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Recent work on the square percolation lattice resolved the discrepancy that existed between the

scaling behaviour of percolation di�usion and the conductivity of the associated random resistor

network. This discrepancy is �rst recalled, then attention is directed to the cubic percolation lattice

where di�usion is again shown to scale with the same critical exponent as the lattice conductivity.

This is the �rst time the scaling behaviour of di�usion and conduction on the cubic lattice have

been reconciled. Finally, evidence is presented which suggests that the relaxation rate of percolation

di�usion has scaling behaviour with a scaling exponent similar in value to that which governs the

correlation length of the lattice.
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I. INTRODUCTION

The study of percolation theory �rst arose from a

problem set by the English mathematicians Broadbent

and Hammersly [1] who were interested in the 
ow of a

liquid or gas through a disordered material. Broadbent

[2] commented that the percolation problem would be

ideal for Monte Carlo computer study and such work

lead to sophisticated usage of the extremely low power

computers of the time. Since inception, percolation the-

ory has evolved into a branch of statistical mechanics in

its own right, �nding applications as diverse as particle

physics, cosmology, semi-conductors, and beyond physics

into chemistry and the life sciences [3]. In short, Monte

Carlo work has played a large part in developing an un-

derstanding of percolation theory [4] and still has an im-

portant role.

There are two types of lattice studied in percolation

theory, the bond model and the site model. Both lattices

have uniform spacing and are of in�nite extent. Each

model has either the bonds or sites of the lattice occupied

with a probability p. The critical point of the percolation

lattice, p

c

, is de�ned as the value of p at which an in�-

nite cluster of nearest neighbour occupied bonds or sites

spans the lattice; for all p < p

c

only �nite size clusters

exist. The value of p

c

is dependent on the lattice type and

dimension, on the square lattice p

c

= 0:5927::: (site) and

p

c

= 1=2 (bond) and on the cubic lattice p

c

= 0:3116:::

(site) and p

c

= 0:2488::: (bond) [4]. It is convention that

fractional values denote analytical derivation and deci-

mal values denote numerical estimates.

Various cluster properties, such as the proportion of

sites belonging to the in�nite cluster, P

1

, or the correla-

tion length, �, have a critical dependence on the distance

(p� p

c

) [4,5]. This scaling behaviour is known exactly in

the case of the two dimensional bond lattice by analogy

to the Potts model [6,7]. Universality [8] implies that the

values of these exponents depend only on the dimension

of the system, lattice structure being irrelevant.

It is ironic that the behaviour of dynamic processes

such as di�usion or conduction, which were the inspi-

ration for percolation theory, have so far proven to be

less tractable by analysis. Unlike the static cluster prop-

erties, dynamic processes have no analogous property

found in other statistical mechanical models. Although

some progress has been made by theoretical study, work

has been carried out by Adler et al [9], Kesten [10] and

Golden [11] for example, dynamic processes are studied

mainly by Monte Carlo simulation.

Monte Carlo studies of lattice conductivity have pro-

duced clear evidence of scaling behaviour [12{17] with

broad agreement found between earlier and later work. In

contrast, the results of di�usion simulations are inconsis-

tent. The Einstein relation implies that conductivity and

di�usivity have the same critical dependence on (p�p

c

),

governed by the dynamic exponent �, as discussed in

[18]. Di�usion simulations at the threshold [19,20] gave

a value of � similar to that obtained from conductivity

measurements but until recently simulations of di�usion

above the threshold did not [21,22]. Then, Monte Carlo

work [23] on the square site lattice showed that the an-

ticipated scaling behaviour of classical di�usivity could

be observed only if the very slow relaxation behaviour of

percolation di�usion was accounted for.

In this paper, attention is now turned to the behaviour

of percolation di�usion on the cubic site lattice. Simula-

tions of percolation di�usion were carried out above the

threshold near the critical point to see whether the same

type of relaxation behaviour found in two dimensions is

also evident in three thus allowing the correct scaling be-

haviour to be determined. The remainder of the paper

is laid out in the following manner. Section Two gives a

brief review of the scaling theory for dynamic processes.

Then, Section Three provides some notes on the simula-
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tions carried out here, the results of which are analysed

in Section Four. The paper is then concluded in Section

Five.

II. SOME SCALING THEORY FOR DYNAMIC

PROCESSES

Several properties of percolation lattices have been

found to scale with the distance (p� p

c

) [4,5,24]. For ex-

ample, P

1

scales as P

1

/ (p�p

c

)

�

and � as � / (p�p

c

)

�

.

