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By way of using the hyperspherical coordinates method a two-dimensional basis for the investi-
gation of angular correlations in three-particle systems spectral characteristics is constructed. For
two-electron systems like He and H™ in adiabatic approximation the calculations of lower adiabatic
potentials for one- and two- particle-states (autoionisation states) as well as of the angular part of
their wave—functions are carried out. The crossing points of adiabatic potentials are revealed, which
characterize the regions of nonadiabatic transitions between autoionising states. The classification
of a series of quantum states on the basic of knot—lines of basis functions is also carried out.
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I. INTRODUCTION

The notions of both one-particle aspects of electron
motion in atoms based on a self-consistent method and
the collective ones tracing back to the acoustical waves
are equally widely used in different areas of physics for
the description of few-body systems. These ideas allow
one to reflect the main characteristics of the correlated
motion. The effects due to such motion of particles are
revealed in molecular and nuclear physics as well as in
solid state physics. Though in atomic physics the vibra-
tional motion analog is not discovered, in certain cases
of excitation, ionization and even in elastic scattering
of electrons on atomic systems the correlated motion is
clearly established and the study of this motion of parti-
cles is one of the most hecticly discussed problems today.

A very interesting approach to the study of short-range
and long-range correlations is developed by I. Vakarchuk
and I. Yukhnovsky [1, 2]. This approach allowed them to
explain quantitatively a set of structural features of lig-
uid helium He?. But in atomic [3-6] as well as in nuclear
physics [7] the so-called method of hyperspherical coordi-
nates (MHC) proved to be the most appropriate one for
accounting the above-mentioned correlation. The way
of developing this method was not straightforward. Dif-
ferent kinds of one-particle approaches were investigated
for the definition of spectral characteristics of atomic sys-
tems. At the beginning the Hartree-Fock (HF) method
seemed to be quite satisfactory [8]. The difference be-
tween the results, obtained by means of this method and
the experimental data is exactly the measure of this cor-
relation. Going outside the HF method renders it possi-
ble to account for the correlation. Several methods were
elaborated for this aim. Among the most promising one
seemed to be the multiconfigurational Hartree-Fock [9],
configuration interactions (CI) [10, 11], strong-coupling
or close-coupling method [12, 13]. The basic idea of a
method of a such type leads postulating some kind of a
class of trial functions which together with its mathemat-

ical basis constitutes the Galerkin—Ritz method [14]. The
results obtained in these approaches generally speaking
depend on the functions used as well as on the dimension
of the basis used for diagonalizing the Hamiltonian of the
system. Advent of powerful computing facilities allows
one to consider the spaces precisely. This also allows one
to obtain the energy with quite large precision. But the
use of different ways of taking into account singularities
of Shrédinger equation [15-19] leads to a noticeable dif-
ference in the integral characteristics of systems though
the values of energy which practically do not change [17-
19]. In this respect the use of the collective coordinates
offers quite new possibilities.

The investigations of the correlation in MHC at the
small values of the hyperradius were carried out for the
first time by J. Bartlet [15] and V. Fock [16] on the ba-
sis of studying the ground state of the helium atom. It
was shown in these works that in the vicinity of a triple—
collision point the expansion of the wave—function con-
tains not only power—law type terms, but also it contains
the logarithmic terms. Accounting for this fact helped
to accelerate the convergence of variational calculations
[20].

Several works were devoted to the study of correla-
tions in atomic systems at medium and asymptotic val-
ues of hyperradius (see, e.g. the reviews [4-6]). Account-
ing for the correlations at medium values of hyperradius
is important for obtaining the parameters of autoionising
states (AIS).

