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The time{dependent Schr�odinger equation for the electronic motion in the �eld of two nuclei

moving on classical trajectories is solved numerically by discretization using a Cartesian mesh. The

symmetric proton{hydrogen collision system is considered for projectile velocities v

p

comparable to

the electron velocity in the initially occupied H(1s) ground state. For close collisions the dominant

channels are captured to the projectile ground state and elastic scattering. The ionization process in

this regime is dominantly populating electron continuum states with �nal momenta in the saddle{

point region, i.e., with small transverse momenta to the beam axis and longitudinal momentum

values around 0:5v

p

. In this paper it is shown how to extract this information from large{scale

numerical calculations.

Key words: atomic collisions, ionization, time{dependent Schr�odinger equation, numerical so-

lution.
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I. INTRODUCTION

The problem of ionization in ion{atom collisions in

the non-perturbative regime has attracted a signi�cant

amount of attention in the experimental and theoret-

ical atomic physics communities in the past 10 years.

It turns out that even for the most fundamental colli-

sion systems such as protons on hydrogen (p{H), and

antiprotons on hydrogen (�p�H) various calculations are

in conict with each other even for total ionization cross

sections [1, 2]. Of theoretical concern has been the ques-

tion of how the non-perturbative ionization cross sections

for the two systems approach the Born limit at high en-

ergies, which is independent of the projectile charge [3].

Experimentally the focus in recent years has been on the

determination of electron emission characteristics [4{7].

This detailed information can shed more light on the

ionization mechanism itself, but is also of practical con-

cern for subjects such as radiation medicine with highly

charged ions.

The experimental results in [4{7] have been controver-

sial regarding the question whether a saddle{point mech-

anism exists at intermediate projectile velocities. To in-

troduce this subject we provide a brief overview of some

known ionization mechanisms.

It is well understood that at high energies, i.e., for

projectile velocities much in excess of internal electron

velocities for the given target bound state (v

p

>> v

e

)

the dominant ionization mechanism is direct target ion-

ization, i.e., a single transition between a bound and �nal

target continuum state. This process results in electrons

emerging with relatively small velocities in the target rest

frame.

In addition, there are other processes resulting in fast

electrons. The binary{encounter mechanism can be pic-

tured as a classical proton{electron collision likely to oc-

cur for impact parameters for which the projectile pene-

trates the charge cloud. This mechanism leads to very

fast electrons emerging in the forward direction, and

their signatures can be found in the proton deections as

well as in recoil atom momentum spectroscopy [8]. Elec-

trons in the forward direction can emerge with velocities

up to 2v

p

due to this mechanism.

A third mechanism relevant at intermediate and slower

projectile velocities, and particularly for higher projec-

tile charges is capture to the continuum. In this case a

transition occurs from a bound target state to a con-

tinuum state of the projectile. The electrons associated

with this process have a small kinetic energy in the pro-

jectile frame. In the laboratory frame they show up as

a characteristic cusp in the electron velocity distribution

at near{zero transverse momentum and with a longitu-

dinal velocity near v

p

[9]. For slow asymmetric collisions

(high projectile charge compared to an e�ective target

charge of order unity) this becomes the dominant ioniza-

tion mechanism.

For slow collisions (v

p

<< v

e

) an adiabatic picture is

appropriate, i.e., one can understand the physics in terms

of energy correlation diagrams obtained from the diag-

onalization of the two{centre electronic Hamiltonian for

�xed internuclear separation. The well-known Landau{

Zener transition model of avoided level crossings and pro-

motion of electronic orbitals populated at close internu-

clear separations to the continuum as the system sepa-

rates, has been extended and applied successfully even

to the antiproton{hydrogen system [10].

It has been shown recently that at such low velocities

for which the quasimolecular picture is appropriate the

overall low ionization probability is indeed dominated by

a saddle{point mechanism, i.e., orbital promotion leads

to ionized electrons moving with the saddle{point veloc-

ity 0:5v

p

for the charge{symmetric system p{H [11, 12].

