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We study the phase transition to the superconducting state taking into account the fluctuations
of the order parameter and of the vector magnetic field and discuss the question of the order of
transition occuring in this model. We use the filed—theoretical renormalization group approach and
consider the field—theoretical gauge model for a superconductor, generalized to a n/2 component
complex order parameter. Renormalization group calculations within strict e-expansion suggested
that in such a model a first-order phase transition occurs. We re-examine the previously obtained
expressions for the renormalization group functions in a two-loop approximation in three dimen-
sions. Special attention is being payed to the fact, that the corresponding series might be asymptotic
ones and therefore have zero radius of convergence. We discuss possible ways of the analytical con-
tinuation of the series obtained. On the basis of the comparison of the results obtained by “direct”
calculations with those obtained by Padé analysis and Padé-Borel resummation technique the con-
jecture is made that in the model under consideration still exists a possibility for the second-order
phase transition with the critical exponents differing from those of a superfluid liquid. This is in
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agreement with conclusions made very recently in other nonperturbative treatments.
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I. INTRODUCTION

The order of a phase transition may have severe con-
sequences for physical quantities. So one knows from the
first order liquid gas transition phenomena like overheat-
ing and undercooling connected with the metastability
at the transition. For the second order phase transition
divergencies in physical quantities occur (in the thermo-
dynamic limit of course) leading to a dramatic increase
of the specific heat or scattering of light (critical opales-
cence) near the liquid gas critical point.

Similar dramatic changes are connected with the phase
transitions which occured in the early stage of the uni-
verse and the questions discussed here for the super-
conductor are also relevant there (for a recent review
see [1]). However when the question raised in the title
was discussed for the superconductor it was more or less
an academic question, since due to the large correlation
length (£, ~ 10%A4) only very near the phase transition
the first order character can be seen, otherwise mean
field beheavior is to be expected. This situation changed
after the discovery of high-T. superconductors with cor-
relation lengths within the range of the lattice distances
(¢ ~ 1A) [2]. Here in several experiments critical effects
have been observed in the specific heat [3,4]. They have
been analysed [5] with scaling exponents related to the
fixed point in the uncharged model of a superconduc-
tor which takes into account only the fluctuations of the
complex order parameter and corresponds to the model

describing the phase transition into the superfluid phase.

From the theoretical point of view according to
BCS theory of superconductivity the normal-to—
superconducting (NS) phase transition is a classical sec-
ond order phase transition described by the Landau—
Ginsburg Hamiltonian with the complex order param-
eter, corresponding to the wave function of the Cooper
pairs. Taking into account the fluctuations of the order
parameter one can find the values of corresponding crit-
ical exponents which in this case will coincide with the
critical exponents of O(n) symmetrical field theoretical
model for the case n = 2. Consequentely this leads to
the answer that NS phase transition is described by the
same set of critical exponents as the phase transition
in normal-to—superfluid liquid. The last are known with
high accuracy [6] and calculated by different methods
[7-9].

However taking into account, that for the NS transi-
tion the corresponding “superfluid liquid” is charged, es-
sentially complicates the problem. For the first time this
question was considered by B. I. Halperin, T. C. Luben-
sky and S. Ma [10] and since then different ways of tack-
ling it were proposed. The theoretical model describing
the relevant critical behaviour was the usual O(n) sym-
metrical ¢* model with the n/2-component complex field
¢ coupled to a gauge field describing the fluctuating mag-
netic field created by Cooper pairs. The answer obtained
in [10] states that because of the coupling to the gauge
field in mean field approximation a third order term ap-
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pears in the free energy of the superconductor and the
NS phase transition is of the first order. This was corob-
orated by renormalization group theory from the results
of a first order e-expansion. A stable fixed point (nec-
cessary, but not sufficient for a second order phase tran-
sition) exists only for the order parameter components
number n > 365.9, exceeding to a great extent the su-
perconductor case n = 2. The crossover near the first
order phase transition was studied [11] and the expres-
sion for the crossover function of the specific heat was
given within one loop order perturbation theory.

However the mean field results where questioned by
a calculation of Lovesey [12], which showed that taking
into account the gauge field fluctuations in the calcula-
tion of free energy leads back to a second order phase
transition. A further indication of a second order phase
transition came several years later when this problem was
studied on the lattice by means of MC calculations and
duality arguments [13]. The results confirmed scenarios
of the NS transition differing from those obtained in [10].
Namely, the NS transition was found to be of the second
order asymptotically equivalent to that of a superfluid
with the reversed temperature axis. Subsequent MC sim-
ulations [14] performed in different regions of couplings
lead to the result that the NS transition is strongly first
order deep in the type-I region and becomes more weakly
first order moving in the direction of the type-II region
[15]. Beyond a certain point the data of [14] suggest a
second-order transition. The corresponding O(n) nonlin-
ear o-model coupled to an Abelian gauge field studied
near two dimensions by 2+ ¢ expansion [16] did not show
a first order phase transition either.

The influence of the critical fluctuations on the order
of NS transition was reconsidered on the basis of the
ideas of field theoretical renormalization group in [17].
Here the two-loop flow equations [18] for the static pa-
rameters and the (-functions [19] were obtained and it
was indicated that a stable fixed point might be possible
and, as a consequence, a second order phase transition
might appear. An attractive feature of the flow found in
[17] was that it discriminated between type-I and type-1I
superconductors, depending on the initial (background)
values of the couplings. For small values of the ratio (cou-
pling to the gauge field)/(fourth order coupling) (appro-
priate for typell superconductors) the flow comes very
near to the fixed point of the uncharged model but ends
in the new superconducting fixed point. For large val-
ues of the ratio (type-I superconductors) the flow runs
away. For values of the ratio in between the critical be-
haviour might be influenced by a second (unstable) su-
peconducting fixed point with scaling exponents quite
different from the uncharged model. In the context of
baryogenesis the problem of the order of the NS phase
transition was considered in two loop order in [20] and
the effective potential was calculated. Of course, the re-
sult was a first order phase transition since only run away
flows are found in strict perturbation theory.

