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We shortly illustrate how the �eld{theoretic approach to critical phenomena takes place in the

more complete Wilson theory of renormalization and qualitatively discuss its domain of validity.

By the way, we suggest that the di�erential renormalization functions (like the �-function) of the

perturbative scalar theory in four dimensions ('

4

4

) should be Borel summable provided they are

calculated within a minimal subtraction scheme.

Key words: �eld{theoretic approach, critical phenomena, renormalization group.

PACS number(s): 11.10.Hi, 05.70.Jk

I. INTRODUCTION

Field{theoretic techniques have appeared e�cient in

the obtention of universal properties attached to critical

phenomena (for a review see [1]) and they are, nowadays,

currently used as such. However these techniques have

been questioned by the past (see, e.g., [2{5]) and, recent

discussions, relative to some particular aspects of the ap-

proach to criticality, such as the sign of the corrections

to the Ising scaling [6{9] or the form of the classical{

to{Ising crossover [10], have again put forward questions

relative to their domain of validity in the study of critical

phenomena.

By qualitatively describing the relations between the

analytical [11] �eld theoretic [12{14] and the Wilson [15]

formulations of the renormalization group (RG) theory,

our aim in this article is to illustrate the origin of the

limitations of the former approach. To this end we have

considered the local potential approximation [16{18] of

the renormalization of the scalar theory [19] that, un-

der the form of a non-linear partial di�erential equation,

involves the essential properties of Wilson's exact equa-

tions [15,20].

We stress on the fact that this article is only for il-

lustrative purpose, especially, we do not try to be rig-

orous (the reader interested in exactness and/or in ex-

plicit mathematical formulas may look, for instance, at

[21{23,8,9]; other recent studies of the local potential ap-

proximation of the RG equations are quoted in [24]). The

ingredients of this article are taken from a more detailed

version [25], some of them have already been the object

of short publications [26{28].

The organization of the article is as follows.

In the following of this part we brie
y remind the

reader of the main steps of the analytical version of renor-

malization with a view to introduce our notations and

some useful de�nitions. We then brie
y present the ques-

tions raised by some authors relatively to the limit of va-

lidity of the �eld{theoretic approach to critical phenom-

ena [14]. In part II, we introduce and formally discuss

the notion of continuous scale dependence in �eld theory

which is the main physical consequence of the renormal-

ization theory in, say, particle physics [29]. We illustrate

how it is used in the �eld{theoretic approach to critical

phenomena. The object of this part is to bring out some

general features of the analytical framework with a view

to recover them in the non-analytic approach of Wilson

considered in part III. There, we study in some detail the

concrete example of the local potential approximation

of the exact RG equations. We discuss the continuum

limit of interest in �eld theory with a view to a compar-

ison with the analytical treatment. Especial emphasis is

made on the massless (or critical) theory in three dimen-

sions and several notions such as the renormalized cou-

pling \constant", the \�-function" � � � are presented. We

concretely show that a \�-function" is associated to the

slowest renormalization 
ow (see [15], p. 132 and [22]) in

the critical (massless) hypersurface of the Wilson space

of Hamiltonian{parameters. We also concretely show the

existence of the slowest renormalization 
ow approaching

the infra-red stable �xed point from the \wrong" side and

responsible for \negative" corrections to the Ising scaling

[28]. Finally, in part IV, we brie
y discuss on the origin of

the singularities encountered in perturbation �eld theory.

We especially argue that the perturbative series of the

�-function calculated within a minimal renormalization

scheme in four dimensions should be Borel summable.

A. Brief reminder, notations and de�nitions

Let us consider the scalar \Hamiltonian" involving the

single �

4

d

interaction and a momentum cut o� �

0

.

Hf�g =

Z

d

d

x

�

1

2

�

(r�(x))

2

+m

2

0

�

2

(x)

	

+

g

0

�

4�d

0

4!

�

4

(x)

#

: (1.1)
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The perturbative renormalization process [30] intro-

duces a rede�nition of the �eld (� ! �

R

), of the cou-

pling constant (g

0

! u) and of the mass (m

0

! m).

Subtraction conditions are necessary to �x the �nite val-

ues of the primary divergent parts of the theory. The

arbitrariness in the choice of the �nite parts is exploited

to give rise to the RG equation [12{14] (see Eq. (1.2)).

It is worth to distinguish two main families of subtrac-

tion conditions:

family 1 \subtraction point" schemes that de�ne the �-

nite parts by explicit conditions on some renormal-

ized vertex{functions considered at some value of

their external momenta (or wave vectors).

family 2 \minimal subtraction" schemes such as ob-

tained by exclusively subtracting the poles occur-

ring at d = 4 in the dimensionally regularized per-

turbation expansion [31]. They amount to selecting

a peculiar (minimal or the \slowest", see section

IIID 1) scale dependence for the renormalized cou-

pling \constant".

In the �rst family, two types of renormalization

schemes must be distinguished:

type 1 the massive schemes, in which the limit of a

vanishing renormalized mass (m ! 0) | i.e., the

critical theory | is not de�ned. In such schemes

the mass parameter m is similar to the inverse of

the correlation length � of statistical systems and

provides a \natural" scale of reference for the mo-

menta (or the wave vectors).

type 2 the Weinberg [32] schemes, in which the mass-

less theory is de�ned. A necessary \arbitrary" scale

of reference (�) is introduced. The renormalized

\mass" parameter (t), when it is di�erent from

zero, is similar to the reduced temperature scale

(T � T

c

) =T

c

of statistical systems undergoing a

second order phase transition.

Family 2 involves only schemes of type 2. For the sake

of shortness, from now on, we shall exclusively consider

a renormalization scheme of type 2.

The renormalized vertex (or correlation) functions

�

(N)

R

(fp

i

g; t; u; �) satisfy the following RG equation [14]:

�

�

@

@�

+ �(u)

@

@u

+ (2�

1

�(u)

)t

@

@t

�

N

2

�(u)

�

��

(N)

R

(fp

i

g; t; u; �) = 0 (1.2)

in which the di�erential renormalization functions �(u),

�(u) and �(u) are calculable as series in powers of u.

The �-function is of particular interest. It controls the

di�erential evolution of u as the arbitrary scale � is var-

ied:

�

du

d�

= �(u); (1.3)

�(u) = �(4� d)u+ u

2

+O(u

3

): (1.4)

1. An implicit hypothesis

The perturbative expansion of �eld theory diverges

[33] but the proof [34] of Borel summability of the per-

turbative series of the massive �

4

3;2

�eld theories (in di-

mension three or two) suggests that the other schemes

of renormalization produce also Borel summable series

for d < 4 [1,35]. In addition to Borel summability, it is

however implicitly assumed that the di�erential renor-

malization functions are non-singular at the nontrivial

(infra-red stable) �xed point u

�

ir

, i.e.,

�(u) = !(u� u

�

ir

) +O[(u� u

�

ir

)

2

]; (1.5)

�(u) = � +O[u� u

�

ir

]; (1.6)

�(u) = � +O[u� u

�

ir

]: (1.7)

2. Main \objections" encountered in the literature

1. Parisi has objected [2] that the infra-red singular-

ities involved in the perturbative expansion of the

massless theory (set 2) with d < 4, and which are

by-passed by assuming that � = 4�d is an in�nites-

imal parameter (�-expansion) [36], do not allow

any con�dence in the estimations of critical expo-

nents in three dimensions from the massless theory

\without an additional hypothesis on the resum-

mation of these infra-red singularities" [2]. Instead

Parisi advocates the use of the massive framework

(set 1) directly in three dimensions. From another

side, it has been shown [37] that the elimination

of the infra-red singularities of the massless the-

ory (d < 4) requires the explicit consideration of

parameters, such as the \critical bare mass" m

0c

of the dimensionally regularized theory. The main

consequence of this elimination is the appearance

of non-perturbative terms in the expansion [37],

thus revealing the non-perturbative nature of �eld

theory [26].

2. Baker and Kincaid [5] have emphasized [38] that

the �eld{theoretic approach to critical phenomena

is based on the two limits �

0

! 1 (continuum

limit) and g

0

!1 (i.e., u! u

�

ir

) performed in this

order, consequently the framework of �eld theory

could be unsuited to describe the critical behavior

of some systems especially those which correspond

to an in�nite g

0

while �

0

is �nite (e.g. the spin-

1

2

Ising model). A discussion of this \objection" has

already been presented elsewhere [27] and we shall

not reproduced it in this article.
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3. Liu and Fisher [6] and Nickel [7] have pinpointed

that the (negative) sign of the corrections to scaling

in respectively the three-dimensional Ising mod-

els and the self-avoiding walk models is not repro-

duced in the �eld theoretic framework. This is rig-

orously true since the renormalized coupling of the

�

4

d

-theory (with d < 4) is, by construction, con-

�ned to the range [0; u

�

ir

] [39] (see also [8,9]) in-

ducing a positive sign for the corrections to scal-

ing [27,40,28]. However, the notion of e�ective �eld

theory (see section III D 2) allows us to make sense

to calculations in the range u > u

�

ir

in the renor-

malized theory [27,28]. The detailed discussion of

that point being already presented in [28], we shall,

again, not reproduce it in this article (see, however,

section III E 1).

