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A new diagram technique, previously proposed for Hubbard Model, was used for the Periodic
Anderson Model (PAM). The Hamiltonian of localized electrons H{ and of free conduction elec-
trons H? are considered as a main part of the Hamiltonian of PAM and the hybridization term is
treated as a perturbation. HJ? contains on-site Coulomb interaction and is diagonalized in Hubbard
operators. This diagram technique is used for Matsubara Green functions and contains apart from
the Wick product of free Green functions new contributions equal to on-site cumulants depending
of the Coulomb interaction. If such cumulants are ignored we obtaine the so called Hubbard I ap-
proximation for PAM with 3 branches of renormalized energy spectrum of quasiparticles. They are
investigated in detail and the chemical potential of the system is determined
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I. INTRODUCTION

The systems with strong electronic correlations, show-
ing unusual thermodynamic, magnetic, transport and
superconducting properties are of great interest now.
Among them, there are the heavy fermion compounds,
the copper oxides, in which high-T,. superconductivity
was discovered and other materials. Their microscopi-
cally quantum — theoretical investigation can be carried
out using the periodic Anderson Model (PAM) [1]. We
shall discuss the simplest form of this model with the
Hamiltonian
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were ¢ (ck,) — are creation (annihilation) operators of
conduction electrons with wave vector k ,energy e(k),
band width W and spin o; f;i (fi,) — the correspond-
ing operators for localized on site i f-electrons. U — is
on-site Coulomb repulsion of f — electrons, u-chemical
potential of the system. The local f — orbitals with site
energy Ey are single site hybridized through V' with con-
duction electron states.

The PAM is a rather complicated many-body prob-
lem and obtaining some general relations and properties
of the renormalized Green’s function is useful.

The properties of PAM were discussed in a large num-

ber of papers [2-14] where the influence of Coulomb re-
pulsion U and hybridization V' on ground state and en-
ergy spectrum of quasiparticles of the system, the exis-
tence of mixed valence of electrons, the phase transitions
of them were investigated and different approaches and
approximations were proposed.

In this paper the thermodynamic perturbation theory
is developed for the system with Hamiltonian (1.1) sup-
posing that hybridization Hamiltonian is a perturbation.
In zero order approximation f-electrons are considered
localized and Hubbard [15] operators X" are used to
diagonalize Hamiltonian H}’.
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(1.3)

where index a enumerates four on site electron states:
without electrons, with one electron having o spin and
with two electrons of opposite spins. Their energy are:

Eo=0,E, =Ef — p; By = U + 2(Ey — ).

Conduction electrons in this approximation are consid-
ered free and determined by the wave vectors k , spins
o and band energy €(k). The grand partition function of
the system in zero approximation is factorized by wave
vectors for conduction and by sites i for localized elec-
trons. In such a way the statistical averages with this
partition function are calculated for c-electrons by mak-
ing use of Wick theorem for the products of c-electron
operators. But for the statistical average of localized f-
electron operator products the generalized Wick theo-
rem proposed in papers [16—18] is employed. This last
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theorem is based on the conception of many particles ir-
reductible Green’s functions or Kubo cumulants which
appear in realization of these averages.

II. PERTURBATION THEORY

The evolution operator of the thermodynamic pertur-
bation theory is

8
U( =T eXp / Hznt
0

n
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The free energy of the system is equal:
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The average (U(f))o can be obtained taking into ac-
count only the even n = 2m degrees of perturbation the-
ory because of the structure of H;,; multiplies. Then in
such a product of 2m multiplies there are in total 4m op-
erators. Only the operator structures which have m oper-
ators ¢, ¢, f, f each kind must be considered in the future
because other operator combinations have zero statisti-
cal averages. The number of such structures is equal to
C3' and changing the indices i, k, o of summing and of 7
integration, we can prove that all of them are equivalent.
Taking one of such operator structures and multiplying
it by CT. after dividing by (2m)! we obtain
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The statistical average of conduction electron operators calculated by using Wick theorem gives us the sum of m!
member each of them equal to the product of m free conducting electron propagators G¢(©).
By changing all the above mentioned, indices we can prove that all of them are equivalent and m! additional

multiplier appears in the numerator of (2.3).
So we have
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where

GC(O) (k10'1T1|k20'2T2) =
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- <Tck1 o1 (Tl )ék2 o2 (T2 )>0 .