Coincedence of the critical exponents of the NS tran-
sition with those of a superfluid transition with reversed
temperature axis was supported by the renormalization
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group arguments on the basis of dual fomulation of the
Landau—Ginsburg theory [21]. Recently the same prob-
lem studied by the renormalization group technique in
fixed dimension d = 3 in one-loop approximation showed
the evidence of an attractive charged fixed point distinct
from that of a neutral superfluid leading, in particlar, to
the correlation length critical exponent value v ~ 0.53
and n ~ —0.70 [22].

The problem of the NS transition was also studied
[23] by means of the self-consistent screening approxi-
mation [24]. The approximation builds the 1/n xpansion
for the general dimensionality d. The anomalous field di-
mension exponent 7(d,n) was calculated and the result
7(3,2) ~ —0.38 was found. Near d = 4 the results ob-
tained were in good agreement with the e-expansion data
[10] for high n (n > 366) near d = 4.

To conclude this brief review it is worth mention-
ing one more physical interpretation of a charged field
coupled to a gauge vector potential. Namely it is the
nematic—smectic A transition in liquid crystals [25]- [28].
It is believed that this transition is described by a model
similar to those describing the NS transition in the
charged case [10]: now the smectic order parameter is
coupled to the director fluctuations. On contrary to the
NS type transition, the nematic-smectic A transition is
characterised by the critical region of the experimentally
accesible range and appears to be continuous (see e.g.
[27,28]). Further applications have been suggested in the
context of the quantum Hall effect [29].

The purpose of our article is to show that even being
within the frames of the renormalization group method
applied to the original model of the superconductor min-
imally coupled to the gauge field [10] one still can obtain
the answer that in such a model there occurs a second
order phase transition with the critical exponents distinct
from those of a superfluid liquid. To prove this we recon-
sider two-loop renormalization group functions obtained
in [17] for this model [10] and pay special attention to
the fact that the loop expansion is the asymptotic one
[30]- [33]. We apply resummation technics to the beta-
functions of the flow as well as to the zeta-functions.
In this way we find several fixed points with new scal-
ing exponents and a rich crossover behaviour. Some of
our results were previously published in [34]. A similar
approach, namely nonperturbative flow equations, where
used in [35] and there also a stable fixed point was found.

The setup of the article is as follows. In the next sec-
tion IT we describe the model we are interested in, give
the expressions for the renormalization group functions
in a two loop approximation and describe the results ob-
tained on their basis without applying any resummation
procedure. In the section III we discuss the resumma-
tion technique. Section IV is devoted to a study of the
[B-functions which are the functions of two variables and
of the corresponding flows on the basis of the Padé—Borel
resummation technique and Padé approximants for the
appropriate resolvent series. In section V we calculate
the assymptotic and effective values for the critical ex-
ponents. The results are discussed in section VI.
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II. THE MODEL AND ITS “NAIVE” ANALYSIS

As is well known now the influence of the order param-
eter fluctuations on the NS transition can be described
by the Landau—Ginsburg free energy functional:

Flgl = [ @ 3looP + 51(Vanl + I}, 21

to being temperature-dependent, ug is a coupling con-
stant and the complex order parameter ¢q is connected
with the wave function of Cooper pairs. The Cooper pairs
are charged and therefore create fluctuating magnetic
field which leads to the appearence of additional terms in
the free energy functional. Note that it is not the case for
a normal-to—superfluid transition in neutral (uncharged)
fluid, which is well described by (2.1) without any mod-
ifications. Describing the fluctuating magnetic field B
by the vector potential A (B = rotA) and adding to
(2.1) the minimal coupling between the fluctuating vec-
tor potential and the order parameter one gets the free
energy functional F[¥, A] originally considered in [10]
for a generalized superconductor in d dimensions with
the d-dimensional vector potential A and the order pa-
rameter ¥ consisting of n/2 complex components. Now
one can describe the fluctuation effects by an Abelian
Higgs model with the gauge invariant Hamiltonian [10]:

¢ 1 .
H = /dd${50|‘1’0|2 + §|(V - ’L€0A0)‘I’0|2

Uo 4 1 2
+ I|l1’0| + §(V X Ao) },

Zy =1+ %{362 —u?(n +2)/144 + e*[(n + 18) /4e — (11n + 18)/48]},

1
Zn=1+ g{—n62/6 —ne*/2},

Zy =1+ %{(n + 2)u/6 + u?[(n + 2)(n +5)/36e — (n + 2)/24]

depending on the bare parameters %y, ey, ug. The pa-
rameter ty, changes its sign at some temperature, the
rest of the parameters being considered as temperature—
independent. For the coupling constant eg = 0 no mag-
netic fluctuations are induced and the model reduces to
the usual field theory (2.1) describing a second-order
phase transition and corresponding the particular case
n = 2 to the superfluid transition in *He.