In d = 2 dimensions � = 5=36 and � = 4=3 and in d = 3

dimensions � = 0:41::: and � = 0:88::: [4].

Dynamic processes on percolation lattices are con�ned

to taking place on occupied sites. The conductivity is

de�ned as follows [4]. If a unit voltage is applied across

opposite sides of a lattice of edge length L, then the con-

ductivity, �, is the current 
owing through the lattice

multiplied by L

2�d

, where d is the dimensionality of the

lattice. When L =1, � = 0 for all p < p

c

and above the

threshold � increases to a maximum as p tends towards

unity. Although large scale conductivity must occur via

the backbone, there is no simple relationship between the

behaviour of � and P

1

as might be expected.

A property related to conduction is di�usion, but the

two properties have a subtle di�erence. Whereas conduc-

tivity is time independent, having a dependence only on

the structure of the clusters, di�usion is a time depen-

dent property. Di�usion on percolation clusters is mod-

elled by the following simple algorithm, termed the Ant

in the Labyrinth [25]. A di�using particle starting from

an occupied site selects a nearest neighbour site at ran-

dom. If the chosen site is also occupied then the particle

moves to it, otherwise the particle remains stationary.

These actions constitute a single time step irrespective

of whether or not the particle has moved. Progress of the

di�using particle on the lattice is measured by the mean

square distance hR

2

i moved in N steps.

Below the threshold, where there is no in�nite cluster,

the trajectory of a di�using particle must ultimately be

restricted by the cluster perimeter. This means that the

distance hR

2

i approaches a limiting value and behaves

like hR

2

i = R

2

1

� A exp[�

�

N

�

<

�

w

] for large N, where

R

2

1

is the saturation distance, A and w are constants

and �

<

is the characteristic saturation time [19,22,26].

The quantities R

2

1

and �

<

were conjectured [26] to follow

the scaling laws R

2

1

/ (p� p

c

)

2���

and �

<

/ (p� p

c

)

#

.

Supporting evidence of these scaling laws was provided

by Monte Carlo simulation [19,22,26].

Above the threshold, di�usion is unbounded. Gefen et

al [27] conjectured that di�usion was initially anoma-

lous on length scales less than � and then crossed over

to classical behaviour after some characteristic time �

>

.

In the anomalous regime, di�usion follows the behaviour

~

R = hR

2

i / N

2k

;k < 1=2 but in the classical regime, dif-

fusion behaves according to the well known di�usion law,

hR

2

i = DN . At p = 1, where � = 0, di�usion is classical

for all N and D is normalised to unity. For p

c

< p < 1

it was presumed by Gefen et al that di�usion would be

classical after the crossover point but with 0 < D < 1.

At the threshold, where � = 1, di�usion is anomalous

for all N.

As implied by the Einstein di�usion relation it is ex-

pected [13] that � / D which means that both properties

share the same critical exponent,

� / D / (p� p

c

)

�

(1)

There is no general scaling relation valid for all d which

expresses the dynamic exponent � solely in terms of

static exponents such as � or �. One relation was con-

jectured by Alexander and Orbach [28],

� = 1=2[�(3d� 4)� �]; (2)

which gives � = 91=72 when d = 2 and �

�

=

1:995 when

d = 3. Recent simulations, however, do not support this

conjecture in d = 2 [20,23], although there is evidence to

suggest that it may be true for higher dimensions [4,29].

Gefen et al [27] and Pandey et al [19] derived the scal-

ing relation 2k =

2���

2���+�

which gives � in terms of static

exponents and the di�usion exponent k. Simulations of

di�usion at the threshold gave k = 0:332 � 0:002 and

k = 0:20� 0:01 in d = 2 and d = 3 dimensions respec-

tively from which � = 1:28 � 0:02 and � = 2:0 � 0:2

were obtained, using values of the critical exponents

slightly di�erent to those cited here [19]. These agree

with � = 1:299� 0:002 and � = 2:003� 0:047 obtained

from the latest conductivity measurements [16,17].