This subject is presently attracting attention in the the-

oretical community [13].

For intermediate{energy collisions (v

p

� v

e

) the im-

portance of the saddle in the classical potential for the
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ionization process was claimed on the basis of classi-

cal trajectory calculations [14]. The model uses classi-

cal statistical mechanics to simulate quantum mechanics,

and its validity can be questioned in this regime, since

tunneling begins to play a role for the charge exchange

mechanism. In particular, predictions were made that

for charge{asymmetric systems with projectile charge Z

p

and target charge Z

t

the ionized electron distributions

should be centered on the saddle{point velocity

v

s

=

v

p

1 +

p

Z

p

=Z

t

: (1.1)

Several experimental attempts were made in recent years

to address this question, but so far the situation re-

mained unclear[4{7]. An interesting model that provides

a reason for the importance of the classical saddle point

has been suggested [15]: the rotation of the saddle with

the internuclear axis can act as a Paul trap, i.e., stabilize

an electronic wavepacket dynamically on the saddle.

A theoretical analysis of a one-dimensional model with

soft-core Coulomb potentials solved numerically indi-

cated that the classical potential saddle does not ap-

pear to play an important role for velocities v

p

� v

e

[16].

However, as is shown in the present study the situation

changes in the realistic three-dimensional setting. Thus,

it is quite possible that it lends support to the idea that

the rotation of the saddle, i.e., Paul trapping is relevant

for symmetric collisions.

In the last few years a new experimental technique for

electron spectroscopy has been developed to resolve the

controversy of saddle{point electrons at intermediate ve-

locities [17,18]. Both studies consider the experimentally

more accessible proton{helium system and single ioniza-

tion only (one can assume that Z

t

� 1:4).

One investigation for 5{15 keV proton impact is

impact{parameter dependent (through a determination

of the recoil He

+

momentum)[18] and clearly displays

the complexity of the ionization process. For very close

collisions at v

p

= 0:77 a.u. the electrons emerge predom-

inantly as if the target atom explodes and little focusing

of the electron wavepacket towards the projectile takes

place. However, as the impact parameter increases, the

electrons are broadly distributed over the saddle{point

velocity with small but non-zero transverse momentum

(in the 0.1{0.3 a.u. range) towards the projectile. The

ionized electrons are almost con�ned to the scattering

plane.

The other investigation is not di�erential in impact pa-

rameter, but spans a wider velocity range v

p

= 0:6��2:4

a.u. and provides also data for C

6+

impact. It displays

how the transverse momentum distribution broadens

from being con�ned to the scattering plane for slow col-

lisions to a half-width of 1.5 a.u. for the fast collision.

For the longitudinal electron momentum distribution it

demonstrates the importance of the saddle for proton ve-

locities up to v

p

= 1:7 a.u. At v

p

= 2:4 a.u. the electron

distribution is peaked at v

e

� 0:5 a.u., i.e., far below the

saddle{point velocity. It is noteworthy that the transi-

tion appears to be quite abrupt. On the other hand the

results for C

6+

projectiles for impact velocities in the

v

p

= 1:2� 1:6 a.u. range put in question the importance

of the saddle point in charge{asymmetric systems: the

emitted electron distributions display a cusp behaviour

for the low velocity with a gradual shift to lower veloc-

ities, but well ahead of the saddle velocity as the pro-

jectile speed is increased. The classical trajectory results

reported in [17] on the other hand appear to be domi-

nated by the saddle point in the classical potential.

These �ndings clearly demonstrate the need of

large{scale numerical solutions of the time{dependent

Schr�odinger equation (TDSE) in the impact parameter

approximation. Basis{state expansion techniques have

di�culties in dealing with the representation of the con-

tinuum. The two-centre problem alone when modeled to

calculate predominantly bound{state populations su�ers

from a problem of overcompleteness when atomic or-

bitals on both nuclei are combined to form a basis. It

has been recognized that states involving a third center

(between the nuclei) need to be included to obtain reli-

able cross sections [19]. Nevertheless, it would be hard

in these studies to analyze the continuum content of the

wavefunction after the collision.