In order to describe long-distance properties of model
(2.2) arising in the vicinity of the phase transition
point we apply field—theoretical renormalization group
approach. Recent two-loop results [17] for the renormal-
ization group functions corresponding to (2.2) were ob-
tained on the basis of dimensional regularization and
minimal subtraction scheme [36] (for calculations at d =
3 see [37,38]) introducing renormalized fields and cou-
plings by:

Vo= 7370, Ay = Z)/?A,

to — toe = Z1Zg't,
et = Z;ZX1Z\51€2MES;1,

uy = ZuZg upSy "t (2.3)

with ¢ = 4 — d. Here p is a reference wave number, tg.
being a shift, which for the results considered here can be
set to zero, and Sy stands for the surface of d-dimensional
hypersphere: Sy = 21~ %7~ %/2/T'(d/2). The Z-factors are
determined by the condition that all poles at ¢ = 0 are
removed from the renormalized vertex functions. From
a Ward identity one has Zy = Z., and the remaining
Z-factors are to be found from the corresponding ver-
tex functions. The results in two-loop order found in [17]
read:

+ ue?[—(n +2)(1/2e — 1/3)] + e*[(3n + 6)/2¢ + (5n + 1)/4]},

Zy =1+ %{(n + 8)u/6 + 18e* Ju + u*[(n + 8)* /36 — (5n + 22)/36]

(2.7)

+ ue’[—(n +8)/2e 4+ (n + 5)/3] + e*[(3n + 24) /e + (5n + 13) /2]

+ €% /u[3(n + 18) /e — Tn/2 — 45]}.
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The flow equations for the renormalized couplings wu,

f (f =¢é?) are:

df
du

where [ is the flow parameter and the expressions for
B-functions in two-loop approximation read [17]:

By = —<f+ 5 I +nf’, (2.10)
[3u:—5u+n-i_8u2—?m-i_14113—6uf-|-18f2
6 12
2 1 1 174
G20 o TN o o o0 (211)

3 12

The previous analysis of the equations of type (2.10),
(2.11) either on one-loop [10] or on two-loop level [17]
was based on direct solutions of the equation for the
fixed point. In the present study we want to attract at-
tention to the fact that the series have zero radius of con-
vergence and they are known to be asymptotic at best.
Therefore some additional mathematical methods have

Almost all physical results concerning phase transi-
tion described by the field theory (2.2) were to some
extend based on the information given by (2.12)—(2.14).
The main of them read:

(i) fixed point U is unstable with respect to the pres-
ence of f-symmetry at d < 4 with the stability
exponent

_ 9

Mw=ut f= U =0)= Ty = =

(ii) fixed point C appears to be complex for n < n, =
365.9 [10] already on one-loop level. The stability
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3
n+5)4 <u0> 3(7ln +174)
o)) _3Udnt 1)

to be applied in order to obtain reliable information on
their basis.

We start by recalling the results of a e2-expansion
for B-functions [10,17]. In second order in ¢ one obtains
three fixed points: the Gaussian (u*¢ = f*¢ = 0), the
“Uncharged” (u*V # 0, f*Y = 0) and the “Charged”
(w*® # 0,f*¢ # 0), to be denoted as G, U, C. The
expressions for them read:

G: u*¢ =0, ¢ =0, (2.12)
U:uV =ule+ufe?, f*V =0, (2.13)
C:uC=ufe+ufe?, f*“=fle+ fie, (2.14)

where
6 18(3n + 14
WU = Sy 188ty
n+8 (n +8)3
WO = 3(n + 36) + (n? — 360n — 2160)*/2
! 3n(n + 8) ’
6 6\
as
Ug—a_l, flczﬁa f20:_<ﬁ> n,

3
+ (g) (7Tn +90).

w
n? 1

exponent given by

9B

ou e

alu=u®, f = f+) =

and on the two-loop level it reads:

1/2

2
I S:KH%) _ 432n+8)
n n

leading to an oscillatory flow in « in one-loop order
below n. with the solution [11,17]:
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B 6f1°
6+ nef(lc—1)’

f(0 (2.15)

5 In (f(l)f‘1l5>

2(n+8)u n+36>
—+
snf ns

(n+8

u(l) = f(l)QL) {stan

+ arctan (

_n+36
n )

here f and u are the initial parameters at [ = 1;

(2.16)

(iii) from the condition of positiveness of the fixed point
coordinate f* (f = e?) follows that at ¢ = 1
n > 36.

Finally the conclusion follows that for the “supercon-
ductor” case n = 2 being of most physical interest there
does not exist a stable fixed point and therefore the ob-
served phase transition is of the first order.

III. RESUMMATION

Nevertheless one should note that such a staightfor-
ward interpretation of the e-expansion data was ques-
tioned and a way of analyzing the series for S-functions
(2.10),(2.11) avoiding strict e-expansion and exploiting
the information on the accurate solution for the pure
model case at d = 3 was proposed [17]. Also from the
comparison of e-expansion data for f* (giving positive
value of f* only for n > 36) with the value of f* ob-
tained without e-expansion (remaining positive for all
n) the conjecture was made that the lower boundary for
n resulting in the negative f* might be an artifact of the
expansion procedure.