Di�usion simulations above the threshold gave val-

ues of � which were too low, i.e � = 0:99 � 0:02 and

� = 1:72 � 0:03 for the square and cubic lattice re-

spectively [21] and � = 1:70 � 0:05 on the cubic lat-

tice [22]. This prompted some [22] to suggest that there

were in fact 2 dynamic critical exponents, one for conduc-

tion and one for di�usion. It was shown �nally [23] that

percolation di�usion is classical in the limit of N ! 1

only. When the relaxation to the classical limit was ac-

counted for, scaling behaviour of D compatible with the

Einstein relation was observed with a dynamic exponent

� = 1:291� 0:024 in agreement with [16] but not, how-

ever, with the Alexander{Orbach conjecture (2).

III. NOTES ON THE SIMULATION

Percolation di�usion modelled by the Ant in the

Labyrinth Algorithm (AIL) [25] is ideal for Monte Carlo

simulation where a large number of di�using particles

perform an ensemble of random walks on the lattice.

The behaviour of hR

2

i with N is determined for a spe-

ci�c probability p in the following manner. Each walk

starts from an occupied site, the origin. Then it takes

N steps according to the rules of percolation di�usion

de�ned above. After each step or intervals of steps the

position of the ant relative to the origin is noted and

the distance R

2

evaluated. If a large number of walks

are executed on a large number of lattice con�gurations

then the mean square distance hR

2

i can be evaluated for

414



MONTE CARLO SIMULATION OF DIFFUSION : : :

values of N . With the advent of fast desk top comput-

ers, AIL simulations can now be carried out in relatively

little time.

The new results reported in this paper were carried

out on an Intel 486/66 based computer. The biggest con-

straint on the simulation was the amount of memory

available. The size of the lattice was therefore limited in

this instance to an edge length of L = 100. The simula-

tions were carried out for the range 0:33 � p � 0:39. For

each probability p, 200 walks were carried out on each of

100 di�erent lattice con�gurations giving 2 � 10

4

walks

in total. Periodic boundary conditions were imposed on

the lattice and the distance R

2

was evaluated for every

hundredth step. The simulation for each probability p

took approximately 36 hours.

IV. RESULTS AND DISCUSSION

Results from the simulations were obtained in the form

hR

2

i vs. N and looked typically like that shown in �gure

1 which shows the graph for p = 0:34. The behaviour of

hR

2

i, however, is deceptive. Although at �rst one might

assume that for large N the dependence of hR

2

i on N

is linear, this is not the case! The relaxation to classical

di�usion on the square percolation lattice has the form

[23]

~

R

N

1=2

�

~

R

N

1=2

N=1

=

C

N

1=2

(3)

for large N . Thus, if the results obtained are plotted in

the form

~

R

N

1=2

vs.

1

N

1=2

, the relaxation is evident from the

tendency towards linearity as

1

N

1=2

! 0. This is shown

for p = 0:34 in �gure 2. The value of the classical di�u-

sion coe�cient D is then the square of the intercept on

the vertical axis.

Fig. 1. The behaviour of hR

2

i vs. N for p = 0:34.

A problem encountered in obtaining the intercept of

graphs such as �gure 2 is the presence of a small up-

turn for large N thought to be due to the e�ect of �nite

lattice size. This upturn becomes more pronounced as p

increases and is caused by walks that are able to proceed

for longer than would otherwise be the case on the in-

�nite lattice; imposing periodic boundary conditions on

the �nite lattice has the e�ect of joining together op-

posite sides of large �nite clusters. As the threshold is

approached, the onset of linear behaviour in the graph

of

~

R

N

1=2

vs.

1

N

1=2

is postponed. This means that the inter-

cept of such graphs becomes more di�cult to determine.

Therefore, to determine D from these results it was as-

sumed that the behaviour of the curve on the in�nite

lattice would be convex for all N . Thus, the region of

the curve having the steepest slope was used to deter-

mine the intercept of the vertical axis from which D was

determined. Justi�cation of this assumption is found by

the behaviour of

~

R

N

1=2

vs.

1

N

1=2

observed on �nite d = 2

lattices which had much larger edge lengths; such be-

haviour was uniformly convex.

Fig. 2. The behaviour of

~

R

N

1=2

vs.

1

N

1=2

for p = 0:34.

Fig. 3. The graph of ln(D) vs. ln(p� p

c

).
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Recall equation (1). If scaling exists, then the graph of

ln(D) vs. ln(p�p

c

) will show linearity as the threshold is

approached. This is shown for the results here in �gure 3

where it is assumed that p

c

= 0:3116. As the threshold is

approached, there is a clear region where the behaviour

is linear. From the slope of the linear region of �gure 3

the value of � was found to be � = 1:980� 0:025. This

is in good agreement with the most recent conductivity

estimate for d = 3 which gives � = 2:003 � 0:047 and

with the Alexander{Orbach conjecture. The extremely

slow relaxation of percolation di�usion as the threshold

is approached is clearly apparent by the behaviour of the

leftmost point in the graph which fails to conform to the

trend shown by the other points.

