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A new diagram technique, previously proposed for Hubbard Model, was used for the Periodic

Anderson Model (PAM). The Hamiltonian of localized electrons H

0

f

and of free conduction elec-

trons H

0

c

are considered as a main part of the Hamiltonian of PAM and the hybridization term is

treated as a perturbation. H

0

f

contains on-site Coulomb interaction and is diagonalized in Hubbard

operators. This diagram technique is used for Matsubara Green functions and contains apart from

the Wick product of free Green functions new contributions equal to on-site cumulants depending

of the Coulomb interaction. If such cumulants are ignored we obtaine the so called Hubbard I ap-

proximation for PAM with 3 branches of renormalized energy spectrum of quasiparticles. They are

investigated in detail and the chemical potential of the system is determined

Key words: Periodic Anderson model, Coulomb repulsion, conduction electrons, localized elec-

trons, energy gap.

PACS number(s): 71.28.+d, 71.27.+a

I. INTRODUCTION

The systems with strong electronic correlations, show-

ing unusual thermodynamic, magnetic, transport and

superconducting properties are of great interest now.

Among them, there are the heavy fermion compounds,

the copper oxides, in which high-T

c

superconductivity

was discovered and other materials. Their microscopi-

cally quantum | theoretical investigation can be carried

out using the periodic Anderson Model (PAM) [1]. We

shall discuss the simplest form of this model with the

Hamiltonian

H = H
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+H
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were c

+

k�

(c

k�

) | are creation (annihilation) operators of

conduction electrons with wave vector k ,energy �(k),

band width W and spin �; f

+

i�

(f

i�

) | the correspond-

ing operators for localized on site i f -electrons. U | is

on-site Coulomb repulsion of f | electrons, �-chemical

potential of the system. The local f | orbitals with site

energy E

f

are single site hybridized through V with con-

duction electron states.

The PAM is a rather complicated many-body prob-

lem and obtaining some general relations and properties

of the renormalized Green's function is useful.

The properties of PAM were discussed in a large num-

ber of papers [2{14] where the inuence of Coulomb re-

pulsion U and hybridization V on ground state and en-

ergy spectrum of quasiparticles of the system, the exis-

tence of mixed valence of electrons, the phase transitions

of them were investigated and di�erent approaches and

approximations were proposed.

In this paper the thermodynamic perturbation theory

is developed for the system with Hamiltonian (1.1) sup-

posing that hybridization Hamiltonian is a perturbation.

In zero order approximation f -electrons are considered

localized and Hubbard [15] operators X

nm

i

are used to

diagonalize Hamiltonian H

0

f

.

c
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+
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;
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i;�

E

�
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(1.3)

where index � enumerates four on site electron states:

without electrons, with one electron having � spin and

with two electrons of opposite spins. Their energy are:

E

0

= 0;E

�

= E

f

� �;E

2

= U + 2(E

f

� �):

Conduction electrons in this approximation are consid-

ered free and determined by the wave vectors k , spins

� and band energy �(k). The grand partition function of

the system in zero approximation is factorized by wave

vectors for conduction and by sites i for localized elec-

trons. In such a way the statistical averages with this

partition function are calculated for c-electrons by mak-

ing use of Wick theorem for the products of c-electron

operators. But for the statistical average of localized f -

electron operator products the generalized Wick theo-

rem proposed in papers [16{18] is employed. This last
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theorem is based on the conception of many particles ir-

reductible Green's functions or Kubo cumulants which

appear in realization of these averages.

II. PERTURBATION THEORY

The evolution operator of the thermodynamic pertur-

bation theory is

U(�) = T exp(�

�

Z

0

H

int

(�)d�)

=

1

X

n=0

(�1)

n

n!

T (H
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(�

1

):::H
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(�

n

)): (2.1)

The free energy of the system is equal:

F = F

0

�

1

�

lnhU(�)i

0

;

F

0

= �

1

�

lnTrfe
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f

)

g: (2.2)

The average hU(�)i

0

can be obtained taking into ac-

count only the even n = 2m degrees of perturbation the-

ory because of the structure of H

int

multiplies. Then in

such a product of 2m multiplies there are in total 4m op-

erators. Only the operator structures which have m oper-

ators c; �c; f;

�

f each kind must be considered in the future

because other operator combinations have zero statisti-

cal averages. The number of such structures is equal to

C

m

2m

and changing the indices i;k; � of summing and of �

integration, we can prove that all of them are equivalent.