II. THEORY

The impact parameter approximation to the full

three{body problem calls for the solution of the elec-

tronic TDSE for given internuclear trajectoriesR(t). The

�xed trajectory serves as a source of energy for elec-

tronic excitations, including ionization. The traditional

basis{state expansion technique to solve (in atomic units

�h = m

e

= e = 1)

i

@

@t

 (r; t) = [�

1

2

r

2

�

Z

t

r

�

Z

p

jr�R(t)j

] (r; t) (2.1)

faces the following di�culties: the basis of eigenstates of

the atomic Hamiltonian H

0

contains discrete and con-

tinuous states. Convergence in the latter states is very

slow if one wishes to describe states travelling with the

projectile or with the saddle{point velocity. Two-centre

pseudobases, such as the Hylleraas basis can be used in

quasimolecular adiabatic calculations and for very slow

collisions in the TDSE to describe the charge transfer

problem [20], but have di�culties at intermediate veloc-

ities due to the lack of translation factors. Two-centre

atomic orbital bases need the addition of pseudostates

to describe the continuum[2]. Converged calculations of

this type represent a formidable computational task and

still face the problem of how to extract the continuum

information.

For the present study we have therefore adapted a nu-

merical approach tested in the context of atomic ion-

ization by superintense laser �elds [21,22]. The method

is described briey with emphasis on the new aspects,

namely how to extract continuum information from the

propagated wavefunction.
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Space is discretized by a non-uniform mesh such that

the region near the nuclei is resolved properly. At the

same time we wish to span as much of space as possi-

ble to avoid arti�cial boundaries. This is achieved by a

mapping of each Cartesian coordinate according to

r

i

= �

i

tan(�

i

); ��=2 < �

i

< �=2 (2.2)

The parameters �

i

; i = 1; 2; 3 can be adjusted to deter-

mine at which scale in r

i

the mesh turns over from a �ne

to a coarse spacing, if an equidistant discretization in the

new independent variables �

i

is introduced.

One of the advantages of the TD wavepacket approach

over stationary scattering theory lies in the fact that

the problem of the correct boundary conditions is always

simple. Ionization can be described in terms of square{

integrable functions or on a mesh, as long as one ter-

minates the propagation of the wavefunction before it

hits the boundaries (that are also present in truncated

square{integrable basis sets). The discretization of the

TDSE in the �

i

variables permits, at least in principle,

to impose the correct boundary condition, namely that

 (r; t) vanishes for r ! 1 with derivatives. Of course,

we have to expect that the propagation is impeded once

signi�cant parts of the wavepacket reach regions where

the mesh becomes coarse, i.e., for jr

i

j > �

i

.

The propagation of the wavefunction is straightfor-

ward after the Laplacian operator has been expressed

in the �

i

variables. An alternating{direction implicit

method that is unconditionally stable and can be im-

plemented e�ciently for modern computer workstations

is used. The conservation of the norm of  (r; t) serves as

one indicator that the time propagation is reasonable.

The wavefunction is monitored by the calculation of

projections onto stationary target and travelling projec-

tile eigenstates. The projectile is moving according to

R(t) = (X

0

+ v

p

t; b; 0) where b is the impact parameter

and X

0

is chosen appropriately (X

0

= �Z

p

� 10 a.u.) to

avoid sudden turn-on of excitations. We require

a

�

(t) =< �j (t) >=

Z

d

3

r�

�

�

(r) (r; t); (2.3)

and

b

�

(t) =< �; v

p

j (t) >=

Z

d

3

r�

�

�

(r)e

�iv

p

x

 (r; t): (2.4)

The projections are calculated, of course, as discrete

sums. In principle, one has to determine the eigenfunc-

tions �

�

on the mesh, since they do di�er from the exact

analytical eigenfunctions evaluated at the mesh points.

While we use an iterative algorithm to determine an ini-

tial ground state in order to start the calculation without

any excitations, for the purpose of bound{state projec-

tions we have used the exact hydrogenic eigenfunctions

evaluated on the mesh.