4. Nickel [3,4] has asserted that the �-function of

the massive scheme in three dimensions involves

con
uent{branch{point{singularities at the non-

trivial �xed point u

�

ir

implying at least that the

quoted uncertainty in the �eld theoretic estimates

of critical exponents are \unrealistically small" (see

part IV).

II. SCALE{DEPENDENCE IN QUANTUM FIELD

THEORY

\Renormalization is not a technical device to get rid

of in�nities but rather is an expression of the variation

of the structure of physical interactions with changes in

the scale of the phenomena being probed." [41]

Theories are classi�ed according to the range of

length{scales that they cover: classical mechanics, atomic

physics, nuclear physics, particle physics. That kind of

scale{dependence is step{wise: the physical parameters

involved in a theory are constant in the range of length{

scales that the theory is assumed to cover. The scale{

dependence we are presently interested in di�ers from

the usual notion in that some (or all) physical param-

eters of a theory are no longer constant but continu-

ously depend on the speci�c length{scale referred to in

the range of validity of the theory. The technique which

allows us to de�ne and to deal with such continuously

scale{dependent parameters is called the renormalization

group �rst discovered and developed [42] in studying �eld

theory [12,13].

The analytical version of renormalization theory yields

the following property for the renormalized two-point

vertex function of the massless (t = 0) '

4

-theory in four

dimensions:

~

�

(2)

R

�

p

�

;u

�

= Z

3

(�)

~

�

(2)

R

�

p

��

;u(�)

�

(2.8)

in which we have used � to reduce the dimension of the

two-point function

~

�

(2)

R

= �

(2)

R

=�

2

.

Eq. (2.8) expresses that �

(2)

R

takes on essentially the

same form (up to some factor) at external momentum

values ~p and ~p=� (measured in unit of �) provided that

u and the �eld �

R

(x) are changed adequately into u(�)

and �

R

(x)=(Z

3

(�))

1=2

respectively.

In Eq. (2.8) the renormalized coupling u is no longer a

constant but a function u(�) for which it is meant that

u implicitly depends on the global momentum{scale �

[43].

In �eld theory, u may be thought of as a physical

coupling strength that measures the interaction between

scalar particles (if any) and it is unusual to make it con-

tinuously depend on a momentum{scale of reference be-

cause usual (i.e. at human scales) physical parameters are

�xed. That is why one usually refers to u as a coupling

\constant". In fact, the continuous scale dependence of

the strengths of interactions conveys a fundamental prop-

erty of �eld theory [12]. It implies that it is useless to

indicate the strength of an interaction if one does not

specify the momentum (or energy or length) scale which

it is attached to. For example, the usual de�nition of

the electron charge e (� = e

2

=�hc = 1=137) by classical

macroscopic experiments (like Millikan) corresponds to

very large distances [44].

A. Functional form of the scale dependence

If the parameter u depends on � continuously, the ana-

lytical version of RG theory does not provide us with the

value of u which is actually associated to the given value

of the momentum{scale � chosen as reference. The ana-

lytical approach to �eld theory (perturbative in essence)

only provides us with the evolution of u under a change

of �. For example Eq. (2.8) involves u(�) (correspond-

ing to the change � ! ��) and not the functional form

\u(�)". There is an obvious technical reason for this fact:

u is dimensionless while � is not and in the massless the-

ory no dimensioned parameter other than � is available

in perturbation. The main reason, however, is that the

functional form of the scale dependence is highly non-

perturbative in nature (see parts III and IV).

The theoretical �-dependence of u is, in the analyti-

cal treatment, only written down under the di�erential

form via the �-function [Eq. (1.3)]. An initial condition

(an external information such as a measurement) is re-

quired to determine the functional form \u(�)" from

Eq. (1.3). When a value u

1

has been associated to a

given momentum{scale �

1

, RG theory allows the deter-

mination of all the other values u(�) associated with the

running momentum{scale � = ��

1

: integration of �(u)

with the given initial condition, provides the function

u(

�

�

1

) = U (�=�

1

;u

1

). In absence of any initial condition,

theory provides us with a continuous family of functions

U indexed by all possible values u

1

that may be associ-

ated to a given value of the momentum{scale of reference

�

1

[44].

Determining the value of u which is associated to a

given value of �, we call it determining the functional

form of the momentum{scale dependence of the coupling

strengths. This determination call for non-perturbative

methods (see parts III and IV).
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B. A technique to derive critical behavior

Let us formally illustrate how the momentum{scale

dependence of the interaction strengths in QFT is used

to study critical behavior.

Fig. 1. Qualitative representation of the momentum{scale

dependence for the �

4

d

�eld theory with d < 4. The curves

drawn (see also �g. 2) are obtained from assuming � = 1=2

and a �-function of the form �(x) = x(x � 1); t(�) stands

for

~

t(�)=�

2

. Among the continuous family of curves (dashed

curves) a measurement is required in order to choose (full

circle) one curve (full curve). An upward arrow indicates the

infra-red direction, a downward arrow the ultra-violet direc-

tion. See text for more detail.

Fig. 2. Use of the �

4

d

�eld theory in the study of critical

phenomena. The presentation is similar to �g. 1. See text for

a discussion of the �gure.

In order to brie
y illustrate the di�erences which occur

in the principles of using renormalization in �eld theory

in one hand and in the study of critical phenomena in the

other hand, we have drawn two pictures [�gs. 1,2] that

qualitatively correspond to the two di�erent frameworks.

Let us discuss those two �gures.

Field theory: [�g. 1]. Assuming that the \mass"-

parameter t is actually a measurable quantity, measure-

ments are required in order to �x the particular values

t

1

and u

1

which are actually associated to the arbitrarily

chosen momentum scale �

1

. This procedure amounts to

selecting an unique (full) curve as indicated on �g. 1.

In absence of an initial condition, there is an in�-

nite family of a priori allowed curves corresponding to

the various ways of associating any allowed value of

t = t(�)= (��)

2

(in some unit �) to any allowed value

of u. On �g. 1 we have only drawn a very small number

of such allowed curves (dashed curves).

In �eld theory with 3 � d < 4 nothing prevents us

from considering the limit � ! 1 (with � = ��

0

) cor-

responding to an in�nite momentum (or energy) scale

of reference. It is the ultra-violet regime the direction

of which is indicated by a downward arrow on �g. 1.

In this range of momentum scales, masses are negligible

and thus any (dashed or full) curve reaches the mass-

less (critical) surface | the lower axis of �g. 1) | at

the same point (t = 0 while u ! 0). This limiting point

is the Gaussian �xed point P

G

which is ultra-violet sta-

ble (for d < 4), we denote it by u

�

uv

. The other �xed

point u

�

ir

[set equal to unity on �g. 1] is only reached in

the infra-red limit [small momenta or large distances or

low energies, the direction of which is indicated by an

upward arrow on �g. 1] provided the mass term is kept

�xed to zero at any momentum{scale (massless or critical

theory) otherwise the curves go toward the axis t = 1.

We call this latter axis (upper axis of �g. 1) the \triv-

ial surface" because the physics described in the vicinity

of this \surface" corresponds to the classical physics in

which the length scales considered are much larger than

the relevant length scales (much larger than the Comp-

ton wavelength | or than the correlation length as in

hydrodynamics). On this \surface" only classical power

laws are expected whatever the value of u. In particle

physics this region corresponds to energies much lower

than masses and classical physics is su�cient to describe

it. It must be mentioned here that the \trivial surface"

may also be considered as a Gaussian �xed point [45]

(it is named the in�nite mass or the in�nite temperature

Gaussian �xed point) although only one parameter is ac-

tually �xed to a given value (the mass which is in�nite).

Statistical physics: [�g. 2]. The use of renormalization

theory in studying critical phenomena is, in nature, very

di�erent from the previous description. A given physical

system corresponds there to a given value of u, say u

0

, as-

sociated to a given microscopic length scale 1=�

0

(small

compared to the correlation length of the system). The

vertical axis at u = u

0

on �g. 2 intersects the RG 
ows

(full curves) at points (full circles) corresponding to dif-

ferent values of t. These points are representative of the

same statistical system (u

0

is �xed) observed at di�erent

temperatures (measured by reference to the critical tem-

perature of the system considered). For a de�nite and

su�ciently small temperature, say t

0

< 1, a unique full

curve is selected. By following that curve up to t = 1

(up to the open circle on the selected curve as indicated

by black arrows), one performs an average of the physics

occurring at length scale smaller than 1=(��

0

) (which is

larger and larger as �! 0). One thus obtains a descrip-

tion of a new physical system (new values of u and of the

�eld '

R

). This corresponds to the Wilson step of thin-
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ning out the degrees of freedom of the original statistical

system. The e�ective system so obtained is no longer the

original one, but the physics occurring at distances larger

than or equal to 1=(��

0

) remains unchanged compared

to the initial system.