Taking one of such operator structures and multiplying

it by C

m
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after dividing by (2m)! we obtain
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The statistical average of conduction electron operators calculated by using Wick theorem gives us the sum of m!

member each of them equal to the product of m free conducting electron propagators G

c(0)

.

By changing all the above mentioned, indices we can prove that all of them are equivalent and m! additional

multiplier appears in the numerator of (2.3).

So we have
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where

G

c(0)

(k

1

�

1

�

1
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2

�

2
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2
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k

1

�

1

(�
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2
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0

:

Equation (2.4) has the form of the perturbation theory for Hubbard model if the hopping of the f -electrons of this

last model is considered as a perturbation:

H

int

= �

X

ij�

t(j � i)f

+

j�

f

i�

:
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In (2.4) the instantaneous matrix elements t(i � j) of

Hubbard model are replaced by the dynamicall propaga-

tors G

c(0)

multiplied by V

2

In the next the generalized Wick theorem of [16{18] is

used. For m = 1 the average hf

1

�

f

2

i

0

is free propagator

for localized and strong interacting f -electrons

G
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:

For m = 2 the average is equal [16{18]
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All the quantities on the right hand of equation (2.5)

are one-site ones. They depend of spin indices and � vari-

ables and are independent of site indices.G

(0)ir

2

is the two

particles irreducible Green function or the Kubo cumu-

lant. When Coulomb interaction is zero such functions

do not exist.

The �rst two components of (2.5) are of Wick type but

the last one is a new contribution conditioned by strong

electronic correlations. For m = 3 the existing statisti-

cal average hTf

1

f

2

f

3

�

f

4

�

f

5

�

f

6

i

0

contains 3! Wick contribu-

tions each of them equal to the product of three prop-

agators G

f(0)

. Then there are 9 contributions each of

them equal to the product of propagator G

f(0)

and one

irreductible two particles Green's function and there is

also one contribution equal to three particles irreductible

Green's function G

(0)ir

3

.

In the general case of statistical average of 2m f -

operators the generalized Wick theorem gives usm! com-

ponents of Wick type, each of them equal to the product

m propagators, and then there are the sum of products

of di�erent kind of Kubo cumulants, organized in such

a way that the number of particles in all these cumu-

lants is equal to m. The sign of all these contributions

is determined by the number of permutations of fermi

f -operators which is necessary to obtain the given cu-

mulant structure.

Some of vacuum diagrams are shown on �g. 1.

Fig. 1.

Here the thin directed full line is the G

f(0)

propagator

and the directed dotted line is G

c(0)

one. The point of

the diagram contains hybridization V . 1.a diagram is the

simplest connected one but 1.b diagram is a deconnected

one. More complicated connected diagrams are 1.d,1.c

ones. The analysis of the vacuum diagram's structure

gives us the equation

hU(�)i

0

= 1 +

1

X

n=1

[hU(�)i

c

0

]

n

n!

= exp[hU(�)i

c

0

] (2.7)

where hU(�)i

c

0

is the connected part of all the vacuum

diagrams. This equation is a very well known theorem of

connected diagrams of statistical physics.

III. ONE PARTICLE GREEN'S FUNCTIONS

We shall discuss now the renormaslized f -electron one

particle Green's function:
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where the index c points out that only connected prop-

agator diagrams must be considered.

Equation (3.1) can be transformed by using the argu-

ments of the previous section. In such a way we obtain
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Here x and x

0

indices of f -operators stand for x�� and

x

0

�

0

�

0

correspondingly. The other indices of f -operators

are of the same kind, for example 1 = i

1

�

1

�

1

but for

c-electron operators we have 1 = k

1

�

1

�

1

and so on. The

existence of the exponents gives us a possibility to use

also local presentation for c-electron quantities or wave

vector presentation for f -operators.

If in the last statistical average of (3.2) we take into

account only Wick type contributions, we shall obtain

the chain type diagrams shown in �g. 2.

Fig. 2.

Here all the irreducible Green's functions were omit-

ted. All these diagrams are weak by connected because

they can be devided into two parts by cutting one line.

