sible to present this decomposition by equality type of

(37), where the coe�cients bg

0;1

,

b

S

0;1

will also have ma-

trix structure. Then, after the multiplication of equality

(52) by

�

C

�

(�

0

; �

00

)

�

�1

, its summation over the index

 and integration over the argument �

0

we obtain the

matrix Dyson equation (compare with (36))

b

C

�1

=

�

b

C

(0)

�

�1

� w

b

e

C�

b

�: (53)

Here the supercorrelator

b

e

C has coincident matrix ele-

ments type of C

01(0)

(�; �).

To ascertain the physical meaning of the elements of

the matrices bg

0;1

,

b

S

0;1

it is necessary to pass to the corre-

lators bg

�

= bg

0

� bg

1

,

b

S

�

=

b

S

0

�

b

S

1

and to use de�nitions

(33), (52). So, for the matrix

b

S

+

we obtain

h��i = S

00

+

; h��

�

i = S

01

+

;

h�

�

�i = S

10

+

; h�

�

�

�

i = S

11

+

: (54)

At de�nition of the matrix bg

�

it is necessary to replace �

for � in the second multiplier, for the matrix bg

+

| in the

�rst, and for the autocorrelator of the conjugated �eld

b

S

�

| in both. Obviously, physically observable values

will be only nondiagonal matrix elements.

At �rst let us determine the bare supercorrelator ma-

trices

b

C

(0)

=

b

L

�1

. Because the elements L

01

= L

10

have

according to Eqs.(50a), (50b) the same form as for the

real order parameter, then the nondiagonal elements of

matrices bg

0;1

,

b

S

0;1

are set by equality (32). For the de-

termination of the diagonal elements it is necessary to

convert the operators L

00

, L

11

given by equality (49a),

(49b). With this purpose let us pick out from the opera-

tor D

1

term (1=2)@=@t and multiply the numerator and

the denominator of expression

L

�1

00

= 1=

nh

� (2�)

�1

� (1=2)@=@t

i

+ [D

1

(1=2)@=@t]

o

by a sum of the members, which is in square brackets [6].

As a result, the bare correlator C

(0)

00

(�; �

0

) = L

�1

00

(�; �

0

)

takes the form of

C

(0)

00

(�; �

0

) = 2�

�� (1 + 2i!�) + �

0

1 + 2i!�

: (55)

In a similar way we obtain

C

(0)

11

(�; �

0

) = 2�

�� (1� 2i!�) + �

0

1� 2i!�

: (56)

Using de�nition (29), for a component of decomposition

(32) one has

g

(0)00

0

= �2�

i!�

1 + 2i!�

; g

(0)00

1

= �2�

1 + i!�

1 + 2i!�

;

g

(0)11

0

= 2�

i!�

1� 2i!�

; g

(0)11

1

= �2�

1� i!�

1� 2i!�

: (57)

All other components of these matrices elements equal

zero. In agreement with the case t = 0 time Fourier{

images take the form of

g

(0)00

0

(0) = �g

(0)11

0

(0) = 1=2;

g

(0)00

1

(0) = g

(0)11

1

(0) = �1=2: (58)

As a result, we �nd �nal expressions for matrices of the

bare correlators from expressions (34), (56):
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bg

(0)

+

= �2�

 

1

�

1 + (!�)

2

�

�1

�

1 + (!�)

2

�

�1

1

!

;

bg

(0)

�

= 2�

 

(1 + 2i�!)

�1

�

1 + (!�)

2

�

�1

�

1 + (!�)

2

�

�1

(1� 2i�!)

�1

!

;

b

S

(0)

+

=

(2�)

2

1 + (!�)

2

�

0 1

1 0

�

;

b

S

(0)

�

=

(!�)

2

1 + (!�)

2

�

0 1

1 0

�

: (59)

The calculation of matrix elements of the self{energy

function

b

� reads (compare with (42))

�

00

(t) = �

1

2

vB

�

C

(0)

11

(t = 0)�(t);

�

01

(t) = �vB

�

C

(0)

10

(t = 0)�(t);

�

10

(t) = �vB

�

C

(0)

01

(t = 0)�(t);

�

11

(t) = �

1

2

vB

�

C

(0)

00

(t = 0)�(t): (60)

Decomposing

b

C

(0)

(t = 0) in a series as (32) with coe�-

cient (35), (57) and using the multiplication rule for the

operators B

�

, T

�

,for matrix decomposition type of (37)

we �nd

b�

0

=

v

4

�(t)

�

1 0

0 �1

�

;

b�

1

=

v

4

�(t)

�

�1 4

4 �1

�

;

b

�

0;1

= v��(t)

�

0 1

1 0

�

: (61)

Substituting the expressions (59), (61) to matrix equa-

tion (53) and separating result over components, we ob-

tain a system of 16 linearized equations for elements

of the exact supercorrelator, which are determined by

equalities type of Eqs.(52). Though analytical solution

of this system does not lead to question of principle, as

a result very cumbersome expressions are obtained, is

convenient by presentable in a graphic form. In �gure 1

the form of the frequency dependence is shown for the

autocorrelator

S =

1

2

�

h��

�

i+ h�

�

�i

�

=

1

2

�

S

(01)

+

+ S

(10)

+

�

: (62)

It is obvious, that with raising the particle interaction

parameter w this dependence changes the form | its

maximum shifts to the point ! 6= 0. In other words, the

most preferable state becomes dynamical, in contrast to

the usual static one.

Fig. 1. The frequency dependence of the autocorrelator (62); a | � = 0:5, v = 0:1, w = 0:2; b | � = 0:5, v = 0:1, w = 0:4.
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PREDSTAVLENN� NER�VNOVA�NOÕ TERMODINAM�QNOÕ SISTEMI

DVOHKOMPONENTNIM SUPERPOLEM

O. �. Olmsko�, �. V. Koplik, V. A. Bra�ni�

Sums~ki� der�avni� un�versitet, UkraÝna, 244007, Sumi, vul. Rims~kogo{Korsakova, 2

E-mail: postmaster@sgu.sumy.ua

Dl� termodinam�qnoÝ sistemi, wo opisut~s� r�vn�nn�m Lan�evena z b�lim aditivnim xumom, zna�-

deno viraz dl� tv�rnogo funkc�onalu v zale�nost� v�d dvohkomponentnogo superpol�. Zviqa�na komponenta

c~ogo pol�  parametrom vpor�dkuvann�, a �rasmanova zm�nna | samouzgod�ene pole, spr��ene do c~ogo

parametra. V perxomu por�dku za m��atomno� vzamod�� � angarmon�zmom zna�den� �vn� virazi dl� qa-

stotnoÝ zale�nost� avtokorel�tor�v d��snogo parametra vpor�dkuvann� � v�dpov�dnogo spr��enogo pol�.

Viznaqen� umovi vtrati st��kost� � harakterni� masxtab sistemi. Dl� kompleksnogo pol� qisel~no otri-

mani� vigl�d zale�nost� v�dpov�dnih korel�tor�v pri r�znih parametrah zadaq�.
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