In the limit of large times (R(t) > Z

p

� 10 a.u.) the

Hamiltonian goes over e�ectively into the atomic Hamil-

tonian (except for some Stark mixing between acciden-

tally degenerate states). This means that the projections

(2.3) and (2.4) stabilize and their moduli{squared be-

come occupation probabilities for the bound target and

projectile states.

If one is interested in target excitation and electron

loss (due to ionization and charge transfer), one can cal-

culate reasonably accurate transition probabilities us-

ing small meshes (e.g., �

i

= 4 a.u., and the number

of points in the (x; y; z) directions 64 � 48 � 48 yields

impact{parameter dependent probabilities accurate at

the 1{2 % level). These can be performed on a small

workstation. However, to analyze the continuum content

larger calculations are required. For the present work we

chose �

x

= 20 a.u., �

y

= �

z

= 10 a.u., and a size of

256� 128� 128. This requires about 128 MB of memory

and typical jobs take several hours on a 64-bit worksta-

tion (Sun Ultra-1 clocked at 143 MHz).

At a separation of R(t) � 20 a.u. after the colli-

sion we calculate a projected wavefunction from which

the bound{state parts corresponding to the lowest three

shells have been removed:

j�(t

f

) > = j (t

f

) > �

M

X

�=1

a

�

(t

f

)j�

�

>

�

N

X

�=1

b

�

(t

f

)j�

�;v

p

>: (2.5)

Note that the norm of the projected state j�(t) > equals

the overall ionization probability, while the total cap-

ture and target bound{state probabilities are given as

the sums of the moduli squared of the coe�cients calcu-

lated in (2.3) and (2.4).

In the �nal step the wavefunction �(r; t

f

) is Fourier

analyzed to display its momentum content. The correct

procedure would be to project it onto Coulomb eigen-

states (for the two-centre problem). This represents a

task, however, that appears to be prohibitive even on

modern workstations, particularly since the states would

have to be generated on the mesh. We have gained some

con�dence from the one-dimensional model work [16] (for

which the Coulomb scattering states can be generated on

the mesh) that the discrete Fourier transform of the pro-

jected wavefunction provides good results provided it is

performed at distances of R(t) � 20 a.u.

To make use of fast Fourier transform techniques the

three-dimensional wavefunction �(r; t

f

) is linearly inter-

polated to an equidistant mesh, and then transformed.

The process of interpolation serves also as a measure of

`smoothness' of the original state. For intermediate and

large impact parameters, for which the saddle{point re-

gion is prominently populated, there is practically no loss

in norm in the interpolation process.
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III. RESULTS

Only a few examples are presented here to illustrate

the transition regime from intermediate projectile veloc-

ities to fast collisions for the proton{hydrogen system.

The results for the velocities of v

p

= 1, 1.414, and 2

a.u. correspond to impact energies of 25, 50, and 100

keV respectively. Due to the cylindrical geometry the to-

tal ionization cross section is dominated by intermediate

Fig. 1. Di�erential ionization probability

dP (b)

dv

x

as a func-

tion of longitudinal electron velocity (momentum) for a �xed

impact parameter of b = 1 a.u. in proton{hydrogen collisions

for di�erent impact velocities: a) v

p

= 1 a.u., b) v

p

= 1:414

a.u., c) v

p

= 2 a.u.

Fig. 2. Di�erential ionization probability

dP (b)

dv

x

as a func-

tion of longitudinal electron velocity (momentum) for a �xed

impact parameter of b = 2 a.u. in proton{hydrogen collisions

for di�erent impact velocities: a) v

p

= 1 a.u., b) v

p

= 1:414

a.u., c) v

p

= 2 a.u.

impact parameters, i.e., for given impact energy E it is

obtained from the ionization probabilities P

ion

(b) as

�

ion

(E) = 2�

Z

1

0

P

ion

(b)bdb: (3.1)

Since we are showing di�erential b-dependent probabili-

386



NUMERICAL CALCULATION OF SADDLE{POINT DISTRIBUTIONS : : :

ties, it is useful to know that the cross sections for the

systems considered are coming mostly from the b = 1::2

a.u. range. Therefore, the data can be compared also to

the experimental results which are summed over impact

parameters [17].