By considering smaller and smaller values of t

0

, one

selects other full curves on �g. 2 on which the full circles

approach the critical surface while the open circles ap-

proach the axis u = u

�

ir

. Hence the limit t

0

! 0 at �xed

u

0

is equivalent to the limit u ! u

�

ir

at �xed t provided

one is only interested in su�ciently large distances. No-

tice that the approach to u

�

ir

occurs whatever the value

of u

0

and, more importantly, for small enough values of

t

0

, the full curves accumulate in the vicinity of the axis

u = u

�

ir

along essentially a unique curve departing from

the critical surface t = 0. This is a qualitative illustration

of universality in critical phenomena.

III. A NON-PERTURBATIVE EXAMPLE OF

RENORMALIZATION GROUP EQUATIONS

\Even if one succeeds in formulating the renormal-

ization group approach for a particular problem, one is

likely to have to carry out a complicated computer calcu-

lation, which makes most theoretical physicists cringe."

[46]

The main di�culty in understanding the connection

between the analytical and Wilson approaches to renor-

malization relies upon the number of parameters in-

volved: a very small number in one hand (essentially the

coupling constant | renormalized or not) and a very

large (in�nite) number in the other hand.

In order to concretely compare Wilson's theory to the

analytical �eld theory brie
y referred to in part II, we

consider the di�erential RG equations of Wegner and

Houghton [20] in the local{potential{approximation that

allows us to reduce the original in�nite set of coupled

di�erential equations of [15,20] to a single partial di�er-

ential equation (see Eq. (3.11)) for a simple function of

the scalar �eld � [16,17].

A. Brief presentation

Let us consider a general Hamiltonian H depending

on a scalar �eld �. It is written as a sum of a Gaussian

part and a potential which, in general, is non-local (i.e.

involving derivatives of �(x) that we symbolically denote

by @�):

H =

Z

d

d

x

�

1

2

(@�)

2

+ V (�; @�)

�

: (3.9)

The local potential approximation amounts to con-

sidering the restriction of the Wilson space S of

Hamiltonian{parameters to a smaller space S

0

such that

V (�; @�) in Eq. (3.9) reduces to its local part V (�). As-

suming the O(1)-symmetry � ! ��, we thus have for

small � :

V (�) =

1

X

k=1

a

k

�

2k

: (3.10)

It is worth to indicate here that the local potential

approximation still involves essential properties of the

\exact" RG equations [15,20] since it is similar [18] to

a continuous version of both the approximate recursion

relation introduced in [15] and the hierarchical model of

[47].

For the sake of notational simplicity, we denote by y

the dimensionless �eld

~

� = �

(2�d)=2

0

� and we shall no

longer distinguish between S and S

0

.

The Wegner{Houghton RG equations in the local po-

tential approximation reduce to a non-linear partial dif-

ferential equation [16,17] for f(y; l) = @V (y; l)=@y with l

related to the change of momentum{scale �

0

! �

l

=

e

�l

�

0

(in the following we also denote the running

momentum{scale �

l

by �). By analogy with an actual


ow in usual space, we shall refer to l as the \time" vari-

able.

De�ning f

0

= @f=@y, f

00

= @

2

f=@y

2

,

_

f = @f=@l, the

partial di�erential equation then reads [17]:

_

f =

K

d

2

f

00

1 + f

0

+

�

1�

d

2

�

yf

0

+

�

1 +

d

2

�

f (3.11)

in which K

d

is the surface of the d-dimensional unit

sphere divided by (2�)

d

.

Eq. (3.11) for

_

f = 0 is the �xed point equation. Its nu-

merical study yields the following results. Apart from the

trivial Gaussian �xed point P

G

(corresponding to f � 0),

one observes the appearance of one new non-trivial �xed

point below each dimensional threshold d

k

= 2k=(k�1),

k = 2; 3; : : : ;1. In particular, there is only one non-

trivial �xed point at d = 3 and none at d = 4 [17,18,26].

Strategy adopted in the present study. We consider

Eq. (3.11) at d = 3, which is the dimension referred to

in the following (except in section III F where d = 4).

Our aim is to visualize, for the sake of a qualitative

comparison with the analytical �eld theory, the renor-

malization 
ows in the Wilson space S of Hamiltonian{

parameters [the coordinates of which are given by the

coe�cients a

k

of Eq. (3.10)].

Given an initial simple function, say:

f(y; 0) = r

0

(0)y + u

0

(0)y

3

+ v

0

(0)y

5

(3.12)

corresponding to a point of coordinates

(r

0

(0); u

0

(0); v

0

(0); 0; 0; � � �) in S, and after having nu-

merically determined the associated solution f(y; l) of

Eq. (3.11) at a varying \time" l, we concretely repre-

sent the Wilson trajectories (entirely plunged in S) by

numerically evaluating the following derivatives:

r

0

(l) =

@f(y; l)

@y

�

�

�

�

y=0

; (3.13)
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u

0

(l) = 6

@

3

f(y; l)

@y

3

�

�

�

�

y=0

; (3.14)

v

0

(l) = 120

@

5

f(y; l)

@y

5

�

�

�

�

y=0

; (3.15)

etc : : :

We then are able to visualize the actual Wilson trajec-

tories by means of a projection onto the planes fr

0

; u

0

g

or fu

0

; v

0

g (for example) of S.

At d = 3 we found the non-trivial infra-red stable

�xed point (f

�

(y)) located in S at r

�

0

= �0:461533 � � �,

u

�

0

= 3:27039 � � �, v

�

0

= 14:4005 � � �, w

�

0

= 32:31289 � � �,

etc. This is the �xed point to which refers the parameter

u

�

ir

of the analytical version of RG theory. With a view

to illustrate this assertion, we focus our attention on the

massless | or critical | theory in which the infra-red

stable �xed point is reached when decreasing the mo-

mentum scale of reference down to zero.

B. Determination of the critical surface: the

\shooting method"

In order to look at the critical renormalization 
ows,

we must adjust the initial point to be on the critical sur-

face S

c

. To this end we use the \shooting" method.

As initial function at l = 0, we consider Eq. (3.12) with

v

0

(0) = 0. To start on S

c

with, say, u

0

(0) = 3, we must

adjust r

0

(0) [or any other Hamiltonian parameter di�er-

ent from u

0

(0)] to a non-zero value [48]. For any choice

of an initial function at l = 0 on the critical surface S

c

,

there is a particular value r

0c

(0) = r

0c

(u

0

(0); v

0

(0); � � �)

of r

0

(0) for which the nontrivial �xed point is reached

when l!1.

The \shooting" method is based on the fact that, for

su�ciently large values of l, the renormalization trajec-

tories goes away from f

�

in two di�erent directions ac-

cording to the sign of the di�erence r (0)� r

0c

(0).

By numerically determining the values of r

0c

(0) corre-

sponding to di�erent initial points in S

c

, we are able to

visualize the Wilson trajectories approaching f

�

in S

c

.

C. Critical{renormalization{
ows and massless �eld

theory in three dimensions

Some [49] trajectories in S

c

are represented on �g. 3 as

a projection onto the plane fu

0

; v

0

g [50]. Let us discuss

this �gure.

Fig. 3. Projection onto the plane (u

0

; v

0

) of some Wil-

son's trajectories on the critical surface S

c

(after integration

of Eq. (3.11) at d = 3). Full circles indicate the locations

of the Gaussian (P

G

) and the non-trivial (f

�

) �xed points

respectively. Arrows indicate the infra-red direction. Open

circles indicate the locations of the initial points. The val-

ues of the initial sets of coordinates (r

0c

(0); u

0

(0); v

0

(0)) are

the following: (�0.014175577� � �, 0.1, 0.), (�0.116887403� � �,

1., 0.), (�0.299586913� � �, 3., 0.), (�0.381259493� � �, 4., 0.),

(�0.180075418� � �, 1., 5.), (�0.025823782� � �, 0., 1.) the other

coordinates being set equal to zero. The full curves repre-

sent Wilson's trajectories entirely plunged in S. The \verti-

cal pieces" (dot-dashed lines) are numerically undetermined

parts of the projected Wilson trajectories. They re
ect the

lack of accuracy in our determination of v

0

(l) for small l.