In the works of Macek, Lin, Fano [3-5] a very im-
portant feature of hyperspherical coordinates was estab-
lished. Namely it turned out that the approximate sep-
aration of variables is possible for the wave function. It
allows one to consider one single term in the expansion
of the wave—function in terms of the so-called channel
functions. The approximate adiabatic expansion means
that one can separate the variables into rapidly changing
(angular) variables and slowly changing (connected with
hyperradius). Such a picture is totally analogous to the
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situation in molecular physics, where the rapid motion
is connected with electrons, while the slow one is con-
nected with the nuclei. This fact allows one to suggest
the existence of collective motions in atom, the nature of
which is not established yet.

Let us remind the reader that in molecular physics
one has the clear parameter which secures the adiabatic
conjecture, namely the ratio of the electron mass to the
nuclear mass. In the atomic physics such a parameter is
absent and only the numerical calculation can prove its
validity. The same situation is inherent to Hartree—Fock
method [8] where such a parameter as smallness which
secures its application is also absent. Nevertheless this
method is an excellent model of one-particle approxima-
tion in many-particle theory.

At the moment the adiabatic separation of variables
in MHC has become a powerful method of investigation
of two-electron systems both in the energy spectrum sec-
tor of calculations and in the scattering sector [3-6, 21—
24]. Moreover this method is generalized for the outer
shell [25, 26]. The MHC allows one also to carry out
the natural and visual classification of quantum states
of the system. The states of the system are described by
the quantum number of level (n) in adiabatic potential,
which, in turn, is characterized by the index (u) renu-
merating these potentials. This index (actually it is a set
of indices) appears as a result of quantization in respect
to angular variables. Therefore the larger is the number
of angular variables the more complicated the nature of
this index is.

Studying the vibrational-rotational spectra of two-
electron systems and basing on group properties of inter-
acting electrons Herrick [28] suggested using two quan-
tum numbers (K,T) which are connected with the eigen-
values of Kazimir operators of O(4;) x O(42) group and
are characterizing the multiplet of states. Later Lin [5]
used these quantum numbers for the classification of two-
electron states in MHC.

Lin has shown that for the definition of p it is necessary
to introduce one additional empiric quantum number A,
which characterizes the behaviour of the channel func-
tion in the vicinity of an @ = 7/2 point and to which
three values are ascribed, namely +,0,-. Actually this
means, that the type of the correlation is defined by the
type of charge density [29], which remains unchanged in
a wide interval of hyperradius values. The classification,
proposed by Lin [5] has a semiempirical character, since
it is not connected with the singling out in the Hamilto-
nian of the corresponding dynamical variables. Therefore
the problem of finding a more natural classification of the
two-electron system remains timely at the moment.

For expanding the region of application of MHC we
propose to use as a basis the two-dimensional channel
functions. The solution of this problem can be realized
by using sweep method with conditions of conjugation
[30, 31]. This method was successfully applied for the
definition of eigen frequencies of the vibrations of a rect-
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angular plate of varying thickness and a stiffened plate.
Such an approach allows one to formulate boundary con-
ditions put on the angular part of wave—functions and to
carry out a more complete account of angular and radial
correlations. In this work we propose also to carry out
the classification of adiabatic potentials of two-electron
systems by means of using characterizing nodal lines of
two-dimensional eigenfunctions of boundary problem. It
will be shown that for the unambiguous definitions of
1 it is necessary to introduce two numbers which are
connected with the quantization of a two-dimensional
boundary problem.

II. THE EQUATION FOR A
TWO-DIMENSIONAL BASIS OF HELIUM-LIKE
SYSTEMS

The description of the dynamics of a two-electron sys-
tem is reduced to the solution of the non-relativistic sta-
tionary Shrodinger equation which has the form (in the
atomic units) of

1 1 Z Z 1
I S
2 2 r1 T2 ‘7"1 _ 7.2‘

where A; is Laplass’s operator acting on the radius-
vector 7;, Z is a charge of the nucleus, E is the energy
of relative motion of electrons. For defining the partial
solutions of eq. (1) it is convenient to pass to the rotating
system of coordinates.