As is well known now the appropriate resummation
technique applied in the theory of critical phenomena
to the asymptotic series for the renormalization group
functions enables one to obtain extremly accurate values
of the critical exponents. In fact the asymptotic nature
of the series for the renormalization group functions has
been proved only in the case of the ¢* model containing
one coupling of O(n)-symmetry (n-vector model) as well
as the high-order asymptotics for these series is known
[32,31,33] in analytical form. These results gave the pos-
sibility to obtain precise values of the critical exponents
for the n-vector model by the resummation of the corre-
sponding series for the renormalization group functions
(see e.g. [7,8,40]). For the “charged” model we are con-
sidering here up to our knowledge no information sim-
ilar to those obtained in [32,31,33] for the “uncharged”
case (f = 0) is available. Nevertheless in the case of the
model containing several couplings of different symmetry
the asymptotic nature of the corresponding series for the
renormalization group functions is rather a general belief
than a proven fact. As one of such examples we mention

here the weakly diluted n-vector model, described by a
Hamiltonian containing two fourth order terms of differ-
ent symmetry [39]. The asymptotic nature of the double
series for the renormalization group functions in terms
of the coupling constants has not been proven for this
model up till now [41]. Nevertheless the appropriate re-
summation technique (applied as if these series are the
asymptotic ones) enables one to obtain accurate values
for critical exponents in three dimensions [42]- [45] and
to describe (in n = 1 case) the experimentally observed
crossover to a new type of critical behaviour caused by
weak dilution [46,47]. These results are also confirmed
by Monte—Carlo [48,49] and Monte—Carlo renormaliza-
tion group [50] calculations.

Two main ways of resummation commonly used in
these problems are: (i) resummation based on the con-
formal mapping technique and (ii) Padé-Borel resum-
mation. The case (i) is based on the conformal transfor-
mation, which maps a part of the domain of analyticity
containing the real positive axis onto a circle centered
at the origin and the asymptotic expansion for a certain
function is thus re-writen in the form of a new series (see
[8] for discussion). However this resummation is based on
the knowledge of subtle details of asymptotics (location
of the pole, high-order behaviour) which are not avaible
in our case.

In the absence of any knowledge about the singular-
ities of the series the most appropriate method which
can be used to perform the analytical continuation is the
Padé approximation resulting in Padé-Borel resumma-
tion technique (ii) (see e.g. [7]). In the following we are
going to apply it for the special case of f = 0 so let us
concentrate on it in detail.

Starting from the Taylor series for the function f(u):

f) =3 ej (3.1)
j=>0
one constructs the Borel transform
cs
F(ut) = Z j_]' (ut)? (3.2)
Jj>0

Then one represents (3.2) in the form of Padé approxi-

mant F[}z%j] (ut):

L .
FPadé () — Dizo it

[1./M] S b (3.3)

(in the subsequent analysis, proceeding in two-loop ap-
proximation we will use the [1/1] Padé approximant) and
the resummed function is given by:

fres(u) = /000 dt et FFPede(yt), (3.4)
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IV. FIXED POINTS AND FLOWS IN THREE
DIMENSIONS

We will proceed here by considering the flow equations
(2.8),(2.9) direcly at d = 3. Let us look for the solutions
of the fixed point equations at d = 3 paying attention
to the possible asymptotic nature of the corresponding
series (2.10),(2.11). Consider first the equation for the
uncharged fixed point U. Substituting value f* = 0 into
(2.11) one obtains the following expression for the func-
tion BV = B, (u, f* = 0):

n+8 , 3n+14 4
- u”.

U— _ 4.1
u = —ut —g—u 12 (4.1)

Solving this polynomial for the fixed point one obtains
for the non-trivial u* > 0:

vn? —20n — 104

U*U TL+8
3n + 14

T 3n+14

(4.2)

and immidiately the “condition of the existence of non-
trivial solution u*U” qualitatively very similar to those,
appearing in the frames of the e-expansion technique (see
[10,17] and formula (2.13) of the present article as well)
follows : the solution exists only for certain values of
n > n. = 24.3 ! From fig. 1 one can see that the function
BY (4.1) does not intersect the u-axis at any non-zero
value of u for n = 2. In the O(n)-symmetric ¢*-theory at
d = 3 this situation is well-known (see e.g. [51,52]): the
B-function calculated directly at d = 3 does not possess
a stable zero for the realistic values of n, nevertheless in
three-loop order the presence of the stable fixed point
is restored. To avoid this artifact appearing in the two-
loop calculation one can either resume the series for -
function or construct the appropriate Padé approximant
[53] in order to perform the analytical continuation of
(4.1) out of the domain of convergence (which is equal
to zero for the series in the right-hand side of (4.1). Let
us try both ways. Representing (4.1) in the form of [1/1]
Padé approximant:

; -1+ Au
U,Padé U
’ =y 4.
Bu “ 1+ Byu (4.3)
one obtains:
n? +7n + 22 3n + 14
Ay = —F—7), = m—ovs 4.4
6(n + 8) 2(n + 8) (44)

and, solving the equation for the fixed point:

pU-Padé (o «P.Padéy _ () (4.5)
one obtains:
, 6(n + 8)
*U,Padé
) =77 4.6
u n2 +Tn + 22 ( )
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So we obtained a qualitatively different situation. The
behaviour of the function BYV-F2%(y) for n = 2 is shown
in fig. 1 by the dashed curve. If one is interested in more
accurate values of u* some resummation has to be ap-
plied. Choosing the Padé—Borel resummation technique
[54] and following schemes (3.1)-(3.4) one obtains for the
resummed function U5

0.500 - BY

u

—— Padé-Borel resummation
0.300 — —— [1/1] Padé-approximant

solioiok Non-resummed function

0.100
s u
Ve
15 2.0
-0.100 -
-0.300
-0.500

Fig. 1. Bu.-function of the uncharged model Y at d = 3,
n=2.