Apart from the fact that each Wilson trajectory goes

toward the �xed point f

�

[full circle on the top of �g. 3],

one observes that they all approach it asymptotically

along the same one-dimensional submanifold in S

c

. This

limiting submanifold, that we denote by T

1

, has its source

at the Gaussian �xed point P

G

. Moreover, the closer the

initial points are chosen to P

G

[full circle on the bottom

of �g. 3], the longer is the \time" that the resulting 
ows

take to go along the unique submanifold. T

1

is an attrac-

tive (infra-red stable) submanifold along which the 
ow

are slowly running (see section IIID 1).

According to Wilson's terminology, T

1

is a renormal-

ized \trajectory" on which is de�ned the genuine \con-

tinuum limit" [51] of �eld theory. Hence, to make sense,

the RG 
ow of the renormalized massless �

4

3

�eld theory,

referred to in part II, must be de�ned relatively to T

1

.

Because one practically only encounters in the litera-

ture the (sketchy) description of the massive case as it is

presented in section 12.2 of [15] (i.e., the �eld theory in-

volving only a mass as renormalized parameter), we �nd

it worthwhile to examine and discuss the procedure of

\making the cuto� in�nite on T

1

" (the massless case) in

some detail.

By analogy with the analytical treatment that refers

to a single coupling \constant", the procedure consists
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in showing that some non-zero \renormalized" parame-

ter (a coupling \constant" for the massless scalar theory)

exists when the initial cuto� tends to in�nity.

1. The continuum limit of the massless case (d = 3)

The main di�erence between the well known limit

brie
y described in [15] and the case we are consider-

ing in S

c

is that the �nal (\renormalized") parameter is

not a mass{like parameter (because we are con�ned to

the critical surface) but a coupling{\constant"{like pa-

rameter.

Instead of considering surfaces of constant correlation

lengths in S, as in the massive case of [15], we consider

planes of constant u

0

(see section III D 3).

Let us select a plane of constant u

0

, say u

0

= u

0

= 3,

orthogonal to the u

0

-axis of S. Let us, then, consider

initial points on S

c

such that 0 < u

0

(0) < 3 (the other

coordinates being set equal to zero, but r

0c

(0) of course).

If u

0

(0) = 2, the correspondingWilson 
ow intersects the

plane u

0

(= 3) at Q

2;3

after some �nite \time" l

2;3

. Let us

denote by �

0

the e�ective momentum scale of reference

associated to the plane of reference u

0

= 3 (at present:

�

0

= e

�l

2;3

�

0

) and let us consider it as the new �xed unit

of momentum [52]. We then choose another initial point

lying closer to P

G

, say u

0

(0) = 1. Compared to Q

2;3

, the

new intersection{point Q

1;3

with the plane of reference

is found closer to T

1

while l

1;3

> l

2;3

. This means that,

�

0

being �xed [53], the initial cuto� �

0

\appears to be

larger" at Q

1;3

than it is at Q

2;3

. By considering a se-

quence of initial points u

0

(0) = � with � ! 0 (hence

approaching the Gaussian �xed point P

G

) the sequence

of points Q

�;3

on the plane of reference u

0

= 3 would

�nally hit T

1

at Q

0;3

. At this point, �

0

being kept arbi-

trarily �xed, the initial cuto� �

0

\appears to be in�nite"

since l

�;3

!1 when �! 0 (due to the ultra-violet sta-

bility of P

G

). A non-zero value of a (renormalized) \�

4

-

coupling{constant" (here u

0

= 3) exists and may thus be

associated to an arbitrary (�nite) momentum scale �

0

in

the limit of in�nite cuto� (�

0

=�

0

!1).

Frequently, one ends the discussion at this point being

satis�ed by the existence of the \in�nite{cuto� limit"

involving a single non-vanishing renormalized coupling

\constant" (here: u

0

6= 0). However the analysis is phys-

ically incomplete: what about the momentum{scale de-

pendence of QFT discussed in part II ? Where is the

e�ect of the in�nite number of degrees of freedom hid-

den in the limit ?

2. Momentum{scale dependence in the continuum limit

A quick inspection of the procedure just{above{

described shows that one may associate any point of T

1

(but the ends) to an arbitrary �

0

chosen in the range

]0;1[. It is usual to say that the massless �eld theory in-

volves only one \free" parameter (presently, a coupling

constant, u

0

, the actual value of which lies somewhere

in the range [0; u

�

0

= 3:27039 � � �]). But no information

on the momentum{scale dependence of u

0

results from

these considerations.

The concept of momentum{scale dependence in QFT

requires to specify the succession of points of T

1

associ-

ated with the running momentum{scale � = ��

0

(with

� varying in the range [0;1]) knowing that some given

point (say u

0

= 3) was primarily associated with the

�xed momentum{scale �

0

.

After having reached the plane u

0

= 3, a Wilson 
ow

running closely along T

1

continues to go toward f

�

. It in-

tersects the plane u

0

= 3:2, for example, at a momentum

scale �

0

0

< �

0

.

Unicity of the di�erential form: the �-function. For

reasons of continuity, both of T

1

and of the change of

momentum{scale along T

1

, one may easily establish that

two points of T

1

, chosen in�nitesimally close to each

other and identi�ed by their projections (say u

0

= 3 and

u

0

= 3 + du

0

) on the u

0

-axis of S, are associated to an

in�nitesimal change of the momentum-scale of reference

��

0

! (�+ d�)�

0

such that:

�

du

0

d�

= f

1

(u

0

) (3.16)

Fig. 4. Graphical representation of the Wilson di�eren-

tial 
ows (dashed curves), in S

c

at d = 3, projected on

the u

0

-axis | i.e. f

1

(u

0

) = �du

0

(l)=dl. In the infra-red

direction, any (dashed) curve exponentially approaches a

limiting (full) curve which coincides with the di�eren-

tial{momentum{scale{dependence carried by the ultimate

Wilson 
ow emerging from the Gaussian �xed point P

G

(left-

hand full circle). The function f

1

(u

0

) is numerically deter-

mined along this 
ow corresponding to the trajectory T

1

in

S

c

. Notice that the convergence is numerically well controlled

independently of whether the initial point is chosen close to

P

G

or not. The righthand full circle indicates the infra-red

stable �xed{point{value u

�

0

= 3:27039 � � �.

372



FIELD{THEORETIC TECHNIQUES IN THE STUDY OF CRITICAL PHENOMENA

where the function f

1

is unique for a given representa-

tion of the renormalized coupling (here a projection of

the 
ow onto the u

0

-axis, see section III D 3). This unic-

ity is illustrated by �g. 4.

The di�erential expression of the 
ow along T

1

de-

pends on the representation of the renormalized cou-

pling. Many di�erent representations are allowed as dis-

cussed in section IIID 3. But any representation refers

to a unique 
ow (\on" T

1

). Universal features are thus

expected, such as in the asymptotic approach to u

�

0

:

f

1

(u

0

) = !

1

(u

0

� u

�

0

) +O

�

(u

0

� u

�

0

)

2

�

+O(0) (3.17)

in which !

1

is a characteristic feature of the Wilson 
ows

along T

1

in the vicinity of f

�

[54]. The term O(0) is

present in Eq. (3.17) in order to emphasize that, in prin-

ciple, the 
ow of interest runs along the trajectory T

1

which is entirely plunged in a space of in�nite dimen-

sion. Thus, one may expect that an in�nite number of

conditions on the initial Hamiltonian [55,56] should be

speci�ed. Actually, the de�nition of the di�erential 
ow

does not require this initial condition to be speci�ed pro-

vided one is able to select directly the particular 
ow

running along T

1

(see section IIID 1 and part IV).

Apart the term O(0), the function f

1

(u

0

) is like the

�-function of the analytical approach. Only a di�erence

in the choice of parameterizing T

1

(via u

0

instead of u)

occurs (see section IIID 3).

Degeneracy of the functional form: Contrary to the

di�erential form, the determination of the functional

form of the scale dependence requires to specify explicitly

an initial point on T

1

(see section IIA).

Fig. 5. Functional momentum{scale dependence displayed

by u

0

(l)(projection onto the u

0

-axis of S) along de�nite Wil-

son's 
ows on S

c

(A). Open circles indicate the initial points

chosen in S

c

. Each full curve in (A) provides a determination

of the functional momentum{scale dependence. In order to

emphasize where the e�ective �eld theory (see section IIID2)

practically occurs in each case, on �gure (B) we have ar-

ti�cially translated the \time" scales l = � ln(�) (vertical

dashed lines) such that each actual Wilson's 
ow of (A) \hits"

a given unique value of u

0

at the same \time". The unique

functional 
ow so obtained illustrates the underlying unique

di�erential 
ow of �g. 4.