Let us choose the following independent variables in
a six-dimensional configurational space: three Euler an-
gles (4, 8,7) which characterize the system as a whole
and the relative variables i.e. the hyperradius (R), the
hyperangle () and the angle between the vector radii of

electrons
2 2 ’I"l
R = \/7“_1> +7“_2) , «a=2arctg—,
T2

6 = arccos

(2)

rire

Equation (1) assumes the following form in these vari-
ables

[T+V(R,a,9)—E]‘I’(R,a,@,&,,@,’y)=0, (3)

where T,V are the kinetic and potential energy opera-
tors, respectively, which have the form [32]
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Jz, Jy, J. are the projections of the angular momentum operator, acting on Euler angles (9, 3,7). These operators

have the form [33]
2 02 1
7 = { RXE + ctgﬂ

0

1
.= +J, = j
Jo= g5 et Ty = 75 0P (Fiv)

Let us express the solution of equatlo n (3) in the form
of a series in Wigner functions D, (4, 3,7) [33]

Y(R,,0,6,3,7) (4)
Z f]{4M’ (Raaaa)Di/[M’ (&ﬂafY):

J,M,M'

where f 1{4 A (B, @, 0) are the unknown coefficients. These
coefficients obey the system of second order partial dif-
ferential equation of 2j+1-dimension. For S-states this
system is reduced to a single equation

{ii <R5 6)+—A2—2V(Ra9)+2E

R5OR OR
xf(R,a,0) =0, (5)
where
N 1
AN =L, + 3 Ly
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is the square of generalized angular momentum operator
and
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The operator A2 has the eigenvalues (n +m + 1) and
the eigenfunctions [34]

®,m (,0) = Npyy, (sina)™

C™* (cos @) Py, (cosb) , (6)

Cm+1 (cosa) and P, (cosf) are the Gegenbauer and
Legandre’s polynomials respectively, N is the normaliz-
ing constant, which has the form of

7l (2m +n +1)

Npm = .
2mnl (n+m+3) [I'(m+ 3]

Eigenfunctions (6) are widely used as basic functions
in the case of short-range potentials [7]. In atomic physics
the interaction potential has a Coulombic form and the
expansion series in these basic functions (6) converges
very slowly. Therefore in this case it is more advanta-
geous to use other basic functions, namely those which
are the eigenfunctions of a 2-dimensional operator on
sphere [3]

A? — LRV (B,0,6)| x4 (R.000) @
= _R2UM (R) Xu (R,Oé,e) )

where U, (R) are the eigenvalues (adiabatic potentials).
From (7) it is clear, that both eigenfunctions, called
channel-functions and the adiabatic potentials depend
on the hyperradius R.
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A. A numerical calculation of the adiabatic
potentials and the angular part of wave functions

It is impossible to obtain the exact solution of (7) in
the general case. For the approximate solution of equa-
tion (7) we shall use the iterative procedure, which is
described e.g. in [30, 31]. Let us note that the separation
of the variables and its partial solutions are expressed by
function (6). Let us suggest that for all the values of R
the solution of (7) has a separable form

Xnm (Ra Q, 0) =0n (Ra a) fm (Ra 0) ) (8)

where g, (R,a) and fy,, (R,0) are unknown functions
which depend parametrically on R and which obey the
following conditions

Xnm (0, Qa, 0) =0n (07 a) fm (07 9)
=, (a,0), (9)

in the region D (0 < «,6 < 7), while on the verge of
region D one has

gn (Ra 0) =0,9n (Ra 7T) =0,
0

%fm (Ra 0) =0, (10)
0
%‘fm (R, 7T) = 0

according to (6) and (9). For solving equation (7) with
the boundary conditions (10) we take as the first step
of iteration f,(,?) (R,0) = Pp, (cosf). Then for defining
g’ (R, a) xim” (R, a.6) = g1 (R,a) fii (R.6) from
(7) we obtain the equation

