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The present paper discusses the magnetism of the U

3

X

4

compounds (X = P, As, Sb, Bi) in terms

of an Heisenberg{type model introduced in 1987 by the authors. It contains competing single{

ion and exchange isotropic and anisotropic interactions of comparable magnitude. The model is

derived using a symmetry analysis of the structures and the Landau theory of phase transitions.

The results of the mean{�eld calculations are presented, describing the spontaneous magnetisation,

temperature dependence phase diagrams and behaviour of the system in the external magnetic

�eld. Also the elementary excitations are discussed. The model provides a good description of the

magnetic structures and their thermodynamic behaviour.
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I. INTRODUCTION

Physical properties of magnetically ordered Uranium

compounds with the Th

3

P

4

-crystal structure have re-

ceived attention since the pioneering work of Trzebia-

towski and Tro�c [1] who discovered a ferromagnetic tran-

sition in U

3

P

4

at about 140 K. Subsequently, ferromag-

netic properties were revealed in other compounds of this

family, i.e. with X=As, Sb, Bi [2{4] as well as with X

=Se and Te [5, 6]. The nature of the magnetic phases of

these compounds posed a more di�cult problem. First

neutron di�raction experiments on powder samples of

U

3

P

4

suggested a collinear ferromagnetic structure [7,

8]. A similar conclusion was reached regarding U

3

As

4

[9]

and U

3

Sb

4

[10]. However, preliminary theoretical anal-

ysis of the phase transition lead to the conclusion that

one should expect a non-collinear multi-axial structures

rather than a simple ferromagnetism [11, 12].

A long controversy as to this question was eventually

resolved by Burlet et al. [13] using polarized neutron

spectroscopy of monocrystal samples of U

3

P

4

and U

3

As

4

:

the magnetic structures in both materials were found to

be non-collinear three-axial ferromagnets. On the other

hand, similar recent experiments on U

3

Sb

4

and U

3

Bi

4

decided in favour of collinear structures [14]. Samples of

U

3

Te

4

and U

3

Se

4

proved to be more di�cult to handle

and the question of what are the magnetic structures of

these materials remains unresolved.

Although all U

3

X

4

materials are cubic crystals of T

6

d

(I

�

43d) cubic space group, they turn out to be highly

anisotropic [15{19] and this was con�rmed both by mag-

netic [15{19] and by electrical measurements [20].

Giant magnetic anisotropy has been observed in a

number of experiments conducted in high magnetic �elds

[21{26]. The semimetallic nature of these solid com-

pounds is also well established [20, 25, 27{29].

Theoretical attempts to explain physical properties

of the magnetically ordered states of the U

3

X

4

com-

pounds have followed two paths: (1) In view of their semi-

metallic nature, Adachi and Imoto [30] exploited the

Ruderman{Kittel{Kasuya{Yosida (RKKY) theory [31{

33]. Unfortunately, perhaps as a result of a profound dis-

agreement with the experimental data (in the case of

U

3

X

4

compounds), this approach was abandoned for the

next two decades. It was only recently that the itinerant

electron model was used to calculate the magnetic struc-

ture of U

3

P

4

by Sandratskii and K�ubler [34] and they

were able to discuss non-collinear ferromagnetism within

the local approximation to spin{density functional the-

ory. However, the angle of non-collinearity they obtained

was much smaller than the one observed in the experi-

ment of Burlet et al [13].

An alternative approach to explain magnetic phenom-

ena in the U

3

X

4

compounds is to discuss them within

a framework of a localised spin Heisenberg{type model.

The �rst such model was proposed by Przystawa and

Praveczki [35]. Their model, however, reduced the cu-

bic symmetry of the Hamiltonian to a rhombohedral one

and, on top of that, they decoupled the single-ion crys-

tal �eld anisotropy in the molecular �eld approxima-

tion like the exchange interaction. A somewhat better

model was used by Walasek et al. [36] to analyse the

phase transition in U

3

X

4

. Neglecting the exchange inter-

action anisotropy, they preserved the cubic symmetry of

the Hamiltonian and also the single-ion anisotropy was

treated exactly. However, they applied high temperature

perturbation theory, where the e�ective exchange inter-

action was treated as a perturbation. This limited the

validity of their approach to a region not too distant

from the transition temperature and could not account

for giant anisotropy which was detected in experiments.

The same approach was used by Pawlikowski et al. [37]

who supplemented the Przystawa and Praveczki Hamil-

tonian [35] by higher order crystal{�eld terms.

A signi�cant improvement of the theory was achieved

with a model that was �rst introduced in ref. [25]. This

new model, by comparison with the Hamiltonian used

by Walasek et al [36], contained a new type of exchange
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anisotropy compatible with the overall cubic symmetry

of the crystal. Subsequent calculations based on this

Hamiltonian were able to provide an explanation of a

number of properties, ground state phase diagrams [25],

phase transitions [38], behaviour in the high magnetic

�elds [25, 38] and spin{wave excitations [39].

This paper is devoted to the presentation of this

model, its derivation and application to the behaviour

of the U

3

X

4

systems in the magnetically ordered states.

Fig. 1. The unit cell of the magnetically ordered U

3

P

4

.