Equation (2.4) has the form of the perturbation theory for Hubbard model if the hopping of the f-electrons of this

last model is considered as a perturbation:

Hip =

ijo
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In (2.4) the instantaneous matrix elements t(i — j) of
Hubbard model are replaced by the dynamicall propaga-
tors G°(O) multiplied by V2

In the next the generalized Wick theorem of [16-18] is
used. For m = 1 the average (f1 f2)o is free propagator
for localized and strong interacting f-electrons

GT O (kyo171[k20272) = —(T ficy o, (T1) fiaos (T2))o0-

For m = 2 the average is equal [16-18]

(T fif2f3fado = (T f1fa)o(T faf3)o
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All the quantities on the right hand of equation (2.5)
are one-site ones. They depend of spin indices and 7 vari-

ables and are independent of site indices. GY™ is the two
particles irreducible Green function or the Kubo cumu-
lant. When Coulomb interaction is zero such functions
do not exist.

The first two components of (2.5) are of Wick type but
the last one is a new contribution conditioned by strong
electronic correlations. For m = 3 the existing statisti-
cal average (T fi fofsf1fsfe)o contains 3! Wick contribu-
tions each of them equal to the product of three prop-
agators GY(°). Then there are 9 contributions each of
them equal to the product of propagator G/(® and one
irreductible two particles Green’s function and there is
also one contribution equal to three particles irreductible

Green’s function Ggo)ir.
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In the general case of statistical average of 2m f-
operators the generalized Wick theorem gives us m! com-
ponents of Wick type, each of them equal to the product
m propagators, and then there are the sum of products
of different kind of Kubo cumulants, organized in such
a way that the number of particles in all these cumu-
lants is equal to m. The sign of all these contributions
is determined by the number of permutations of fermi
f-operators which is necessary to obtain the given cu-
mulant structure.

Some of vacuum diagrams are shown on fig. 1.
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Fig. 1.

Here the thin directed full line is the G/(®) propagator
and the directed dotted line is G¢(® one. The point of
the diagram contains hybridization V. 1.a diagram is the
simplest connected one but 1.b diagram is a deconnected
one. More complicated connected diagrams are 1.d,1.c
ones. The analysis of the vacuum diagram’s structure
gives us the equation

oy o

UB))o =1+ “—— = exp[(U(B))§]

where (U(3))§ is the connected part of all the vacuum
diagrams. This equation is a very well known theorem of
connected diagrams of statistical physics.

III. ONE PARTICLE GREEN’S FUNCTIONS

We shall discuss now the renormaslized f-electron one
particle Green’s function:

G (xor|x'0'7") = —(T fro (1) oo (TNU (B (3.1)
where the index ¢ points out that only connected prop-
agator diagrams must be considered.

Equation (3.1) can be transformed by using the argu-
ments of the previous section. In such a way we obtain

(3.2)
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Here x and 2’ indices of f-operators stand for xo7 and
x'a'r" correspondingly. The other indices of f-operators
are of the same kind, for example 1 = iy097; but for
c-electron operators we have 1 = kyo;7; and so on. The
existence of the exponents gives us a possibility to use
also local presentation for c-electron quantities or wave
vector presentation for f-operators.

If in the last statistical average of (3.2) we take into
account only Wick type contributions, we shall obtain
the chain type diagrams shown in fig. 2.
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Fig. 2.

Here all the irreducible Green’s functions were omit-
ted. All these diagrams are weak by connected because
they can be devided into two parts by cutting one line.
They can be summed using Fourier—presentation. We ob-
tain Hubbard I approximation for Dyson equation:

G (Kliwy) = GLO (iw,) (1+V2GO) (K|iw, )G

G (Kliw,) = (G5O (iw,) ™" = V2G"O (Kfiwn)]

In this approximation it is easy to obtain also the
Dyson equation for renormalized conduction electron
Green’s function G&°(k|iwy). Free electron propagators

are

GCC (k|zwn) (iw, — €)™
€0 = e(k) —
FO) () = L Pe | Mg
G (iwn) = - + ;
Wy, — €1 Wn — €2
=Ef—pea=U+Ep — i3

i = (fs foo = {exp(—fe1) + exp[—Bler + e2)]}/{1

+2exp(—Qe1) + exp[—B(e1+€2)]}-

The energy spectrum of quasiparticles is determined
by equation:

(E—e)—V?[(1—-7)/(E—e)+0a/(E—e)]=0.

456

27 (Kliwn));

For large values of Coulomb interaction U — oo three
energetic branches are:

ELQ(k) = [60 + €1 + \/(60 - 61)2 + 4V2(1 - ﬁ)]/2

V2

+?[1:|: 60—61 /\/ 60—61 -|-4V2(].—T_L)]

+o(1/U?);

Es3(k) = €3 + V2n/es + 0(1/U?).