Figs. 1a-c show the ionization probability for �xed im-

pact parameter as a function of longitudinal electron mo-

mentum (velocity) along the beam axis. They clearly dis-

play that for the slower velocities the saddle{point region

(in which the electron experiences very small acceler-

ations) plays an important role. The data are in very

good qualitative agreement with the experiment[17] as

far as the position of the maximum probability is con-

cerned. However, we note that the cusp structure near

v

e

= v

p

is more pronounced in the calculation (cf. cases

a,b) than in the experiment, and that the experiment

�nds no enhancement in the electron signal at v

e

= 0,

i.e., no particular contribution from electrons emerging

slowly from the target atom.

For the case of v

p

= 1 a.u. there is a signi�cant charge

transfer probability of about 50 %, mostly to the ground

state of the projectile. Projectile and target excitations

contribute at much lower levels in accord with the known

cross sections [2]. Given that the electron cloud experi-

ences this dramatic motion (at lower energies it performs

tunneling oscillations between both centres[20]), it is not

too surprising that the ionization probability has three

contributions corresponding to the saddle and to the two

charge center velocities. What is rather surprising is the

fact that the experimental data (for single ionization of

helium by proton impact) are completely dominated by

the saddle{point electrons with a small cusp feature. The

latter can be ampli�ed once a cut on the data is made

to include only electrons with negligible transverse mo-

menta.

We would like to stress that the importance of the

saddle in the potential for the ionization mechanism is a

function of impact parameter. For close collisions (e.g.,

b = 0:5 a.u.) the distribution of the ionization probability

over longitudinal electron momentum is quite irregular.

This is in agreement with the experimental �ndings for

15 keV proton{helium single ionization [18]. In this case

a sizable fraction of electrons emerges in the backward

direction (a double{scattering mechanism in which the

projectile knocks the electron to collide with the target

nucleus contributes to this channel), and the ionization

probability is more reminiscent of the one for faster col-

lisions, such as in �g. 1c.

Thus, one can argue that the saddle{point mechanism

is most important for those electrons that are ionized

while at a distance from the target nucleus. They are

accelerated in the forward direction and the target nu-

cleus has little inuence to hold them back. It would be

interesting to analyze the computational data further to

understand at what internuclear distances the electrons

obtain their �nal momenta in the forward direction. This

question, however, is di�cult to answer, as the use of

plane{wave states for momentum analysis is not justi-

�ed at small internuclear distances. A method has to be

devised that takes the Coulomb potential into account.

One argument that can be found to explain the ap-

pearance of well-de�ned momentum values at which the

electron distribution peaks is the phenomenon of spread-

ing of wavepackets in coordinate space. As the projectile

moves away from the target the potential in the region

between the nuclei decreases in magnitude and has a

small curvature. Thus, the ionized wavepacket delocal-

izes in coordinate space and narrows in momentum space

around its mean value. This explanation does not rely on

the precise position of the saddle point, i.e., holds also

for the case of fast collisions. For the case of v

p

= 2 a.u.

a peak in the ionization probability occurs at v

e

� 0:6

a.u., roughly in accord with the p{He experiment [17].

What is remarkable is that the mean momentum value

for the ionized wavepacket is approximately independent

of impact parameter (otherwise it would be washed out

in the di�erential cross section given in [17]). It is pos-

sible that an analysis of the mean longitudinal momen-

tum as a function of time (or internuclear distance) for

various impact parameters will reveal interesting e�ects.

Semiclassical Vlasov calculations for fast heavy ion colli-

sions[23] have shown that the time evolution of the mean

position (or velocity) of the electron distribution has a

strong inuence on the longitudinal motion of the recoils.