2
uB,

ﬁQIL]’ReS = u[2(1 - Au/Bu)(l - E(

) — 1, (47)

the coefficients A,, B, are given by (4.4), E(z) =
ze® Ey (z) , where the function

E\(z) = e*’”/ dte t(x +1)!
0

is connected with the exponential integral by the relation
[55]:

E\(z £i0) = —Ei(—z) Fim.
The behaviour of the function 8Y-%¢% () is shown in fig. 1
by the solid curve. And the fixed point coordinate u*V:fes

is obtained solving the non-linear equation:

BU-Res (y<UsResy — . (4.8)

The coordinates of the fixed point u*U obtained on the
basis of Padé approximation and Padé-Borel resumma-

tion (u*V-Padé g *U.Res) for different n are given in Ta-
ble I.
We conclude from this analysis: in d = 3 theory

Padé approximants (as an analytical continuation of 3-
functions) qualitatively may change the picture and lead
to the values of fixed points comparable to those obtained
by the Padé—Borel resummation technique.
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Consider now the equation for the charged fixed point
C applying the above considerations to 3¢ for which the
expression at d = 3 reads (2.10):

B =—f+5f2+nf (4.9)

The behaviour of 3 as a function of f is shown in fig. 2
by asterisks. Note however that in this case the function
B¢ even without any resummation possess a non-trivial
zero f*M (its value f*©>P" is given in the 2nd column
of Table IT). Representing (4.9) in the form of [1/1] Padé
approximant:

; -1+ Asf
Padé f
=f—= 4.10
& I +B;f (4.10)
one has for Ay, By:
36
Ar = n; , By=-6, (4.11)

and, solving the equation for the fixed point coordinate
fCoPade.

Padé(p+C.Padéy _ (4.12)
one obtains:

*C,Padé _ 6 4.13

f 136 (4.13)

The function B§%%(f) is shown in fig. 2 by the dashed

line, the coordinate f*¢>Fad¢ is given in the 3rd column
of Table II. But now the series (4.9) is not alternating
and this results in the presence of a pole (at f = %) in
the approximant (4.10). Therefore (4.10) correctly rep-
resents the function B¢(f) only for f < 1/6. Let us
note however that for all the positive n a fixed point
exists and its coordinate f*M-Fe?¢ lies within the limits
0 < f*¢Padé < 1/6, where no pole in (4.10) exists. Com-
paring this result with those obtained for the uncharged
fixed point one can note that the representation of 3
in the form of the Padé approximant does not qualita-
tively change the picture (a solution for B;(f) = 0 ex-
ists at d = 3 even without an analytical continuation)
but results in a decrease of the fixed point coordinate.
Contrary to the e-expansion values (2.14) there does not
exist any border line values of n for the positivity of f*¢.
Unfortunately we can not check this result by means
of Padé—Borel resummation technique: the above men-
tioned presence of a pole in the denominator of the Padé
approximant makes the corresponding integral represen-
tation problematic [56]. In order to find the u-coordinate
of the fixed point C, u*“, we have to deal with a func-
tion of two variables, 3,(u, f), represented by a rather
short series (2.11). Another problem arises due to the
fact that function 3, (u, f) contains generating terms (i.e.

Bu(u =0, f) # 0). In order to perform some kind of the
analytic continuation of the function of two variables one
can use rational approximants of two variables the (so-
called Canterbury approximants or generalized Chisholm
approximants [57,58]) which are generalization of Padé
approximants in the case of several variables. But the
presence of generating terms makes this choise rather
ambiguous. The most reliable way in such a case seems
to be the representation of 3, (u, f) in the form of a “re-
solvent” series B(u, f,t) [58,59] introducing an auxiliary
variable ¢, which allows to separate contributions from
different orders of the perturbation theory in the cou-
pling constant. The series for B(u, f,t) then reads:

B(U,f,t) EBU(Utaft) = Z bJ tja

j=0

(4.14)

with obvious notations for the coeflicients b;. Now one
considers (4.14) as a series in the single variable ¢. This
series can be represented in the form of Padé approxi-
mant BY%4(y, f,t) as the analytical continuation of the
function B(u, f,t) for the general value of ¢. In particular
at t = 1 the equality holds B(u, f,t = 1) = B,(u, f) and
the approximant

B u, f,t =1) = 8,""(u, f)

represents the initial function 3, (u, f). In our case the
expression for B(u, f,t) reads:

B(u, f,t) = t(by + bat + bst?), (4.15)

where:

8u2 — 6uf + 1812,

3n+14 . 2n410 ,
3 u” + 3 u f

n 71n + 174u
12

bs =

2= (Tn 4 90) f3.

Representing the expression in brackets in the right-hand
side of (4.15) in form of a [1/1] Padé approximant we
have:

, 1+ A, rt
pPade ) =t by ——I" 4.16
(U,,f, ) 1]-+Bu,ft7 ( )
where
b2 b3 _b3
A,r=———=, B, — 4.17
A = (4.17)
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0.500 o B¢

0.300 stk Non-resummed function

~ [1/1] Padé-approximant

0.100

-0.100

-0.300

Liovar v bevrrvrvia brvivgrrer b byl

-0.500

Fig. 2. By-function at d = 3,n = 2.

n o UsPadé W UrRes
1 1.800 1.315
2 1.500 1.142
3 1.269 1.002
4 1.091 .888
5 951 794
6 .840 117
7 .750 .652
8 .676 .597
Table I. Fixed point U coordinate »*U as a function of n.
u*U"Padé; ohtained on the basis of [1/1] Padé approximant;
u*V>Res: obtained by Padé-Borel resummation.
n f*O,Di’r f*C,Pa,dé f*O,e f*O,eZ
1 .920 .162 6.000 -210.000
2 .629 .158 3.000 -51.000
3 .500 .154 2.000 -22.000
4 424 .150 1.500 -12.000
5 372 .146 1.200 -7.440
6 .333 .143 1.000 -5.000
7 .304 .140 .857 -3.551
8 .280 .136 750 -2.625

Table II. Fixed point C coordinate f*¢ as a function of n.
&P obtained by direct solution of the equation for fixed
point; f*o "Padé. obtained on the basis of [1/1] — Padé ap-
proximant; f *C'2. e-expansion result with the linear accuracy
in g f*C’E

€.