Fig. 2. The unit cell of the magnetically ordered U

3

Sb

4

.

The paper is organized as follows: In section 2, we

present the symmetry analysis of possible magnetic

structures in U

3

X

4

crystals limited to

~

k = 0 case, i.e. per-

tinent to magnetic ordering with a ferromagnetic com-

ponent. In section 3, the Landau theory of symmetry

changes that gives two magnetic orderings corresponding

to those found in U

3

X

4

with X = P, As, Sb and Bi is pre-

sented. In section 4, the model Heisenberg{type Hamil-

tonian is constructed, which contains the crystal{�eld

three-axial anisotropy and a new cubic exchange{type

anisotropy. In section 5 the mean{�eld phase diagram

at T=0 is described. Section 6 presents the behaviour

of the system in external magnetic �elds at T=0. In

section 7, we discuss temperature{dependent phase di-

agrams, obtained in the mean{�eld approximation. Sec-

tion 8 discusses the elementary excitations (spin{waves)

in both non-collinear and collinear phases. Section 9 con-

tains some conclusions.

II. SYMMETRY ANALYSIS OF THE SPIN

SYSTEM OF U

3

X

4

In what follows we use the term \spin" to denote lo-

calised magnetic moments of the Uranium ions as only

their transformation properties with respect to the space

group symmetry operations will be important.

The crystal structure of all U

3

X

4

compounds are

shown in Figs. 1 and 2, where the positions of the mag-

netic ions in the unit cell of the crystal are depicted.

The magnetic ions are situated at the following special

positions in the crystallographic unit cell:

~r

1

= (

3

8

; 0;

1

4

); ~r

2

= (

1

8

; 0;

3

4

); ~r

3

= (

1

4

;

3

8

; 0);

~r

4

= (

3

4

;

1

8

; 0); ~r

5

= (0;

1

4

;

3

8

); ~r

6

= (0;

3

4

;

1

8

):

They are transformed among themselves by the sym-

metry operations of the bcc cubic space group I

�

43d-T

6

d

(see, e.g., Refs. [40]). Following Refs. [41{44], we per-

form a symmetry analysis of a general spin structure of

the formula

~

M(~r) =

6

X

i=1

~

S

i

�(~r � ~r

i

) (1)

where

~

S

i

denotes an arbitrary spin vector at the site ~r

i

.

As all magnetic structures of U

3

X

4

compounds are ferro

(ferri) magnetic it is su�cient to consider only the spin

in the unit cell, i.e. we take into account only structures

with

~

k = 0, i.e. at the �-point of the Brillouin Zone. If

we apply all symmetry operations of the group I

�

43d to

the spin structure (1), we �nd 18 equivalent structures

that form a basis of an 18-dimensional representation

D(

�

G) of the group I

�

43d-T

6

d

. The group has 5 irreducible

representations at � (see table 1).

The symmetry group operations are given in the stan-

dard notation. With standard methods (see, e.g., [41]),

the reducible representation D(

�

G) can be decomposed

into
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E C

3

C

2x

C

4z

C

2a

�

1

1 1 1 1 1

�

2

1 1 1 -1 -1

�

3

2

�

�

2

0

0 �

� �

1 0

0 1

� �

0 1

1 0

� �

0 1

1 0

�

�

4

3

 

0 0 1

1 0 0

0 1 0

!  

1 0 0

0 �1 0

0 0 �1

!  

0 �1 0

1 0 0

0 0 �1

!  

0 1 0

1 0 0

0 0 1

!

�

5

= �

4


 �

2

with � = exp(i2�=3)

Table 1. Irreducible representations of the group I

�

43d at the �-point.

D(

�

G) = �

1

� �

3

� �

4

� �

4

� �

5

� �

5

� �

5

: (2)

What structures can be described by these irreducible

representations? This question was answered in Refs. [42,

43]: only �

5

can describe a ferromagnetic system, i.e. one

with a resulting magnetic moment di�erent from zero.

The other lead to structures with net magnetic moment

equal to zero, i.e. some sort of antiferromagnetic arrange-

ment. Thus we must discuss only structures compatible

with the �

5

irreducible representation. However, as we

see from Eq. (2) �

5

appears three times in the decom-

position of D and thus couplings between the di�erent

parameters of the same symmetry may be necessary.

Using the projection-operator technique, the basis

functions of di�erent �

5

representations can be con-

structed. The following 3 independent bases can be cho-

sen [44]:

�

1

=

1

2

(S

x

1

+ S

x

2

);

�

2

=

1

2

(S

y

3

+ S

y

4

);

�

3

=

1

2

(S

z

5

+ S

z

6

);

�

1

=

1

4

(S

x

3

+ S

x

4

+ S

x

5

+ S

x

6

);

�

2

=

1

4

(S

y

1

+ S

y

2

+ S

y

5

+ S

y

6

);

�

3

=

1

4

(S

z

1

+ S

z

2

+ S

z

3

+ S

z

4

);



1

=

1

4

(�S

z

3

+ S

z

4

+ S

y

5

� S

y

6

);



2

=

1

4

(S

z

1

� S

z

2

� S

x

5

+ S

x

6

);