Because one cannot specify the in�nite set of coor-

dinates of a particular point lying on T

1

, one arbitrar-

ily chooses an initial point in S

c

in the close vicinity

of P

G

[57]. This step corresponds to \�ne{tuning" the

parameters of the initial Hamiltonian (associated to the

momentum{scale �

0

). Due to the freedom in adjusting

the initial point near P

G

, an in�nite number of de�nite


ows (Wilson's 
ows) accumulate \on" T

1

. This in�nite

number indicates the unlimited di�erent possibilities of

associating one point of T

1

(one value of u

0

) to a �xed

�

0

measured in the unit �

0

[58].

Any \�ne{tuning" provides us with one determination

of the functional form of the momentum{scale depen-

dence in the \in�nite cuto� limit" which, thus, is degen-

erated on T

1

. This is illustrated on �g. 5.

D. The \large river e�ect" and the notion of

\e�ective" �eld theory

A rather close approach to the unique di�erential 
ow

numerically determined by reference to the submanifold

T

1

occurs independently of whether the initial point is

chosen close to the ultra-violet stable �xed point P

G

or

not. The convergence towards T

1

is exponentially rapid

and is su�cient to allow a rather correct numerical deter-

mination of an unique di�erential 
ow for a small enough

running momentum{scale of reference.

Indeed T

1

is like a large river (having its source \at"

P

G

) into which watercourses (Wilson's 
ows) run. (This

notion has recently been used for studying the mecha-

nism of a "mimicry" of second{order phase transitions by


uctuation{induced �rst{order phase transitions [59].)

The `large river' e�ect reveals the existence of a deep

valley in S

c

where the renormalization 
ows are slowly

varying (see [15], p. 132 and [22]).

It is interesting to note that the exponentially rapid

approach to the renormalized trajectory is not indicated

in the usual (sketchy) graphical representations of the

process of constructing the continuum limit in the Wil-

son framework (see, for instance, �g. 1 of [8]).

1. The 
ows along the \renormalized trajectory" are slowly

varying

Let us consider a de�nite Wilson 
ow on S

c

not ini-

tialized in the close vicinity of P

G

but approaching f

�

asymptotically along T

1

, for example the 
ow initialized

at u

0

(0) = 4, v

0

(0) = 0 and r

0c

(0) = �0:381259493 � � �

[see the corresponding trajectory projected in �g. 3]. Us-

ing obvious notations we shall refer to this 
ow by (4; 0).

Such kinds of 
ow may be decomposed into several

parts well separated by short transitory ranges of \time".

Disregarding small transitory parts, each part of a Wil-

son trajectory is characterized by a regime of 
ow{

velocities that becomes slower and slower as the part

considered is chosen closer and closer to T

1

. On �g. 3 the

full curve corresponding to the trajectory (4; 0) clearly

displays two regimes [60].
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In order to quantitatively illustrate how the di�erent

regimes of 
ow{velocities evolve along a Wilson trajec-

tory, it is convenient to consider the expected analytic

form of the e�ective momentum{scale dependence of a

Wilson 
ow in S

c

and in the vicinity of f

�

. This gives

the following expansions [61]:

r

0

(l)

l!1

' r

�

0

+ b

(1;1)

r

exp (�l!

1

) + b

(1;2)

r

exp (�2l!

1

) + � � �+ b

(2;1)

r

exp (�l!

2

) + b

(2;2)

r

exp (�2l!

2

) + � � � (3.18)

+ c

(1;2)

r

exp [�l (!

1

+ !

2

)] + � � � � � �+ � � � ;

u

0

(l)

l!1

' u

�

0

+ b

(1;1)

u

exp (�l!

1

) + b

(1;2)

u

exp (�2l!

1

) + � � �+ b

(2;1)

u

exp (�l!

2

) + b

(2;2)

u

exp (�2l!

2

) + � � � (3.19)

+ c

(1;2)

u

exp [�l (!

1

+ !

2

)] + � � � � � �+ � � � ;

v

0

(l)

l!1

' etc � � �

in which !

n

> !

n�1

> � � � > !

2

> !

1

.

The smallest exponent !

1

controls the rate of Wil-

son's 
ows in the vicinity of f

�

, it is a characteristic

feature of T

1

in the vicinity of f

�

. In the �eld{theoretic

approach to critical phenomena only one correction{to{

scaling exponent, usually denoted by !, is available. In

principle !

1

and ! coincide [62]. Any representation of

the momentum{scale dependence \on" T

1

in the vicin-

ity of f

�

reduces Eq. (3.19) (projection onto the r

0

-axis)

and Eq. (3.20) (projection onto the u

0

-axis) to their re-

spective �rst parts, the other exponents (!

n

with n > 1)

disappear. The correction terms (in the vicinity of f

�

)

associated to !

n

with n > 1 are essentially suppressed

in Wilson's 
ows initialized in the close vicinity of P

G

or

are extremely (exponentially) lessened by decreasing the

actual momentum{scale of reference (due to the `large{

river' e�ect). They are merely neglected in the analytical

treatment. When non{exponentially{small compared to

the ideal 
ow associated to !, they carry what may be

(roughly) called the \�nite{cuto� e�ects".

2. Notion of e�ective �eld theory

The observation of the \large river e�ect" leads di-

rectly to the notion of \e�ective �eld theories" (see, for

example, in [63]): a reference to the ultra-violet stable

�xed point is not needed to concretely evaluate (within

an acceptable accuracy) the behavior of a �eld theory

below some momentum{scale of reference. This notion is

more signi�cant when no ultra-violet stable �xed point

is available (see sections III E and III F).

3. The renormalized coupling \constant"

In sections III C 2, a projection of T

1

onto the u

0

-axis

has been used to refer to the di�erential form of the

momentum{scale dependence along T

1

(representation of

the momentum{scale dependence \on" T

1

by means of

a single parameter). The associated scale dependent pa-

rameter has been denoted by u

0

and called the renormal-

ized parameter. One must not make a confusion between

u

0

and the unrenormalized �

4

coupling constant u

0

(0).

An unrenormalized coupling is attached to an initial

point lying on some canonical surface of S (i.e. it refers

to an Hamiltonian involving a limited number of parame-

ters). The question of dealing with the in�nite number of

degrees of freedom has not yet been addressed (a Wilson

transformation has not yet been performed). Instead, in

the analytical framework, a renormalized parameter is

de�ned by reference (under a di�erential form) to the

actual momentum scale dependence displayed along the

attractive submanifold T

1

(that is plunged into a space of

in�nite dimension) [64].

The choice we have made of referring to T

1

by a pro-

jection onto the u

0

-axis could appear arbitrary. In par-

ticular, it seems that we could have chosen any other

axis such as v

0

; w

0

; � � � associated with the Hamiltonian{

terms �

6

; �

8

; � � � [21]. This is true as long as one is only

interested in the momentum{scale dependence along

T

1

away from P

G

. In this region the slow variation

with the momentum{scale of reference of any running

Hamiltonian{parameter is a characteristic feature of T

1

.

In this respect, the �

4

Hamiltonian{term does not distin-

guish itself from the other Hamiltonian{terms. We may

then choose any Hamiltonian{parameter (or any combi-

nation of Hamiltonian{parameters) to describe the dif-

ferential form of the momentum{scale dependence along

T

1

. This is not so in the vicinity of P

G

however. There,

T

1

is tangent to the u

0

-axis (see �g. 3) and any other
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choice of axis is prohibited otherwise the projection of

T

1

would be empty. The �

4

-coupling is called the rele-

vant [65] parameter at the once infra-red unstable �xed

point P

G

. This is why the �

4

Hamiltonian{term plays an

essential role in perturbation �eld theory. Although, far-

ther away from P

G

(in a non-perturbative region) this

choice appears arbitrary, it is the only choice that can

describe the momentum{scale dependence in the whole

range of scales from 1 to 0 [66].

From now on, the origin of the freedom in the de�-

nition of the renormalized parameter u in perturbation

theory (freedom in the choice of the subtraction scheme)

may well be understood [17]. Even in the perturbative

region, the choice of the renormalized parameter is not

limited to u

0

. Any vertex function proportional to u

0

in

the perturbative region (for example a four{point ver-

tex function calculated at some value of the set of its

external momenta) is an acceptable choice provided that

the di�erential momentum{scale dependence along T

1

be

properly accounted for.

E. Other infra-red attractive submanifolds in three

dimensions

1. \Unusual" infra-red attractive submanifold in three

dimensions

The trajectories already drawn in �g. 3 show that T

1

,

which emerges from P

G

, is infra-red attractive for initial

points chosen not very far from P

G

. But, by considering

initial points chosen farther away from P

G

in S

c

, another

infra-red attractive one-dimensional submanifold is evi-

denced [see �g. 6].

Let us call T

0

1

this new one-dimensional attractive sub-

manifold. Which of the two submanifolds T

1

and T

0

1

,

corresponds to the slowest 
ow in the vicinity of f

�

?

Answering this question requires to considering the ex-

pected analytic expression of the approach to f

�

in S

c

.

It reads:

r

0

(l)

l!1

' r

�

0

+ b

(1)

r

exp (�l!