: g-expansion result with the square accuracy in

Let us note here that the function B(u, f,t) obtained in
this way as the approximant for the function of two vari-
ables S, (u, f) obeys certain projection properties in the
single—variable case: substituting f = 0 or v = 0 into
(4.16) one obtains the [1/1] Padé approximant for 37 (u)
or the [0/1] Padé approximant for 3, (v = 0, f). Finally
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the expression for 3,(u, f) approximated in such a way
reads:

1+Au7f

Padé _
ﬁu (uaf)_ b11+Bu,f

(4.18)

Substituting into the equation for the fixed point
Bu(u*®, f*¢) = 0 the value for the coordinate f*¢ =

fror adé (4.13) one obtains the non-linear equation for
*C Padé.

B+ (u, f = [P =0, (4.19)

Solving (4.19) with respect to u one obtains the values
u*@Pedé given in Table III. The intersection of the func-
tion BPe%(u, f) (4.18) with the plane f = f*©-FPadé ig
shown for n = 2 in fig. 3. The first fixed point (C1) given
in the 2nd column of Table IIT turns out to be unstable,
while the fixed point C2 is stable also for the case n = 2
we are mainly interested in.

The crossover to the asymptotic critical behaviour is
described by the solutions of the flow equations (2.8),
(2.9) with the initial values of u(fy) and f(fy) at £ = ly
[60]. Substituting for the S-functions entering the right-
hand side of (2.8), (2.9) their analytical continuation in
form of the Padé approximants (4.10), (4.18) we get the
following system of differential equations:

df -1+ Asf

= 4.2
a = TrB (4.20)
du 1+Auf
l— = 4.21
dl~ T+ B, (4.21)

where Ay, By and A, ¢, B,
(4.17) correspondingly.
Solving equations (4.20), (4.21) numerically one gets
the flow diagram shown in fig. 4 for the case of n = 2.
The space of couplings is divided into several parts by
separatrices (thick lines in fig. 4) connecting the fixed
points. Besides the Gaussian (G) there exist three fixed
points, one corresponding to the uncharged (U) and two
other corresponding to the charged (C1, C2) cases. The
fixed points G, C1 and U are unstable (solid circles in
fig. 4) and the fixed point C2 is the stable one (shown
as a solid box in fig. 4). Several different flow lines are
shown in fig. 4. They can be compared with the cor-
responding flow picture obtained by a direct solution of
the flow equations for the two-loop S-functions expressed
by the third-order polynomials in couplings u, f (2.10),
(2.11) (see fig. 2a in [17]). There one can see that no sta-
ble fixed point existed and even the fixed point U was
absent. Comparing fig. 4 and fig. 2b from [17] one can see
how an analytical continuation of the S-functions (2.9),
(2.10), done only partly in [17] and performed here in
the form of Padé approximants restores the presence of
the fixed point U (unstable) and leads to the apperance

. are given by (4.11) and
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of a new stable fixed point C2 for the charged model.
The coordinates of the fixed points U, C1, C2 are given
in the corresponding columns of tables I, IT, IIT and for
n = 2 they are equal to:

n u*C-Padé

C1 C2
1 184 3.309
2 181 2.457
3 179 1.781
4 177 1.150
5 175 0.473
6 175 0.369
7 176 0.305
8 179 0.256

Table III. Fixed point C coordinates u* 724 obtained on

the basis of [1/1] Padé approximant for the “resolvent” series
as a function of n. C1 : unstable fixed point; C2 : stable fixed
point.

0.5

0.0 P\ A
1 1.0 2.0 3.0

0.5

1.0 4

Fig. 3. Intersection of the function 8L (u, f) at d = 3,
n = 2 with the plain f = f*¢%2% in two-loop approximation.

0.10

0.05 -

0.00

-0.5 25

Fig. 4. Flow lines for the case n = 2, d = 3 given by equa-
tions (4.20), (4.21) (for further description see the text).

U:u* = 1.500, f* =0,
Cl:u* =.181, f* = .158,

C2:u* =2457, f* = .158.

V. CRITICAL EXPONENTS

The values of critical exponents can be determined by
the fixed point values of the (-functions defined on the
basis of renormalizing Z-factors (2.4) - (2.8) by:

G =pdlnZ;/0p, (5.1)

where the derivative is taken at fixed unrenormalized
couplings. The expressions for the (-functions related to
the order parameter and the temperature field renormal-
ization in two-loop approximation read [17]:

Co=—3f+ (n7-;2)u2 . (11n21- 18) . (5.2)
(=T, D,

2(113:L Q)uf 3 (5n2—|— 1)f2, (5.3)
Ca =%f+nf2. (5.4)

If there exists a stable fixed point, the critical exponent
v of the correlation length, the critical exponent 7 of the
order parameter susceptibility and the critical exponent
a of the specific heat are given by:

v=02-¢)", (5.5)
v=@-¢) 2 (5.6)
a=@2-¢) -2, (5.7)
n=G (5.8)

here (, = (y — ;- The exponents (5.5) - (5.8) are re-
lated by the familiar scaling laws. From the analysis given
above it follows that the charged fixed point C'2 is the
stable one and this results in the values for exponents
(5.5)—(5.7) different from the values of the uncharged
fixed point U, i.e. they are not given by the *He values
as it is sometimes stated (see e.g. [2,21,5]).