3

=

1

4

(�S

y

1

+ S

y

2

+ S

x

3

� S

x

4

); (3)

where S

�

i

denotes here the �-th component of a unit spin

vector at the site ~r

i

. The magnetic structure proposed by

Przystawa [11] for U

3

P

4

was

~

S

1

=

0

@

u

v

w

1

A

;

~

S

2

=

0

@

u

w

v

1

A

;

~

S

3

=

0

@

w

u

v

1

A

;

~

S

4

=

0

@

v

u

w

1

A

;

~

S

5

=

0

@

v

w

u

1

A

;

~

S

6

=

0

@

w

v

u

1

A

:

(4)

In terms of the basis functions (3), this structure can be

written as follows

~m(~r) = u(�

1

+ �

2

+ �

3

) + (v + w)(�

1

+ �

2

+ �

3

)

+(w � v)(

1

+ 

2

+ 

3

);

and the actual structure of U

3

P

4

and U

3

As

4

[12, 13] is

obtained by putting v = w (see �g. 1)

~m(~r) = u

3

X

i=1

�

i

+ 2v

3

X

i=1

�

i

; (5)
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Such a magnetic structure is invariant with respect

to the symmetry operation of the magnetic space group

R3c

0

[11] and is entirely described by the 3-dimensional

irreducible representation of I

�

43d, i.e. �

5

.

III. THE LANDAU THEORY OF SYMMETRY

CHANGES IN U

3

X

4

A general discussion of usefulness and limitations of

the Landau theory of symmetry changes can be found in

ref. [45]. The classical Landau rules [46] require that the

order parameters belong to an irreducible representation

of the paramagnetic space group for the transition to be

of the second order. In our case, the function (5) (which

plays the role of the order parameter) involves the irre-

ducible representation �

5

at least twice. This, however,

does not exclude the continuity of the phase transition

(see, e.g., ref. [45]).

Preliminary Landau analysis of the transition in U

3

X

4

was done by Przystawa [11], Przystawa and Cracknell

[43] and in the most complete way by Oleksy [44].

Using the basis functions (3), we construct the Lan-

dau free energy invariants with respect to the symmetry

operations of the group I

�

43d. The requirement that the

Hamiltonian have time{reversal invariance excludes from

the Hamiltonian any odd couplings and only bilinear and

quartic terms will appear, viz.

�(�; �; ) = �

2

(�; �; ) + �

4

(�; �; ) (6)

with

�

2

(�; �; ) = a

1

I(�

2

) + a

2

I(�

2

) + a

3

I(

2

) (7)

+ 2kI(��) + 2k

1

I(�) + 2k

2

I(�);

where

I(��) �

3

X

i=1

�

i

�

i

; etc.

We shall not write down the quartic terms, as they are

quite lengthy and their explicit form will not be needed

in this presentation. The full potential (6) has been dis-

cussed in ref. [44]. The results are not qualitatively dif-

ferent from the analysis of a simpli�ed form, in which

the two couplings, k

1

and k

2

are neglected. It is always a

subtle question of how to justify such a simpli�cation. On

the one hand, the -part of the symmetry{allowed order

parameter (3) does not contribute to the actual structure

of U

3

P

4

(5). On the other hand, in what follows, we shall

proceed along the lines of the Landau School [47{49], to

select various interactions contributing to (7) based upon

their relative magnitude. To do so one should rewrite the

invariants (7) in terms of S

�

i

rather than �, � and  and

divide the contributing terms into \exchange forces" and

\relativistic forces". In such a way we simplify (6) to

�(�; �) = a

1

I(�

2

) + a

2

I(�

2

)

+ 2kI(��) + �

4

(�; �): (8)

There are only two structures that minimize the free en-

ergy

Solution 1: The C-structure (�g. 1)

~

S

1

=

~

S

2

=

0

@

�

�

�

1

A

;

~

S

3

=

~

S

4

=

0

@

�

�

�

1

A

;

~

S

5

=

~

S

6

=

0

@

�

�

�

1

A

;

(9)

i.e. a three-axial ferromagnetic structure with a magnetic

moment along the [111] direction, i.e.

~

M =

6

X

i=1

~

S

i

= 2

0

@

� + 2�

� + 2�

� + 2�

1

A

:

This is the structure determined in [13] for U

3

P

4

and

U

3

As

4

. The magnetic symmetry of this structure is R3c

0

[11].

Solution 2: The L-structure (�g. 2)

~

S

1

=

~

S

2

=

~

S

3

=

~

S

4

=

0

@

0

0

�

0

1

A

;

~

S

5

=

~

S

6

=

0

@

0

0

�

0

1

A

;

(10)

i.e. a collinear ferrimagnetic structure with a magnetic

moment along the [001] direction, i.e.

~

M =

6

X

i=1

~

S

i

= 2

0

@

0

0

�

0

+ 2�

0

1

A

:

This is the structure reported in [14] for U

3

Sb

4

and

U

3

Bi

4

. The magnetic symmetry of this structure is I

�

42'd'

[11].