The chemical potential of the system with N, ellec-
trons is determined from

(1/8) D D G (Kliwa) +G5 (Kliwn)] exp(iwn0T) = Ne.

wn ko

This equation is reduced to

ZZ{A

+Co (k) /[exp(BE30) +

[lexp(BEq;) + 1] + B, (k) /[exp(BEs, + 1]

1} = N,

where in the limit of large U value U — oo these coeffi-
cients are

Ay (k) ~ 1 —av?(k); By ~ 1 — nu’(k); C, (k) ~

b

where

w?(k) = [1+(0—61 )//(eo —e1)? + 4V2(1

=),

l\DI»—\

v2(k) =[1 — (€0 — €1)/\/(e0 — €1)? + 4V2(1 — )] /2.

In this limit there are two subbands with an energy
gap between them. The sum of the widths of these two
subbands is equal to the width of the bare conduction
band but the distance between the bottom of the lower
subband and the top of the upper subband is equal to
plus the width of energy gap.

The dependence of the electron’s number on the chem-
ical potential of the system was obtained. For example,
in the case when the chemical potential is placed into the
lower subband this dependence is

V2(1—n)
(Ef —w)W

Ne _ (p+W/2)

2N w
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Because the local initial level E; is located in the en-
ergy gap of this renormalized system in our case of tem-
perature equal to zero E¢ — i > 0 and the average n = 0.
When p is more higher than the top of the upper sub-
band N, = 3N.

The calculated values of the renormalized quasiparti-
cle energies as function of €o/W for T=0 and different
values of the main parameters of the theory are shown
in figures 3-6.

The origin of the energy scale is at the bot-
tom of the bare conduction electron band, and the
conduction—band limits are 0 and W, for the bottom
and the top, respectively. U is considered positive.
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The bare energy band of conduction electrons can re-
main unsplit by hybridization energy (fig. 3). It can be
split into two subbands (fig. 4-5.) or in general case into
three subbands (fig. 6).

The first situation is realized when one of the following
inequalities takes place:

a) E;+U<0;b) Ef >W;¢c) W—-U< E; <0;

The appearance of two subbands is realized on condi-
tion that:

O<pu<EforE;+U<p<W
and the last situation takes place when

O<E;<pu<Ef+U<W.
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HOBA IOIATPAMHA TEXHIKA IJIsSI TEPIOAUYHOI MOIEJII AHOEPCOHA

B. Mockasnenko, . Hdirop, JI. Hororapy, I. ITopuecky
Inemumym npuxaadnol disuru Axademii nayx Moadosu,
5 Kiwiney, 2028, Pecnybaixa Moadosa

Hosa niarpamua Texmika, sika Oysia momepeaIHhO 3aMPOMOHOBAaHA [1y1s Momesi [‘abbapma, BHKOpHCTaHA IJIS
nepiommanoi momesti Argepcona. 'aMiTbTOHIAHN JIOKAJTI30BAHIX €JTEKTPOHIB HJ? Ta BLIbHUX €JIEKTPOHIB IIPOBII-
HOCTI HB BBAXKAIOTHCS OCHOBHOIO YACTHHOIO TaMiJIbTOHIaHa mepiognarol momesi Aunmepcona, a ribpuausaiiiinumit
WIEH PO3TVIANAIOTH K 30ypPeHHsI. HJ? BKJTIOYAE CHOHTAaHHY B3aeMmomito KysioHa Ta miaroHasi3yeThCs B OMEPATO-
pax Ta66apoa. 3ampomoHoBama JiarpaMHa TeXHiKa BIKOPHCTOBYETLCA OJIf Maybapischkux dymkmiit I pina Ta
MicTHTh, TTOps i3 mobyTroM Bika Bimprux dywukuii ['pina, HoBi BHeCKM, PiBHI KyMyJITHTAM Ha By3JIax, IO 3aJIe-
JKATh BiII KyJIOHIBChKOI B3aemomii. [Ipu HexTyBanHi ocTaHHiME OTpUMYy€EMO Tak 3BaHe Habamxenus 'abbapna I nuis
nepiommanoil Momesi AHIZEpCOHa 3 TPhOMA TIKAMH PEHOPMAJII30BAHOTO €HEPIreTUYHOrO CIIEKTPa KBA319aCTHHOK.
IIpencrasiieno ix merasibHEUiT aHA I3, a TAKOX BU3HAYEHO XEMIYHUH MOTEHIIAT CHCTEMU.
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