Recently an interesting consequence of the existence of
a stable charged fixed point (C) has been observed [22].
According to the renormalization of the charge (2.3) the
B¢-function reads

By =1 (e = Calf,u)) (5.9)
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Thus at a fixed point with f* nonzero the value of the
gauge field (-function is exactly given by ¢} = . That
means that the penetration depth A and the correlation
length ¢ are propotional and the temperature depen-
dence follows a power law with the exponent v [22]. At
the fixed point with f* = 0 this is not the case, there we
have (% = 0 (each loop contribution to the (4-function
contains at least one f-factor). Then the penetration

depth behaves as A ~ & ** and one would have two
different critical length scales.

Trying to obtain the numerical values of the critical
exponents on the basis of the values of fixed point C2
coordinates f*¢-Faedé »C2,Padé given in Tables I, II in
order to be self-consistent let us perform the same type of
analytical continuation for the series for (-functions, as
those, which have been applyed to the S-functions (2.10),
(2.11). So, introducing the auxiliary variable ¢ let us rep-
resent functions (5.5)—(5.7) in the form of resolvent series
in ¢ and then we will chose the [1/1] Padé approximants
for these series, which at ¢t = 1 will give us the analytical
continuation of the series requested. Obtained in such a

al? =1/2,

alV = (n+2)/12u—3/2 f,

v

way expression for the critical exponent ¢ (¢ = {v,7y, @)}
reads:

_ (o L+4
Qﬁ_ad) 1+B¢.

(5.10)

The expressions for the coefficients Ay, By in (5.10) read:

1 2), (1
Ay :aé) + By, By = —aé)/aé), (5.11)

(2)
and ag

in t:

are to be determined from the resolvent series

6= ald ti]_. (5.12)

i>0

Substituting (5.2) and (5.3) into (5.5)—(5.7) and repre-
senting (5.5) - (5.7) in the form of (5.12) one finds:

a? = (n? —n —6)/144 u® + (7T1n + 138)/48 f2 + (n +2)/12 uf, (5.13)
ago) =1,

al) = (n+2)/12 4,

al?) = (n® — 2n — 8)/144 u® + (5n + 1) /4 f> + 5(n + 2)/24 uf, (5.14)
al) =1,

al) = —3(n+2)/12u + 9/2 f,

a?) = (=3n® + 3n + 18)/144 u® — (T1n + 138)/16 f> — (n +2)/4 uf. (5.15)

Now considering the case n = 2 and substituting
coordinates of the fixed point C2 (f*©-Fedé = 158),
w*C2Padé — 9 457 (see Tables I, II) into (5.13)—(5.15)
one obtains for the critical exponents (5.5)—(5.8) [61]:

v =086, =188, (5.16)

a=-1.14, n=-0.19.

The application of the Padé approximants for the an-
alytical continuation of the functions may result in the

352

appearance of poles in these functions. If the pole is lo-
cated in the region of expansion parameters which is un-
physical (e.g. negative coupling u or f) this does not
complicate the analysis. This was the case for the (-
functions in the region of couplings less than the fixed
point values. For the (-functions however considering the
non-asymptotic behaviour (and thus being far from the
stable fixed point) one passes through a region of cou-
plings where the Padé approximation for the (-functions
becames ambiguous resulting in the appearance of a pole.
Therefore studying the crossover behaviour in the next
subsection we will still keep the polynomial representa-
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tion for (-functions instead of the Padé approximants.
Then for the asymptotic values of critical exponents one
gets:

v =077, =162, (5.17)

a=-0.31, n=-0.10.

Comparing the values (5.17) and (5.18) show a numerical
difference of 15% in v and « and a considerable increase
of a. However there is no qualitative change (e.g. the
sign of the specific heat exponent remains the same).
This should be compared with the values, given by other
authors: v = 0.53 and n = —0.70 [22] and n = —0.38
[23].

Effective exponents are usually defined by the log-
arithmic temperature derivatives of the corresponding
correlation functions (see e.g. [11]). These can be found
from the solutions of the renormalization group equation
for the renormalized vertex functions. These effective ex-
ponents contain two contributions, one from the corre-
sponding (-functions now taken at the values of wu(f),
f(€) of the flow curve considered (“exponent part”), and
one from the change of the corresponding scaling func-
tion (“amplitude part”). The last contributions will be
neglected since we expect them to be smaller than the
differences for the fixed point values of the exponents
coming from the different treatments discussed before.
Thus we have:

v=(2-G00)7, (5.18)
Y=2-60)7 2= 0), (5.19)
a=(2-G(0)" (e - 20(0). (5.20)

The flow parameter £ can be related to the relative tem-
perature distance T, by the matching condition #(¢) =
(¢5710)?, with & the amplitude of the correlation length.

0.50
0.45
0.40

0.35

aul o aanul sl PRI sl Ll
10°® 10° 10* 10° 102 107

0.30 2l PR
10°® 107

flow parameter

Fig. 5. Effective exponent v for the flows shown in fig. 4
(for further description see the text).

—|U,C1

PRI B R R T B R W R TTTT B R TTTT MR E AT B W AT FEEERTTIT BT MR W R
10 10 107 10® 10 10 10 102 107
flow parameter

Fig. 6. Effective exponent v for the flows shown in fig. 4
(for further description see text).

150 T T T T T T T T

PO R TTT ERP PR ETIT RS TITTY BEPRrE T REPErE I

10° 102 107"

10°® 10 107 100 10°® 10
flow parameter

Fig. 7. Effective exponent « for the flows shown in fig. 4
(for further description see text).