It is interesting to note [44] that the minimization of

the full quartic potential (6) only slightly changes the

form of the two above solutions. Solution 1 becomes 6-

axial (4) with

u = �; v = ��  and w = �+ ;

while solution 2 becomes slightly antiferromagnetic in

the plane perpendicular to [001]
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~

S

1

=

0

@

0

�

0

�

0

1

A

;

~

S

2

=

0

@

0



0

�

0

1

A

;

~

S

3

=

0

@



0

0

�

0

1

A

;

~

S

4

=

0

@

�

0

0

�

0

1

A

;

~

S

5

=

~

S

6

=

0

@

0

0

�

0

1

A

(11)

but the net magnetic moment remains along the [001]

direction and the symmetry group of the structure does

not change.

IV. THE MODEL HAMILTONIAN

In looking for a suitable model Hamiltonian to de-

scribe the magnetically ordered state of our materials

we follow the procedure proposed by Dzyaloshinsky et

al. [47{49], i.e. we shall rewrite the potential (8) in

terms of S

�

i

, representing the �-th component of the

spin in the i-th sublattice. As we are looking for a bi-

linear spin{Hamiltonian, we shall consider only bilin-

ear contributions to �(�; �). In such a way we obtain

numerous bilinear contributions in terms of the spin

operators. These terms correspond to various physical

\spin{spin" interactions, which are allowed by the over-

all symmetry of the Hamiltonian. Of course, we must

select these terms by their relative magnitude. Follow-

ing Dzyaloshinsky we divide these contributing forces

into `exchange forces' and `relativistic forces'. We re-

tain only the nearest{neighbour exchange interactions;

we also keep the crystal{�eld single{ion term and the

nearest{neighbour \exchange-type" anisotropy. In such

a way the potential (8) may be written as

�(

~

S

1

; : : : ;

~

S

6

) = �

3

X

�=1

6

X

i=1

(

~

S

�

i

)

2

+D[(S

x

1

)

2

+ (S

x

2

)

2

+ (S

y

3

)

2

+ (S

y

4

)

2

+ (S

z

5

)

2

+ (S

z

6

)

2

]

+J [(

~

S

1

+

~

S

2

)(

~

S

5

+

~

S

6

) + (

~

S

1

+

~

S

2

)(

~

S

3

+

~

S

4

) + (

~

S

3

+

~

S

4

)(

~

S

5

+

~

S

6

)]

+K[(S

y

1

+ S

y

2

)(S

y

5

+ S

y

6

) + (S

z

1

+ S

z

2

)(S

z

3

+ S

z

4

) + (S

x

3

+ S

x

4

)(S

x

5

+ S

x

6

)]

(12)

with

� =

1

16

a

1

; D =

1

16

(4a

1

� a

2

); J =

1

4

k; K =

1

8

(a

2

� 2k):

It is perhaps worth mentioning that the complete

Dzyaloshinsky{Moriya term [50, 51], which was sug-

gested by Sandratskii and K�ubler [34] as a possible

source of the non-collinearity of the magnetic order-

ing in U

3

P

4

is not detected by this consideration.

Among the relativistic interactions neglected is a `bro-

ken' Dzyaloshinsky{Moriya term of the following form

�[(

~

S

1

�

~

S

2

)

x

+ (

~

S

3

�

~

S

4

)

y

+ (

~

S

5

�

~

S

6

)

z

]: (13)

Thus, basing on (12) we propose the following model

Hamiltonian to describe the magnetic properties of the

U

3

P

4

systems:

H = �

1

2

X

i;j

X

g

i

;g

j

X

�

J

��

g

i

g

j

S

�

g

i

S

�

g

j

�

X

i;g

i

;�

H

�

S

�

g

i

+H

CF

(14)

where S

�

g

i

| is the �th component of the spin operator

at the g-th site in the sublattice (i = 1; 2; : : : ; 6), J

��

g

i

g

j

| is the anisotropic interaction tensor, H

�

| is the �th

component of the external magnetic �eld, H

CF

| is the

crystal �eld Hamiltonian, viz.

H

CF

= �D

X

i;g

i

�

S

�(i)

g

i

�

2

(15)

where

�(i) =

8

<

:

x for i = 1; 2;

y for i = 3; 4;

z for i = 5; 6:

The exchange interaction tensor can be speci�ed as
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^

J

ii

= 0 for i = 1; 2; : : : ; 6;

^

J

12

=

^

J

34

=

^

J

56

= 0;

^

J

13

=

^

J

14

=

^

J

23

=

^

J

24

=

0

@

J 0 0

0 J 0

0 0 K

1

A

;

^

J

15

=

^

J

16

=

^

J

25

=

^

J

26

=

0

@

J 0 0

0 K 0

0 0 J

1

A

;

^

J

35

=

^

J

36

=

^

J

45

=

^

J

46

=

0

@

K 0 0

0 J 0

0 0 J

1

A

:

Thus our Hamiltonian contains only the nearest{neigh-

bour exchange interactions. However, a novel feature is

the occurrence of a new anisotropic exchange interaction,

which should not be confused with the one in ref. [35] or

ref. [37]: it is a bilinear exchange type anisotropy compat-

ible with the cubic symmetry of the crystal. It is gener-

ally believed that cubic symmetry excludes any bilinear

anisotropy of the exchange type. The Th

3

P

4

structure,

however, due to the special positions occupied by mag-

netic ions, breaks this rule and allows such an anisotropy

to be present.