As far as the ionized electronic wavepacket is concerned

one might distinguish regimes where both nuclei are close

together vs. post-collision e�ects.

A systematic investigation in which the projectile

charge is varied is obviously called for. The compari-

son of experimental data for single ionization of He by

singly and six-fold charged projectiles at similar veloci-

ties[17] suggests that the appearance of the peak in the

electron longitudinal velocity distribution at the saddle{

point value for p{He at intermediate velocities might be

coincidental. It remains to be seen whether eq. (1.1) plays

a role for some range of projectile charges and impact ve-

locities.

Theoretical calculations for this problem in the present

framework are in progress.We note that studies using the

two-centre basis state expansion technique have found an

unexpected importance of deeply bound projectile states

for the calculation of ionization [24]. Such calculations

are also of great interest to plasma physics.

IV. CONCLUSIONS

In conclusion we would like to point out that the re-

cent sophisticated experimental techniques to map out

the wavefunctions (squared modulus) for ionized elec-

tron states in momentum space for �xed kinematic con-

ditions [18] have spurred renewed theoretical interest in

the problem. On the theoretical/computational side we

are beginning to make progress, but there are still ob-

stacles to be overcome. One of the di�culties when com-

paring the data quantitatively with experiment is that

the calculation is performed in the scattering plane as

�xed before the collision by a stationary target atom and

the projectile beam axis. In the experiment the recoil ion

momentum is used to de�ne the plane, and thus, the the-
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oretical results need to be transformed. The transform is

known, but is performed easily only for transition ampli-

tudes known in closed form, e.g., from the Born approx-

imation [25].

An unresolved issue in the present theoretical results is

the appearance of sizable contributions of slow electrons

emerging from the target atom, which are not seen in

the recent experiments[17,18]. This is in spite of the fact

that the experiments were designed to be very sensitive

in this range. Further analysis of the computational data

are required, i.e., it is possible that the removal of bound{

state contributions is incomplete. It is also possible that

ionized slow electrons (e.g., from �eld ionization of ex-

cited states by the receding projectile) are re-captured

radiatively. This is a process not included in the present

calculation based on the TDSE.

Once the validity of the numerical integration and

Fourier analysis technique is established various further

applications can be envisaged. The extension to multiple

ionization in highly{charged ion{atom collisions in the

framework of a mean{�eld theory is one of them. Other

interesting applications that are currently investigated in

experiments lie in the �eld of ion{surface interactions.
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OBQISLENN� ROZPOD�L�V S�DLOVOÕ TOQKI PRI PROTON{VODNEVIH

Z�TKNENN�H PROM��NIH ENERG��

M. Gorbaq

Fakul~tet f�ziki � astronom�Ý, Un�versitet �ork,

4700 K�l str., Toronto, Ontar�o M3J 1P3, Kanada

Zd��sneno qislovi� rozv'�zok zale�nogo v�d qasu r�vn�nn� Xred�n�era dl� ruhu elektrona u pol� dvoh

�der, wo ruha�t~s� vzdov� klasiqnih traktor��, xl�hom diskretizac�Ý na dekartov�� s�tc�. Simetr��

proton{vodnevoÝ sistemi pri rozs��nn� rozgl�dat~s� dl� xvidkoste� bombardu�qogo protona, por�vn�l~-

nih z xvidk�st� elektrona u poqatkovo za�n�tomu osnovnomu stan� H(1S). Dl� bli�n�h z�tknen~ dom�nu-

�qimi kanalami  osnovni� stan bombardu�qogo protona � pru�n rozs��nn�. �on�zu�qi� proces u c~omu

re�im� pereva�no zasel�t~s� stanami elektrona z neperervnogo spektra z k�ncevim �mpul~som v oblast�

s�dlovoÝ toqki, tobto z malim popereqnim do os� puqka �mpul~som � znaqenn�m pozdov�n~ogo �mpul~su 0:5v

p

.

U c�� statt� pokazano, �k otrimati c� �nformac�� z velikomasxtabnih qislovih rozrahunk�v.
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