1

) (3.20)

+ b

(2)

r

exp (�2l!

1

) + � � � ;

u

0

(l)

l!1

' u

�

0

+ b

(1)

u

exp (�l!

1

) (3.21)

+ b

(2)

u

exp (�2l!

1

) + � � � ;

� � � (3.22)

with !

1

> 0. The value of the exponent !

1

is character-

istic of the degree of (infra-red) stability of the submani-

fold considered. We choose to denote by !

0

1

the exponent

associated with T

0

1

and by !

1

that associated with T

1

.

The determination of !

1

(or !

0

1

) from Eq. (3.11) is made

by considering the e�ective exponent:

!

e�

= �

1

r

0

(l)� r

�

0

dr

0

(l)

dl

: (3.23)

Note that a similar de�nition of !

e�

could have been

written down in terms of u

0

(l) or v

0

(l) etc.

The limit of Eq. (3.23) as l ! 1 gives !

1

or !

0

1

ac-

cording to whether the 
ow approaches f

�

along T

1

or

along T

0

1

.

Fig. 6. The \unusual" infra-red stable one-dimensional

submanifold in S

c

(T

0

1

) obtained from Eq. (3.11) with d = 3

(projection onto the plane (u

0

; v

0

)). The full circle repre-

sents the infra-red stable �xed point f

�

and the usual \renor-

malized trajectory" T

1

emerging from P

G

is partially drawn

(dashed curve). Arrows indicate the infra-red direction.

Fig. 7. E�ective correction{exponent !

e�

(l) (Eq. (3.23)

with l = � ln�) along T

1

(full curve) and along T

0

1

(dot-dashed curve). The estimate of the value of ! is

0:5955 � 0:0025.
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Fig. 7 reproduces our determination of !

e�

both along

T

1

and T

0

1

. It shows that the two 
ows are equally slowly

running. But the approach to ! � 0:6 obtained on T

0

1

is

\from above" while on T

1

, it is \from below".

By comparison with the usual �eld{theoretic frame-

work, we are led to associate the di�erential momentum{

scale dependence of the renormalized parameter u with

the one-dimensional submanifold of S

c

formed by T

1

[T

0

1

.

The case u < u

�

ir

corresponds to T

1

and the case u > u

�

ir

to T

0

1

.

Of course this strict reference to the \in�nite cuto�

limit" de�ned right on T

0

1

is formal on the �eld{theoretic

point of view since no ultra-violet stable �xed point ex-

ists in association with T

0

1

. Consequently, stricto-sensu,

the \continuum limit" does not exist for u > u

�

ir

. Nev-

ertheless, due to the `large river' e�ect, the notion of

e�ective �eld theory applies and gives a meaning [28] to

(approximated) calculations performed in the analytical

framework for u > u

�

ir

[28,40]. The acceptable accuracy

of such calculations from the side u > u

�

ir

is well illus-

trated by �g. 7 on which we see that the exponent !

(characteristic of T

1

) may also be determined from the

\wrong" side (along T

0

1

).

The status of the infra-red attractive submanifold T

0

1

is interesting in that several statistical systems | es-

pecially the spin-

1

2

Ising model in three dimensions |

correspond to this kind of approach to f

�

[27,6].

2. Infra-red attractive submanifolds of lower degrees

By studying how the approach to f

�

(along T

1

or T

0

1

)

depends on the initial point chosen in S

c

, we �nd it

possible to go continuously from one kind of approach

(T

1

) to the other (T

0

1

). This means that, for any given

value of v

0

(0) (with, say, w

0

(0) = � � � = 0), there ex-

ists one value u

0c

[v

0

(0)] [67] for which the resulting tra-

jectory in S

c

(i.e. obtained by adjusting also r

0

(0) to

r

0c

[u

0c

fv

0

(0)g ; v

0

(0)]) 
ows toward f

�

without having

any point in common with either T

1

or T

0

1

.

Let S

(2)

c

� S

c

be the hyper-surface which, at f

�

, is

orthogonal to T

1

[ T

0

1

. S

(2)

c

has one dimension less than

S

c

. Thus, by adjusting simultaneously two Hamiltonian{

parameters in S: r

0c

(0) | to be in S

c

| and u

0c

(0) | to

be in S

(2)

c

|, we observe the presence of two new infra-

red attractive one-dimensional submanifolds (or slowly

running 
ows) along which, however, the 
ows go faster

than along T

1

and T

0

1

(otherwise they would have been

observed �rst in S

c

).

By studying the Wilson 
ows in S

(2)

c

we observe the

attractive submanifolds T

2

and T

0

2

drawn in �g. 8. As

in the preceding case, we have de�ned an e�ective expo-

nent !

2e�

and observed that it tends to a unique value

[68] (!

2

� 2:8) as l ! 1 both along T

2

(from below)

and T

0

2

(from above).

The existence of T

2

and T

0

2

suggests again the ex-

istence of another submanifold S

(3)

c

� S

(2)

c

in which

the approach to f

�

reveals two infra-red attractive sub-

manifolds T

3

and T

0

3

with a same exponent !

3

> !

2

and

Fig. 8. The two infra-red attractive submanifolds in S

(2)

c

T

2

and T

0

2

(full curves) of same degree of stability but lower

than on T

1

and on T

0

1

(dashed curves) (projection onto

the plane (u

0

; v

0

)). The initial values chosen are r

0c

(0) =

�0:5832891 � � �, u

0

(0) = 6:6615188 � � �, v

0

(0) = 0 (T

2

) and

r

0c

(0) = �0:42788517 � � �, u

0

(0) = 2, v

0

(0) = 26:13624 (T

0

2

).

Fig. 9. Wilson's 
ows on the critical surface S

c

ob-

tained from integration of Eq. (3.11) at d = 4

(projection onto the plane (u

0

; v

0

)). Open circles in-

dicate the initial points chosen on the canonical sur-

face of S

c

: (u

0

(0); r

0c

(0)) = (2;�0:035806374 � � �); (4;

�0:068682647 � � �); (10;�0:1577796 � � �). Two 
ows initialized

at (20;�0:2892822265 � � �) and (40;�0:52207031 � � �) are par-

tially reproduced. The full circle represents the infra-red sta-

ble �xed point P

G

. Arrows indicate the infra-red direction.

The square roughly indicates where the e�ective �eld the-

ory could make sense for the Wilson trajectory initialized at

u

0

(0) = 10.

again one could de�ne S

(4)

c

� S

(3)

c

and �nd !

4

> !

3

and

so forth� � �
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At f

�

, the directions orthogonal to S

c

, S

(2)

c

, S

(3)

c

,

S

(4)

c

; � � � de�ne a complete set of \scaling axes" which the

attractive submanifolds T

n

[ T

0

n

(n = 0; 1; 2; � � �) are re-

spectively tangent to. They correspond to the complete

set of eigenfunctions, solutions of Eq. (3.11) linearized

about f

�

. It is well known that f

�

possesses one positive

eigenvalue corresponding to the direction of infra-red in-

stability (or relevant direction) orthogonal to S

c

(cor-

responding to the massive sector not considered here)

and in�nitely many negative eigenvalues associated with

irrelevant directions (in S

c

, orthogonal respectively to

S

(2)

c

;S

(3)

c

;S

(4)

c

; � � �). These latter directions may be or-

dered according to the magnitude of the corresponding

eigenvalues (related to the order ! < !

2

< !

3

< � � �).

The scaling axes have, with respect to f

�

, the same sta-

tus as the axes of S with respect to the Gaussian �xed

point P

G

.

As in the case of T

1

and T

0

1

, we may associate, (at least

up to some distance to f

�

) a (formal) \renormalized"

parameter to each of those infra-red stable submanifolds

T

n

(or T

0

n

). The universal di�erential momentum{scale

dependences (independent of the initial point chosen in

the basin of attraction of the \renormalized trajectory"

of interest) associated to the in�nite set of submanifolds

T

n

|or T

0

n

| are distinguishable from each other by

their asymptotic rate of 
ow which may be characterized

by the universal asymptotic{exponents !

n

. In the ana-

lytical treatment those new \renormalized" parameters

are associated to the renormalization of the insertions of

\composite operators".

F. The four dimensional case

The study of Eq. (3.11) at d = 4 follows the same

line as in d = 3. The main di�erence is that the non-

trivial �xed point f

�

coincides with P

G

which becomes

(marginally) infra-red stable in S

c

. Consequently the

massless renormalized trajectory T

1

(in S

c

) shrinks to

a point (P

G

) but T

0

1

subsists (see �g. 9). Due to the lack

of ultra-violet stable �xed point in S

c

, the \continuum

limit" of �eld theory does not exist but owing to the

\large river e�ect" one may refer to the notion of ef-

fective �eld theory. The detailed discussion is similar to

that of the three dimensional case for T

0

1

and will not be

repeated in detail here. The reader may �nd supplemen-

tary considerations in [17,69] for instance.