V. MEAN{FIELD THEORY OF SPONTANEOUS

MAGNETISATION

We shall describe the thermodynamic properties of the

U

3

X

4

magnetics in the Molecular Field Approximation

(MFA).

In the MFA, our model Hamiltonian would be replaced

by the following e�ective Hamiltonian

~

H =

~

H

CF

+H

ex

(16)

where

H

ex

= �

X

i;g

i

;�

n

�

i

S

�

g

i

: (17)

Here

~

H

CF

di�ers from Eq. (15) in the replacement of the

crystal{�eld anisotropy constant D by d =

D

zJ

where z

is the number of nearest neighbours in g

i

.

The e�ective �eld ~n

i

acting on the magnetic ions on

the sublattice i is determined by the minimization of the

trial free energy [36, 38]

F = �

1

b

lnTrfexp[�b

~

H]g

+

Tr[exp(�b

~

H)(

H

zJ

�

~

H)]

Tr exp(�b

~

H)

(18)

with b =

zJ

k

B

T

.

This requirement yields the self-consistent equations

n

�

i

=

X

j

J

��

ij

m

�

j

; (19)

m

�

i

= �

@F

i

@n

�

i

; (20)

where

J

��

ij

=

1

zJ

X

�

j

J

��

g

i

;g

i

+�

j

; (21)

F

i

= �

1

b

lnTrfexp[�bH

i

]g; (22)

H

i

= �dQ

g

i

�

X

�

n

�

i

S

�

g

i

: (23)

The summation in Eq. (21) runs over the z nearest neigh-

bours of g

i

on the sublattice j.

Fig. 3. Phase diagram at T=0 in the (k,d) plane. Full (bro-

ken) curves represent �rst (second) order phase transitions.

R2 is a tri-critical point, O designates the disordered phase

and P, C and L are ordered phases (ref. [38]).

The U

3

X

4

systems are characterized by three four-fold

symmetry axes on which the magnetic ions sit. This is ex-

plicitly reected in the form of crystal{�eld Hamiltonian

(15). From this fact and Eqs. (19) and (22), it follows

that

~n

2i

= ~n

2i�1

and F

2i

= F

2i�1

for i = 1; 2; 3:

Therefore from (20) we obtain that

~m

2i

= ~m

2i�1

;
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i.e. our Hamiltonian describes a three-axial magnetic or-

dering.

The following analysis is similar to that of Khajeh-

pour et al. [52] in the case of uniaxial ferromagnet with

a crystal{�eld anisotropy.

To solve the system of self-consistent equations

(19) and (20), one needs the eigenvalues of the site{

Hamiltonian (23). In [38] this was done explicitly for the

\spin"{value S=1. The results of the calculation are pre-

sented in �g. 3

At T=0 there are three possible solutions to Eqs. (19)

and (20) that satisfy the necessary and su�cient condi-

tions for a minimum of the free energy (18).

(1) The C-structure, i.e.

~m

1

= ~m

2

= (u

c

; v

c

; v

c

); ~m

3

= ~m

4

= (v

c

; u

c

; v

c

);

~m

5

= ~m

6

= (v

c

; v

c

; u

c

): (24)

This is the same structure as described by (9) and pre-

sented in �g. 1.

(2) The L-structure, i.e.

~m

1

= ~m

2

= ~m

3

= ~m

4

= (0; 0; v

L

);

~m

5

= ~m

6

= (0; 0; u

L

)

which is the same as (10) and presented in �g. 2.

(3) The P-structure,

~m

1

= ~m

2

= (u

P

; v

P

; 0); ~m

3

= ~m

4

= (v

P

; u

P

; 0);

~m

5

= ~m

6

= (w

P

; w

P

; 0): (25)

Comparing the results of the MFA calculations at T=0

with those of the Landau theory we see that a new struc-

ture, i.e. the P-structure (25) has appeared. There is no

contradiction, though, as the Landau theory is supposed

to describe structures resulting in the continuous, i.e. sec-

ond order transitions. The P-structure, as we shall see in

Sec. 7 cannot be reached via continuous transition. From

the phase diagram in �g. 3 we can see that there is only

a very narrow region in which the P-structure would be

stable. Such a structure has not yet been detected exper-

imentally.

VI. BEHAVIOUR AT THE EXTERNAL

MAGNETIC FIELD AT T=0 K

To calculate the behaviour of the magnetisation in an

external magnetic �eld we followed the same procedure

as in Sec. 5 while supplementing the Hamiltonian (16)

with the Zeeman term

�

X

i;g

i

;�

H

�

S

�

g

i

;

where

~

H denotes the external magnetic �eld. The results

of such numerical calculations are presented in �g. 4 for

selected values of the interactions parameters.

Fig. 4. Magnetisation along the principal axes predicted

by spin model for three selected values of the crystal �eld

and the exchange anisotropy (ref. [25]).

Fig. 5. Magnetisation curves for U

3

Sb

4

along the < 111 >

axis at three di�erent temperatures (ref. [26]).