Evaluation of � by the method given here can be com-

pared to the simple approach of determining D from the

slope of the graph of hR

2

i vs. N for large N as suggested

by the crossover conjecture of Gefen et al [27]. Such an

analysis of the results here gave �

�

=

1:81, not much bet-

ter than previously published work [22].

Given that the behaviour of percolation di�usion is

characterised by a slow relaxation, one may wonder

whether the relaxation itself has any scaling dependence

on (p�p

c

). The rate of relaxation for di�usion is given by

the constant, C, in equation (3). The constant C, which

shall be termed the relaxation coe�cient, was evaluated

for di�erent probabilities p using the results here. It was

assumed that a scaling law for C, similar to the other

scaling laws discussed above, exists,

Fig. 4. The graph of ln(C) vs. ln(p� p

c

).

C / (p� p

c

)

�

(4)

and the graph of ln(C) vs. ln(p�p

c

) was plotted as shown

in �gure 4. The presence of a linear trend as the thresh-

old is approached clearly implies scaling behaviour. From

the slope of �gure 4, the value of � was found to be

� = 0:884� 0:056.

The value of � given here is extremely close to the

d = 3 value of the exponent � = 0:88::: . A similar anal-

ysis [30] of the scaling behaviour of C for the square lat-

tice, however, gave �

�

=

1:68. This is considerably larger

than the d = 2 value of � = 4=3. The discrepancy may

be understood by circumstantial evidence which points

to a lower critical dimension for dynamic scaling, d

c

= 3,

as discussed in [29]. For example, scaling relations such

as the Alexander{Orbach conjecture appear to be sup-

ported by Monte Carlo work on d = 3 lattices but not

on d = 2 lattices; certainly this has been shown to be

the case here for �. The same may be true of the critical

exponent for C, i.e., � = � only when d � 3. At the mo-

ment this statement must remain a conjecture warrant-

ing further examination either by the analysis of scaling

relations or by the simulation of di�usion on hyper-cubic

percolation lattices.

V. SUMMARY AND CONCLUSION

The results presented here show that percolation dif-

fusion on the cubic lattice undergoes a

1

N

1=2

relaxation

to asymptotic classical behaviour. Accounting for this

relaxation enabled the expected scaling behaviour of D

to be observed. Thus, the dynamic exponent for di�u-

sion on the cubic percolation lattice was found to be � =

1:980�0:025. It was shown that the relaxation coe�cient,

C, scaled with a critical exponent � = 0:884�0:056, close

to the d = 3 value of the exponent � = 0:88::: . Future

work on hyper-cubic lattices will show whether or not

d = 3 is a lower critical dimension for the identity � = �.
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DIFUZ�� NA NEVPOR�DKOVAN�� KUB�QN�� �RATC� NAD POROGOM

PROT�KANN�: DOSL�D�ENN� METODOM MONTE KARLO

O. D. Pul

Xkola matematiqnih dosl�d�en~, Un�versitet Portsmut,

Portsmut, R01 2EG, Angl��, e-mail: poole@sms.port.ac.uk

Nedavn� dosl�d�enn� procesu prot�kann� na kvadratn�� �ratc� usunuli nev�dpov�dn�st~, wo �snuvala

m�� perkol�c��no� difuz�
� � prov�dn�st� pov'�zanoÝ z ne� nevpor�dkovanoÝ s�tki opor�v. Osnovna uvaga

u naxih dosl�d�enn�h prid�l�
t~s� kub�qn�� �ratc�, dl� �koÝ pokazano, wo perkol�c��na difuz�� � �rat-

kova prov�dn�st~ opisu�t~s� tim samim naborom kritiqnih pokaznik�v. Vperxe privedeno u v�dpov�dn�st~

poved�nku difuz�Ý ta prov�dnost� na kub�qn�� �ratc�. Otriman� dan� sv�dqat~ pro te, wo xvidk�st~ relak-

sac�Ý perkol�c��noÝ difuz�Ý ma
 masxtabnu poved�nku z pokaznikom, bliz~kim za veliqino� do kritiqnogo

pokaznika �ratkovoÝ korel�c��noÝ dov�ini.
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