They can be summed using Fourier{presentation. We ob-

tain Hubbard I approximation for Dyson equation:

G
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�

(kji!

n
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f(0)

�
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�
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�
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n
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�1

;

In this approximation it is easy to obtain also the

Dyson equation for renormalized conduction electron

Green's function G

cc

�

(kji!

n

). Free electron propagators

are

G
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�
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The energy spectrum of quasiparticles is determined

by equation:

(E � �

0

)� V

2

[(1� �n)=(E � �

1

) + �n=(E � �

2

)] = 0:

For large values of Coulomb interaction U !1 three

energetic branches are:

E
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The chemical potential of the system with N

e

ellec-

trons is determined from

(1=�)

X
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n

X
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This equation is reduced to

X

�

X

k

fA

�

(k)=[exp(�E
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2�

+ 1]

+C

�

(k)=[exp(�E

3�

) + 1]g = N

e

where in the limit of large U value U ! 1 these coe�-

cients are

A

�
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2
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�
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In this limit there are two subbands with an energy

gap between them. The sum of the widths of these two

subbands is equal to the width of the bare conduction

band but the distance between the bottom of the lower

subband and the top of the upper subband is equal to

plus the width of energy gap.

The dependence of the electron's number on the chem-

ical potential of the system was obtained. For example,

in the case when the chemical potential is placed into the

lower subband this dependence is

N

e

2N

=

(�+W=2)

W

+

V

2

(1� �n)

(E

f

� �)W
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Fig. 3.

Fig. 4.

Because the local initial level E

f

is located in the en-

ergy gap of this renormalized system in our case of tem-

perature equal to zero E

f

�� > 0 and the average �n = 0:

When � is more higher than the top of the upper sub-

band N

e

= 3N:

The calculated values of the renormalized quasiparti-

cle energies as function of �

0

=W for T=0 and di�erent

values of the main parameters of the theory are shown

in �gures 3{6.

The origin of the energy scale is at the bot-

tom of the bare conduction electron band, and the

conduction{band limits are 0 and W , for the bottom

and the top, respectively. U is considered positive.

Fig. 5.

Fig. 6.

The bare energy band of conduction electrons can re-

main unsplit by hybridization energy (�g. 3). It can be

split into two subbands (�g. 4{5.) or in general case into

three subbands (�g. 6).

The �rst situation is realized when one of the following

inequalities takes place:

a) E

f

+ U < 0; b) E

f

> W ; c) W � U < E

f

< 0;

The appearance of two subbands is realized on condi-

tion that:

0 < � < E

f

or E

f

+ U < � < W

and the last situation takes place when

0 < E

f

< � < E

f

+ U < W:
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NOVA D�AGRAMNA TEHN�KA DL� PER�ODIQNOÕ MODEL� ANDERSONA

V. Moskalenko, D. D��or, L. Do�otaru, �. Porqesku

�nstitut prikladnoÝ f�ziki Akadem�Ý nauk Moldovi,

5 K�x�neu, 2028, Respubl�ka Moldova

Nova d�agramna tehn�ka, �ka bula poperedn~o zaproponovana dl� model� Gabbarda, vikoristana dl�

per�odiqnoÝ model� Andersona. Gam�l~ton�ani lokal�zovanih elektron�v H

0

f

ta v�l~nih elektron�v prov�d-

nost� H

0

c

vva�a�t~s� osnovno� qastino� gam�l~ton�ana per�odiqnoÝ model� Andersona, a g�bridizac��ni�

qlen rozgl�da�t~ �k zburenn�. H

0

f

vkl�qa spontannu vzamod�� Kulona ta d�agonal�zut~s� v operato-

rah Gabbarda. Zaproponovana d�agramna tehn�ka vikoristovut~s� dl� macubar�vs~kih funkc�� �r�na ta

m�stit~, por�d �z dobutkom V�ka v�l~nih funkc�� �r�na, nov� vneski, r�vn� kumul�ntam na vuzlah, wo zale-

�at~ v�d kulon�vs~koÝ vzamod�Ý. Pri nehtuvann� ostann�mi otrimumo tak zvane nabli�enn� Gabbarda I dl�

per�odiqnoÝ model� Andersona z tr~oma g�lkami renormal�zovanogo ener�etiqnogo spektra kvaz�qastinok.

Predstavleno Ýh detal~ni� anal�z, a tako� viznaqeno hem�qni� potenc��l sistemi.
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