The important feature of this diagram is that these

theoretically calculated values of the magnetisation ver-

sus the external magnetic �eld closely resemble �gures

obtained experimentally. Thus in �g. 4A one can see

the behaviour of the magnetisation as determined in [18,

21, 22] for U

3

P

4

and in �g. 4B the dependence found

in [19, 23, 24] for U

3

As

4

. Fig. 4C directly corresponds
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to the measurements on U

3

Sb

4

reported in [25]. Espe-

cially the latter case, in view of the relative complexity of

the magnetisation behaviour in external magnetic �elds

of various orientations, is worth noting. These results

speak strongly in favour of the correctness of our model.

The qualitative features of the results in �g. 4 can also

be compared with the experimental curves presented in

�g. 5 [26].

VII. NON-ZERO TEMPERATURE BEHAVIOUR

The complexity of the Hamiltonian (14), even in its

mean{�eld simpli�ed form (16) requires heavy numeri-

cal computation. Some analytic results can be obtained

by exploiting high{temperature perturbation theory [38].

In this approach, the temperature{dependent molecular

�eld term (17) can be treated as a small perturbation

below the critical temperature. We may then calculate

the free energies (22), and neglecting the higher order

terms in the molecular �elds (19), we obtain the follow-

ing expression

F

i

= �f

0

� f

1

n

2

i?

� f

2

n

2

ik

+ : : : (26)

where ~n

i?

and ~n

ik

are the e�ective �eld components per-

pendicular and parallel, respectively to the direction of

the crystal{�eld anisotropy axis in the ith sublattice,

with

~n

i?

+ ~n

ik

= ~n

i

; f

0

=

1

b

lnZ

0

; Z

0

= 1 + 2e



;

 = bd; f

1

= e



�

1

dZ

0

; f

2

=

be



Z

0

:

Substituting Eq. (26) into Eq. (20) one obtains a sys-

tem of homogeneous linear equations for the sublattice

magnetisation ~m

i

. Equating the determinant to zero, one

gets the equation for the Curie temperature

4f

1

(8f

2

+ k)� 1 = 0;

where k =

K

J

.

On the other hand, the question of the stability of var-

ious phases requires an examination of the higher order

terms in the expansion. This was done in [38]. As the

analysis con�rms the results described in Sec. 3 and in

Sec. 4 we shall illustrate them on phase diagrams given

in �g. 6 and �g. 7. These are the phase diagrams in (�; d)

plane (� =

k

B

T

zJ

;

D

zJ

) for selected values of the anisotropy

constant k =

K

J

. Selection was after an examination of

many such diagrams and the value k = 2:9 which is the

same as in �g. 4C seems to be most relevant for U

3

Sb

4

.

For k > 1, the P phase does not occur at T = 0 and

from all diagrams we have examined we could see that,

when it appears, its stability range is very narrow (see,

e.g., �g. 7) and it cannot be reached via a continuous

(second order) transition. For k as high as in �g. 6 the

P -phase disappears altogether.

Fig. 6. Phase diagram in the (� ,d) plane for k=2.9. Full

(broken) curves represent �rst- (second-) order phase transi-

tion lines (ref. [38]).

Fig. 7. Phase diagram in the (� ,d) plane for k=0.3. Full

(broken) curves represent �rst- (second-) order phase transi-

tion lines (ref. [38]).

On the other hand the collinear phase L extends its

range of stability as k increases. Both phases, L and C,

can be reached from the paramagnetic phase either via

�rst or second order phase transition. In other diagrams,

which are not reproduced here (see [38]), for negative

values of d a so-called re-entrant phase transition is pos-

sible (i.e. with decreasing � we can �rst enter the ordered

C-phase and then at still lower temperatures, returns to

the disordered phase). Such a possibility was not found in

the uniaxial case [52]. Another remarkable di�erence of

this model and the uniaxial model is the decrease of the

Curie temperature with increasing positive d, whereas in

the latter T

c

increases with positive d.

In �g. 5 are shown the experimental curves obtained
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while measuring the magnetisation of U

3

Sb

4

versus ex-

ternal magnetic �eld. The data are obtained for the mag-

netic �eld directed along the < 111 > direction at three

di�erent temperatures, i.e. 4.2 K, 78 K and 120 K. The

measurements reveal the existence of a critical magnetic

�eld, H

c

, at which a spin reorientation transition takes

place and a sudden jump, �M , of the magnetisation is

observed. �g. 8 presents a comparison between the values

of H

c

and �M recorded at various temperatures and the

values calculated for k = 2:9 and d = 5:1. These values

were obtained by �tting the theoretical data to the exper-

imental magnetisation along the < 100 > axis at 4.2K.

These results, in our opinion, con�rm both the validity

of the model and the existence of giant anisotropies aris-

ing from two di�erent origins, namely the crystal �eld

single ion anisotropy and the exchange e�ects between

the nearest neighbours.

Fig. 8. Temperature dependence of the magnetisation

jump �M , and the critical �eld H

c

for the spin reorienta-

tion transition induced by the �eld along the < 111 > axis.

Points | experimental data; lines | data theoretically pre-

dicted and adjusted to the experimental points at 4.2 K (ref.

[26]).