IV. THE SINGULARITIES OF THE

PERTURBATION FRAMEWORK

Three kinds of singularity are encountered in the ana-

lytical version of scalar �eld theory:

1. the \renormalons" that occur in the �

4

4

-theory [70]

and prevent the (renormalized) perturbation series

from being Borel summable.

2. the infra-red singularities of the massless �

4

d

-theory

with d < 4 [2,37].

3. the singularities at the infra-red stable �xed point

u

�

ir

(for d < 4) [3,4].

The above-listed singularities are peculiar to the an-

alytical treatment. They emerge from the realization of

the following double request:

A the reduction of in�nitely many parameters to very

few renormalized (scale dependent) parameters,

B the possibility of pushing the momentum scale of ref-

erence up to in�nity (existence of an ultra-violet

stable �xed point).

These two requirements are explicit (and strictly not

dissociated [71] ) in the Wilson process of de�ning the

continuum limit of �eld theory (see part III). In the sub-

traction program of perturbation theory, however, both

the in�nite number of degrees of freedom and the exis-

tence of an ultra-violet stable �xed point are not truly

considered explicitly [72].

In the renormalization program of perturbation the-

ory, the renormalized parameter is implicitly de�ned as

the parameter having in charge to exclusively follow the

slowest 
ow in its complete extension (including, espe-

cially implicitly, the in�nite momentum scale of refer-

ence). Indeed, the subtraction of the large-cuto� depen-

dences amounts to selecting the slowest RG 
ow (only

the de�nition of the renormalized parameter that ex-

hibits the slowest 
ow may vary, see section IIID 3).

The momentum scale dependence of the renormalized

scalar coupling involves two aspects that explain the

emergence of the above-listed singularities:

� the functional form of the momentum scale

dependence (the account for in�nitely many

degrees of freedom)

� the domain of variation of the scale of refer-

ence ranging from 1 to 0.

We have already mentioned that the functional form

of the momentum{scale dependence of u has a non-

perturbative nature: a reference to a supplementary

dimensioned parameter �

r

[73] is required to write:

u(�=�

r

). In order to get some idea on the non-

perturbative form expected for �

r

let us integrate Eq.

(1.3) with the formal assumption that the initial condi-

tion is the existence of the \fundamental" invariant{scale

�

r

. Hence, the o�hand \de�nition" of �

r

:

�

�

r

= exp

�

Z

u

dx

�(x)

�

(4.24)

in which the unde�nite integral stands for the primitive

of the integrand, the additive constant being (by brute

force) incorporated in the de�nition of �

r

. The knowl-

edge of �

r

then would univocally determines the value of

u which is actually associated to �.

For Eq. (4.24) to make some sense, an explicit analytic

expression of �(x) is required. Let us take �(x) from the
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1=n-expansion [74] with � = 4 � d > 0, Eq. (4.24) then

reads:

�

�

r

=

�

�

�

�

�� u

u

�

�

�

�

1=�

�

1 + O(

1

n

)

�

(4.25)

Performing the limit �! 0 in Eq. (4.25), we obtain at

d = 4:

�

�

r

= e

�1=u

�

1 +O(

1

n

)

�

(4.26)

Those (obviously non-perturbative) expressions [Eqs.

(4.25,4.26)] are obtained by brute force but they suggest

the possible emergence of pathological e�ects in pertur-

bation theory. Those e�ects are the emergence of the

above singularities 2.

It is known that the perturbation expansion of vertex

functions for the (super-renormalizable) massless scalar{

�eld theory (with d < 4) involves infra-red divergences at

rational values of d. However, it has been shown [37] that

theory \develops by itself" an in�nite number of non-

perturbative terms that are adapted to make the the-

ory well de�ned at any d. Among those non-perturbative

terms is the \critical{mass" parameter m

0c

. Beside the

mathematics, these terms provide us with nothing but

the coordinates (in a space of in�nite dimension) of an

(arbitrary) initial point lying on T

1

. Indeed, m

2

0c

is simi-

lar to the initial critical value r

0c

(0) encountered in part

III, the di�erence is that the former implicitly refers to

some point of T

1

(entirely plunged in the Wilson space

of in�nite dimension hence the appearance of the other

non-perturbative contributions) while the latter is asso-

ciated with a chosen initial point of known coordinates

(lying outside from T

1

).

We may say that singularities 2 re
ect the lack, in per-

turbation theory, of any speci�cation of an initial point

lying on T

1

. It is not well known that those singularities

are also present in four dimensions (for the massless the-

ory). Indeed, Symanzik has shown [37] that m

0c

, calcu-

lated within the framework of dimensional regularization

(� = 4� d > 0), takes on the following form:

m

2

0c

= g

2=�

0

h (�; n) (4.27)

in which g

0

is the dimensioned unrenormalized �

4

-

coupling and the function h (�; n) displays poles at � =

2=k (k = 2; 3; 4; : : :). By considering how the minimal

subtraction scheme of the (dimensionally regularized) �

4

4

theory works within the 1=n expansion, Rim and Weis-

berger [75] discovered that the subtraction functions of

perturbation theory (de�ned by the requirement of sub-

tracting the simple poles located at � = 0 and which

introduces the renormalized parameter u associated to

the scale �) were not su�cient to obtain a well de�ned

theory in the limit � ! 0. A new \mass{counter{term"

(compared to the perturbative treatment), with a coe�-

cient �m

2

de�ned as:

�m

2

= �

2

~

h (�) e

2

u

(4.28)

should be added to the dimensionally regularized \hamil-

tonian". This term arises as a consequence of poles at

rational values of � (� = 2=k, k = 2; 3; : : :) which accu-

mulate to give an essential singularity at d = 4. This

latter singularity, involved in

~

h (�), could not be elim-

inated by the standard subtraction of simple poles at

� = 0. Clearly, �m

2

bears some resemblance with m

2

0c

.

Indeed, Rim and Weisberger's result may be seen as

Symanzik's result continued to � ! 0 at which dimen-

sion, the \in�nite{cuto� limit" of perturbation theory

cannot be e�ectuated without \renormalizing the cou-

pling constant" [76].

In order to show the close relation of these \addition-

nal" terms with the \invariant scale" �

r

, we have applied

the rules of dimensional renormalization on the critical

parameter r

0c

calculated at order 1=n. Denoting by m

2

0c

the result, we obtain for � > 0 (d < 4) [26]:

m

2

0c

�

2

= �

2

nf(�)

�

uf (�)

u

�

ir

� u

�

2=�

�

sin

�

2�

�

�

(4.29)

+O

�

1

n

2

�

with u < u

�

ir

in which

f (�) = � (d=2)� (1 + �=2) [� (1� �=2)]

2

=� (2� �)

(� (x) is the Euler gamma{function), and u

�

ir

= � in the

approximation considered.

Eq. (4.29) is a non-perturbative expression the ana-

lytic continuation to � � 2 of which displays poles at

� = 2=k (k = 1; 2; 3; : : :) which accumulate to give an

essential singularity at � = 0.

In order to allow the limit � ! 0 to be consid-

ered in the coe�cient of the essential singularity of Eq.

(4.29) it is necessary to �rst perform an analytic con-

tinuation of Eq. (4.29) to u > u

�

ir

. Using the relation

(�1)

2=�

= cos

�

2�

�

�

+ i sin

�

2�

�

�

, we obtain:

m

2

0c

�

2

= �

2

nf(�)

�

uf (�)

u� u

�

ir

�

2=�

�

�

cot

�

2�

�

�

+ i

�

(4.30)

+O

�

1

n

2

�

with u > u

�

ir

:

The limit �! 0 performed in the coe�cient of cot

�

2�

�

�

of Eq. (4.30) leads to the \mass{counter{term"

1

2

�m

2

�

2

found by Rim and Weisberger [75] with:

�m

2

/ �

2

e

2

u

� cot

�

2�

�

�

: (4.31)
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For � > 0, Eqs. (4.29,4.30) provide the complete non-

perturbative expression of Symanzik's critical{mass pa-

rameter in the \in�nite{cuto� limit", at order 1=n and

corresponding to the submanifolds T

1

(Eq. (4.29)) and

T

0

1

(Eq. (4.30)) encountered in part III.

By comparing the (u; �)-dependence of Eqs.

(4.29,4.30,4.31) to that of Eqs. (4.25,4.26)), we see

that the non-perturbative properties of �

r

are inti-

mately related to the non-perturbative properties of

the massless �eld theory. Moreover m

0c

carries the same

u-dependence as the \fundamental" invariant scale �

r

itself. But the di�erence is that m

0c

is absolutely needed

(generated by the theory itself [37]) while �

r

is a purely

formal quantity attached to the arti�cial simple function

u (�).