We have computed these effective exponents, see fig. 5—
fig. 7, along the flow lines shown in fig. 4 by inserting [62]
values of the couplings u(¢) and f(¢) into Eqs. (5.18)-
(5.20). For the separatrix 1 we started with initial con-
ditions leading to a flow, which did not stick in the fixed
point C1 but slightly missed it although the flow curve
did not differ from the separatrix within the thickness
of the lines shown in fig. 4. For the curve number 4 we
started somewhat further away from the Gaussian fixed
point G leading to the initial values of the effective ex-
ponents between their Gaussian values and their values
for the uncharged fixed point U. Note that the values of
the effective exponent v for the uncharged fixed point U
and the charged fixed point C1 are the same within the
accuracy given by the scale of the figure.

VI. CONCLUSIONS

In the present article we have re-examined expres-
sions for the renormalization group functions of the field—
theoretical gauge model for a superconductor obtained
previously in a two-loop approximation [17]. The main
point which is discussed in this context is whether the
equations for S-functions possess a stable fixed point or
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not. The absence of the stable fixed point is often in-
terpreted as a change of the order of phase transition
(caused by the presence of the magnetic field fluctua-
tions) and evidence of the fluctuation—induced first-order
phase transition. However this change of the order of the
phase transition (being of the second-order in the ab-
sence of the coupling to the gauge) is confirmed only by
perturbation theory calculations in low orders ( [10], see
[17] and the references therein as well).

In this article we applied a simple Padé analysis to the
series under discussion [63].

In the case of one coupling such an approach gives a
qualitatively correct picture of the phase tansition and
restores the presence of a stable fixed point ( [51], see
formulas (4.2), (4.6) of this article as well). The same
situation happens here in the case of two couplings: at

n = 2 the “uncharged” fixed point U (having coordi-
nates f*U-Pedé — 158 o*U:Padé — 9 457) appears to be
stable, which leads to a new set of critical exponents. We
note however that the pair correlation function critical
exponent, i calculated by familiar scaling relations on the
basis of sets of values (5.17) or (5.18) remains negative,
which agrees with the result of [23]. Being calculated only
in a two-loop approximation with the application of Padé
analysis, these values for the critical exponents are to be
considered as preliminary ones. The main point we claim
here is that within the framework of the renormalization
group analysis for the superconductor model there still
exists the possibility of a second-order phase transition
characterized by a set of critical exponents differing from
those of *He.
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®A30BUH NEPEXII Y HAOIIPOBIOHUII CTAH € IEPEXOIOM
ITEPIIIOTO YMX OPYITOT'O POOY?

P. ®omsk’, 10. Fonosaa’
TIHcmumym meopemuuHol iduru, yHisepcumem Hozana Kenaepa, A—4040 JTiny, Aecmpis
HIHcmumym pisuru wondencosanur cucmem HAH Yrpainu
Vrpaina, 290011, Jlvsis, eys. Ceenyiyvrozo, 1

Hocnimxkeno dha3osuil nepexin y HaAIpoBiaHui cTad 3 ypaxyBanuam (JIIOKTyalliil mapaMerpa BIOPSIKYBaHHI

i BEKTOPHOTO MArHETHOTO TOJIsI Ta OOTOBOPEHO MUTAHHS MPO pimx (pa30BOTO MEpexony y Takiit momesti. Mu BuKO-

PHMCTOBYEMO TEOPETHKO—ITOJILOBUII PEHOPMIPYMOBHil MIXid I PO3MISASIEMO TEOPETUKO—TIONIHOBY KaJIiOpyBaIbHY

MOZIE/Tb HAINPOBITHUKA, y3ara/JbHEHY Ha BUINAJOK 71/2 KOMIOHEHTHOTO KOMILJIEKCHOTO MAPAMETPA BIIOPAIKY-

BanHs. [lomepenHi peHOPMIPymOBL 06YNCIIEHHS 3 G€3MOCePEIHIM £-PO3KJIAIOM CBLIYUIIH PO Te, IO Y TaKiih Mo-

nmesti BinOyBaeThest dazoBuit mepexin mepmroro poxy. Mu e pa3 mpoaHaIi3yBaJiM BUPA3W [IJIS PEHOPMIPYMOBUX

dyukuiit y gpomnersieBoMy HabmKeHHi B TpuBuHMipHOMY npocTopi. OcobsinBy yBary 3BepHYTO Ha Te, IIO BiIMOBIIHI

pPAIu MOXYTH OYyTH aCHMOTOTHYHUME I MAaTh HYJIbOBHH pamiyc 36ixkuOCTI. Mu 06roBOpoeMo MOXKJINBL CIOCOOH

AHAJITHIHOTO MPOMAOBXKEHHS OTPUMAHUX PAAiB. Ha mimctasl mOpIBHAHHS Pe3yJIbTATiB, OTPUMAHUX 33 TOIOMO-

roio “OesmocepemHix” obumciens, [lame—anasisy Ta texuiku [lame-BopesiBchbKOro mepecyMOBYBaHHS 3pOOJIEHO

TaKe MPpUNYIMEHHA: Y MOILeJ'Ii € MOXKJIUBICThH (1)3.30B01"0 nepexony Apyroro poay 3 KPpUTUIYHUMU MOKA3HUKAMU, IO

BLOPI3HAIOTHCA Bil KPUTUIHUX MOKA3HUKIB HAMIIMHHOL pimmau. [le npunymeHHs y3rolXKyeThCS 3 BUCHOBKAMH,

3pO0JIeHNMY HEHABHO 3a IOMOMOrOI0 HEMepPTyPOATUBHUX MiIXOIiB.
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