VIII. BEYOND THE MEAN FIELD: SPIN WAVE

EXCITATIONS IN THE C AND L PHASE

On top of the fact that our model Hamiltonian (14)

introduces three competing interactions of comparable

magnitude (J, K and D) there is an additional di�culty,

namely we have to deal with a six sublattice system as

there are six magnetic ions in the unit cell. In such a case

it is di�cult to discuss the elementary excitations even in

the harmonic approximation [53]. However, as it has been

shown by Kaganov and Chubukov [54], the single{ion

crystal �eld interaction leads to strong spin{uctuations,

which may profoundly a�ect both the magnetic ordering

and excitations. The molecular �eld equations for the

spin orientations turn out not to be su�cient and one

has to go beyond the harmonic approximation to discuss

the stability of the system. Also from this point of view

our model provides an interesting example to check the

validity of the Kaganov{Chubukov theory. We work in

the spin{wave approximation, i.e. we look for the spin{

waves energies upon the diagonalisation of the bilinear

spin{wave Hamiltonian. Because we are dealing with six

sublattices we transform the spin operators in (14) to a

local coordinate system

S

�

g(p)

= �

�

p

�

z

g(p)

+ U

�

p

�

+

g(p)

+

�

U

�

p

�

�

g(p)

;

where �

�

p

denotes the unit vector along the easy axis in

the pth sublattice and dash means complex conjugate

U

x

p

= �

1

4

e

i�

p

(1 + �

z

p

) +

1

4

e

�i�

p

(1� �

z

p

);

U

y

p

=

i

4

�

e

i�

p

(1 + �

z

p

) + e

�i�

p

(1� �

z

p

)

�

;

U

z

p

=

1

2

q

1� (�

z

p

)

2

; tan�

p

=

�

y

p

�

x

p

:

A standard Holstein{Primako� transformation trans-

forms the Hamiltonian (14) into the form

~

H =

~

H

0

+

~

H

1

+

~

H

2

+ : : : ;

~

H

0

= �S

X

p<q

X

�

J

��

pq

J

�

�

p

�

�

q

� d

X

p

�

S

�

�

�(p)

p

�

2

+ 2

�

�

�

U

�(p)

p

�

�

�

2

�

� S

X

p

X

�

h

�

�

�

p

;

~

H

1

= �

r

2S

N

n

X

p<q

X

�

J

��

pq

J

�

U

�

p

�

�

q

a

(p)

0

+ U

�

q

�

�

p

a

(q)

0

�

+ 2

~

d

X

p

�

�(p)

p

U

�(p)

p

a

(p)

0

+

X

p

X

�

h

�

U

�

p

a

(p)

0

+H:c:

o

;
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~

H

2

= �

1

N

X

k

h

X

p<q

X

�

J

��

pq

J

n

� �

�

p

�

�

q

a

(p)+

k

a

(p)

k

+ 2

�

U

�

p

U

�

q



pq

�k

a

(p)+

k

a

(q)

k

+U

�

p

U

�

q

�



pq

k

a

(p)

k

a

(q)

�k

+ 

pq

�k

a

(p)

�k

a

(q)

k

�

+H:c:

o

+

X

p

n

2

~

d

�

2jU

�(p)

p

j

2

�

�

�

�(p)

p

�

2

�

a

(p)+

k

a

(p)

k

+2d

p

1� 1=2S

�

(U

�(p)

p

)

2

a

(p)

k

a

(p)

�k

+H:c:

�o

+

X

p

X

�

h

�

�

�

p

a

(p)+

k

a

(p)

k

i

;

where

~

H =

H

zSNJ

, h

�

=

H

�

zSJ

, � =

K

J

, d =

D

zJ

, 

pq

k

=

1

2

P

g(p);g(q)

expfi

~

k(~r

g(q)

� ~r

g(p)

)g,

~

d = d(1� 1=2S).

The ground state is determined by eliminating the lin-

ear term in the bosonic operators, i.e.

~

H

1

= 0 (27)

then the spin wave energies should be obtained by diago-

nalisation of the bilinear operator

~

H

2

. It can be checked

that both the C and the L structures ful�ll the condition

(27). For the C-structure (24), putting

~�

1

= ~�

2

=

0

@

u

v

v

1

A

;

~�

3

= ~�

4

=

0

@

v

u

v

1

A

;

~�

5

= ~�

6

=

0

@

v

v

u

1

A

;

and considering the external �eld

~

h along the (1,1,1) di-

rection,

~

h = (h; h; h), the condition (27) gives

4v

2

� 2u

2

+ �uv + h(v � u) = 0

u

2

+ 2v

2

= 1

�

;

where � =

~

d��. For h = 0 we have two types of solution

v

1

= �

1

2

�

(�)

; u

1

= �

1

2

p

2�

(+)

; (28)

v

2

= �

1

2

�

(+)

; u

2

= �

1

2

p

2�

(�)

; (29)

where

�

(�)

=

s

1�

�

p

8 + �

2

:

The solution (29) does not correspond to the isotropic

case and therefore we are left with (28) to consider. It

gives the following angle of non-collinearity

tan 2� = 2

p

2

1 + �

8� �

:

Typical numerical results for the case of the non-collinear

ordering of U

3

P

4

are presented in �g. 9 for S=2, �=2,

d=3.5 and h=0. We observe a gap at the � point and the

6-fold degeneracy of the spectrum at H-point of the Bril-

louin zone. There is also a

~

k-independent branch along

the �-line. Futher calculation reveal that the gap is not

a monotonic function of d and that the spectrum can be-

come gapless for some values of d. This happens at the

borders of stability of the phase.