We have seen in part III that the functional form of

the momentum scale dependence on T

1

is degenerated

(section III C2) and that it is the speci�cation of the

initial value r

0c

(0) which allows us to specify a unique

renormalization 
ow running \on" T

1

. Similarly, the pa-

rameter m

0c

allows us to specify which determination of

the functional form of the momentum{scale dependence

is actually referred to on T

1

(or on T

0

1

).

With the massive theory, the singularities 2 disappear

but the singularities 1 remain. Although the functional

form of the scale dependence is again responsible for the

emergence of those singularities, the mechanism is di�er-

ent from the previous case.

The renormalon singularities may be \removed" by

considering all \composite operators" of dimension 8,

10, etc: : : [77,78] or, what is equivalent, by reintroducing

an ultra-violet cuto� [56,78]. It has been shown, for in-

stance, that the perturbative series in powers of u

0

(0) of

the (unrenormalized) vertex functions of the �

4

4

-\infra-

red" model [79] are Borel summable [80].

Indeed, the renormalons appear because the trajec-

tory T

0

1

does not take its source at an ultra-violet stable

�xed point. Consequently, the associated domain of mo-

mentum scales covered by the running parameter u is

incomplete: when u \reaches" in�nity, the momentum

scale of reference is still �nite. Here is the problem: we

do not know how to associate a genuine momentum scale

of reference to a value of u because there are in�nitely

many parameters to be initialized. When u is the relevant

parameter at a �xed point then this association is easy

to do: each degree of freedom delegates one's powers to

u. But, when there is no ultra-violet stable �xed point,

one must actually specify the complete coordinates of

an initial point lying on T

0

1

, what is actually impossible.

The other possibility is to consider some Wilson trajec-

tory which will approach the trajectory T

0

1

in reducing

the \cuto�", this is the �

4

4

-\infra-red" model mentioned

above.

The inverse Borel transforms of the perturbative series

of the �

4

4

-vertex functions are made ambiguous due to

branch{point singularities located at real positive values

of the Borel variable b (the \renormalon"{singularities).

This does not imply that a Borel resummation of the

series cannot be performed but rather that one does

not know how to choose the integration contour in the

complex b-plane so as to pick up such and such deter-

mination of the integrand at each singularity. Thus an

in�nite number of conditions, unknown in the analytic

treatment, must be (re-)speci�ed in order to �x one de-

termination among an in�nite number of allowed deter-

minations (the coordinates of the initial point on T

0

1

as-

sociated to the arbitrarily chosen momentum scale of ref-

erence must be speci�ed).

Notice that, if the above considerations are correct, the

emergence of renormalon singularities is strictly linked to

the speci�cation of an initial point lying on T

0

1

. If, on a

pure mathematical ground (without any consideration to

a well de�ned �eld theory), we exclusively limit our in-

terest to the renormalization 
ow running on T

0

1

via the

simple function u (�), then it would be possible to imag-

ine a peculiar procedure to construct a �-function the

perturbation series of which would be Borel summable.

In our view, this peculiar procedure corresponds to the

so-called minimal subtraction scheme. In such a subtrac-

tion scheme, nothing else than the reference to a (spe-

ci�c) scale dependence de�nes the renormalized coupling

constant u, in particular, no reference to a vertex func-

tion (involving the problem of controlling in�nitely many

degrees of freedom) is introduced contrary to what is

done when using a subtraction point procedure.

The above remarks, that result from the discussions

presented in the preceding parts, illustrate what, indeed,

was already expected in four dimensions. Namely:

\that it is possible to de�ne renormalization

schemes such that the renormalization group functions

[�(u); �(u); � � �] do not have ultra-violet renormalons"

[78].

The arguments presented in this section allow us to

propose candidates for those schemes: the minimal sub-

traction schemes.

As for the singularities 3, they emerge for the same

reason as the renormalon singularities appear in four di-

mensions: the lack of ultra-violet stable �xed point asso-

ciated with the trajectory T

0

1

(i.e., in the range u > u

�

ir

).

In view of testing some basical assumptions of the

�eld theoretic approach to critical phenomena, a lattice{

analog of the renormalized �

4

coupling constant has been

de�ned as follows [81]:

u

latt

= ��

�d

�

@

2

�

@H

2

�

�

�2

(4.32)

in which � and � are respectively, the correlation length

and the susceptibility of the �

4

-lattice-model; H is the

magnetic �eld. So de�ned u

latt

\looks like" the renor-

malized �

4

coupling constant u of the massive scheme in

which the renormalized mass m is essentially replaced by

�

�1

.

By analogy with �eld theory, the lattice analog of the

�-function is de�ned as follows [3,4]:

�

latt

(u

latt

) =

�

��

d

du

latt

ln

�

~

�(u

latt

)

�

�

�

�1

(4.33)
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in which

~

� = g

1

�

0

� with g

0

the dimensioned unrenormal-

ized �

4

coupling constant and � = 4� d.

Nickel's discovery of con
uent singularities in the �-

function follows from the remark that renormalization

theory predicts [61] several kinds of con
uent critical sin-

gularities. The approach of u

latt

to u

�

ir

as

~

� !1 is, thus,

controlled by the following equation:

u

latt

= u

�

ir

h

1 + a

1

~

�

�!

1

+ a

2

~

�

�2!

1

+ � � �

+b

1

~

�

�!

2

+ b

2

~

�

�2!

2

+ � � �

+ � � �+ c

1

~

�

�

1

�

+ c

2

~

�

�

2

�

+ � � �

i

(4.34)

in which the exponents !

n

have already been encoun-

tered in sections IIID and III E 2. Supplementary terms

proportional to c

n

account for analytic con
uent cor-

rections in temperature usually not explicitly considered

by renormalization theory and thus not relevant to the

present discussion.

Now, on reverting Eq. (4.34), and neglecting the

above{mentioned analytic con
uent corrections in tem-

perature, one obtains:

~

� ' a

0

(u

�

ir

� u

latt

)

�1=!

1

[1 + a

0

2

(u

�

ir

� u

latt

) + � � �

+b

0

1

(u

�

ir

� u

latt

)

(!

2

�!

1

)=!

1

+ � � �

i

(4.35)

and �nally, using Eq. (4.33):

�

latt

(u

latt

) ' !

1

(u

latt

� u

�

ir

) + d

1

(u

�

ir

� u

latt

)

2

+ � � �

+d

2

(u

�

ir

� u

latt

)

�

2

=�

1

+ � � � (4.36)

in which �

n

= !

n

�.

Obviously, the second line of Eq. (4.36) displays a lead-

ing con
uent{branch{point{singularity that is not ac-

counted for in the resummation procedure of �(u) as

used in [82]. Nickel then makes reference to the work of

Golner and Riedel [83] who found �

2

' 2�

1

(see also

the more recent work of Newman and Riedel [84] that

yields in addition �

3

' 3�

1

) to argue that the con
uent

singularities could be practically very weak as explicitly

assumed later on by Zinn{Justin [85]. If so, Nickel does

not understand

\� � � why the con
uent terms in the lattice{analog

�

latt

(u

latt

) can apparently not be ignored"

in an actual numerical analysis of high-temperature se-

ries.

At the light of the preceding parts, that may well be

understood.

The con
uent singularities found by Nickel in �

latt

are

due to what we have called the \�nite{cuto� e�ects" (see

section IIID 1). These e�ects \measure" the signi�cant

deviations, in the critical surface S

c

, between a simple

Wilson trajectory (of a lattice or \cuto�" theory) and the

ideal \trajectory" T

1

(or T

0

1

) of part III. Consequently,

in the �eld theoretic framework, Nickel's con
uent singu-

larities within the �-function are either absent (u < u

�

ir

,

by de�nition of the \continuum limit") or are extremely

weak (u > u

�

ir

) due to the `large river' e�ect [86].

The weakness of the con
uent singularities could ex-

plain why, in their careful studies of the various available

series, Le Guillou and Zinn{Justin [82] have not observed

any numerical e�ect which could be clearly associated to

the existence of such singularities.

Despite the supposed weakness of the con
uent singu-

larities in the range u � u

�

ir

for the massive framework in

three dimensions, attempts at systematically accounting

for them have been made [4] (on the basis of the knowl-

edge of seven orders instead of six orders only, except

for the function �(g) for which only the already known

six orders were used). Their study has provided new ex-

ponent estimates which \are in better agreement with

other model calculations". This result could be seen as

a concrete con�rmation of the presence of con
uent sin-

gularities in the range u � u

�

ir

. But, due to the lack of

relevant information on the actual value of �

2

and on

higher order terms in the series of �(u), it has only been

concluded that the previous error bars [82] could be \un-

realistically small". It is also fair to indicate that, due to

the lack of order in the series of �(u) a bias could have

been introduced in the determination of the �xed point

value u

�

ir

.
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