Fig. 9. Energy spectrum of non-collinear ferromagnet

like U

3

P

4

for S=2, �=2, d=3.5 and h=0. The symme-

try points of the Brillouin zone of the body centred

cubic lattice: �=(0,0,0), H=(2�=a)(0,1,0), P=(�=a)(1,1,1),

N=(�=a)(1,1,0) (ref. [39]).

We found that the lowest energy branch, near the �-

point of the BZ is parabolic. This is important in view of

a suggestion made by Markowski et al. [55] that a T

3=4

-

power law behaviour of the magnetisation at low temper-

atures should be expected. However other experiments

(see, e.g., ref. [56]) did not observe any such anomalous

behaviour.

The problem of spin waves in the L-structure is more

complex. Our calculations in the harmonic approxima-

tion lead to small negative spin wave energies. This in-

stability is indeed very small and e.g. for S=2, �=2,
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d=1.333 the lowest energy value is �

�

= �0:002. This in-

stability can be easily removed by a small external �eld

along the easy axis. The spectra obtained at such a �eld

are noticeably di�erent from these for U

3

P

4

. For exam-

ple: the H-point degeneracy is removed and some new

~

k-independent branches appear.

However, one needs to look for a better remedy than

the external �eld. Two ways out of these di�culties will

be considered. One is to check the Kaganov{Chubukov

conjecture [54] that it is due to large spin{uctuations

caused by the single{ion term and calculate the higher

order corrections. The other is to consider some addi-

tional relativistic anisotropy, like, e.g., Eq. (13). The lat-

ter, however, will probably lead �rst to a small non-

collinearity of the ground state as has been suggested

by Sandratskii and K�ubler [57] and in agreement with

Eq. (11).

IX. CONCLUDING REMARKS

We have presented here a Heisenberg{type spin model

to describe the magnetic properties of the U

3

X

4

com-

pounds. This model has been derived using the Landau

symmetry analysis of the ordered structures and exam-

ining the invariant contributions to the Landau thermo-

dynamic potential. In the U

3

X

4

case we have to deal

with a complex form where couplings between the dif-

ferent �elds belonging to the same irreducible repre-

sentation of the Hamiltonian symmetry group should

be considered. From these bilinear couplings three im-

portant contributions are selected: (1) the usual ex-

change nearest{neighbour Hamiltonian, (2) single{ion

crystal �eld anisotropy and (3) anisotropic exchange be-

tween nearest{neighbours. These three types of interac-

tions turn out to be su�cient to describe various ef-

fects observed in U

3

X

4

compounds. Upon examining

the magnetisation behaviour under the external mag-

netic �eld we can conclude that these interactions are

of comparable magnitude, i.e. we are dealing with gi-

ant anisotropies. The question of the magnetic struc-

ture is solved consistently and the results are in excellent

agreement with the modern neutron di�raction investi-

gations. The model predicted the non-collinear structure

of U

3

P

4

and U

3

As

4

and also the collinear ferrimagnetism

of U

3

Sb

4

and U

3

Bi

4

.

A more fundamental approach of Sandratskii and

K�ubler, based directly on the electronic structure of the

U

3

X

4

compounds suggests that perhaps more subtle rela-

tivistic interactions may be important and lead to a small

perpendicular antiferromagnetic arrangement. If this is

the case then one should reconsider other relativistic con-

tributions to the Landau potential that were neglected

in constructing our model Hamiltonian. Then the inu-

ence of such terms would be discussed. It is however sur-

prising that in the Sandratskii and K�ubler approach the

giant exchange anisotropy K, which is important to un-

derstand the behaviour of the U

3

X

4

compounds in terms

of our Hamiltonian, is missing.
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MA�NETIZM V URANOVIH SPOLUKAH KRISTAL�QNOÕ STRUKTURI Th

3

P

4

Q. Oleksi, �. Pxistava

�nstitut teoretiqnoÝ f�ziki Vroclavs~kogo un�versitetu,

Pol~wa, 50{204, Vroclav, pl. Maksa Borna, 9

Obgovor�t~s� pitann� magnetizmu spoluk U

3

X

4

(X=P, As, Sb, Bi) v term�nah zaproponovanoÝ avto-

rami u 1987 roc� model� tipu Ga�zenberga. Ostann� vkl�qa konkuru�q� odno�onn� ta an�zotropn� obm�nn�

vzamod�Ý por�vn�l~noÝ veliqini. Model~ vivedena na osnov� anal�zu simetr�Ý struktur ta teor�Ý fazovih

perehod�v Landau. Predstavleno rezul~tati obqislen~ u nabli�enn� seredn~ogo pol� dl� opisu magnetnih

struktur ta Ýh termodinam�qnoÝ poved�nki.
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