. i
{Le-l- — (f$>,Lef£$>)+(f$>,vf$>> (11)
sin- @

+ (19 £9) AD} 6 (Ro0) =0,

v1—sinacos@ B

1 — cosgfx/Q)tgn(a/2)Pn(C050),0 <a< 7T/2,
a7y Ctg" (a/2) Pa(cosf), m/2 < a < m.

where

iy

ALY, = RUY) (R) , (. Ax) = / 2 (6) A.(6) x (6) sin 6,
0

A
is a matrix element of the A operator, /' is the potential
energy operator, multiplied by R?/2. Solving problem
(11) with the boundary conditions (10) we obtain eigen-

functions gr(Ll)(R,a) and eigen-values AZ). On the sec-

ond step we put ngn)z (R,a,0) = gr(f) (R, @) f,g%) (R,6).
For defining f,(nl) (R, ) the following equation is to be
used

+ (09, LagV) + <g§3),V gé”)
+ (9, Lagt) AL} £ (RLO) =0, (12)

The integration over « in the matrix elements in (12) is
carried out with the weight sin?a. Since equation (7) is
invariant under the transformation o' = 7 — a the inte-
gration over « is to be carried out in the interval [0, 7/2],
while for singlet states g, (R, «) is even in respect to point
a = m/2 and is odd for triplet states. Solving eq. (12)
with taking into account eq. (10) we obtain fr(nl)(R, )
and A%Q,L. Let us continue this process until the condi-
tion ‘AS{?L — A%kn;l)‘ < g, is satisfied, £ being the given
precision defining the adiabatic potentials.

The described process was realized numerically for six
lowest adiabatic potentials, describing the !S-states of
the He atom and a negative hydrogen ion. While solving
eq. (7) the sweep method with conditions of conjugation
[30, 31] was used. It allowed us to determine the adiabatic
potentials with the precision of up to 10~% a.u. To reach
this precision for every fixed value of hyperradius it was
necessary to carry out from four to six iterations. Tak-
ing into account the interaction potential between the
electrons was carried out by way of using the following
multipole expansion [33]

(13)

Obtaining numerical values of lower adiabatic potentials with a given precision demands the inclusion into expansion
(13) of up to ten terms. The convergence of expansion (13) is characterized by the data shown in table 1.
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R —R2Uy(R) —~R2U;1(R)

n=2, n=3, n=4 n=2, n=3, n=4, n=5
0.1 0.8917; 0.8916; 0.8916  3.9061;3.9197;3.9197;3.9196
0.3 0.6688; 0.6686; 0.6686  3.7198;3.7605;3.7597;3.7595
0.5 0.4420; 0.4417; 0.4417  3.5437;3.6715; 3.5990; 3.5988

1.0 —0.1421; -0.1428; —0.1431
1.5 —0.7535; —0.7548; —0.7548
2.0 —1.3964; —-1.3978; —1.3978

3.0728; 3.2034; 3.1927; 3.1926
2.6138; 2.8030; 2.7826; 2.7801
2.1560; 2.3985; 2.3637; 2.3602

—R2U»(R)
n=3, n=4
8.8339; 8.8341
8.4674;8.4674
8.0981;8.0979
7.1618;7.1616
6.2090; 6.2090
5.2421;5.2412

Table 1. Contribution of multipoles in lower adiabatic potentials.
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Fig. 1. Lower adiabatic potentials for He and H™.

As it is seen from the table for the series ms? it is
sufficient to account three terms in expansion (13), for
the other series the number of terms in the expansion
depends on the number of knots of wave functions in
respect to the variable 6.

In the standard approach [3-6, 21-23] the evaluation
of channel function is reduced to the system of homoge-
neous algebraic equations or Sturm-Liouville-type prob-
lem for the system of second order differential equations.
The accuracy of the account of the angular correlations
depends on the dimension of the system of these alge-
braic or differential equations and on the sort of basic
functions used in the expansion of channel functions. The
obtained lowest adiabatic potentials for He and H™ are
shown in fig. 1, while the wave functions, corresponding
to the lowest series for small and medium hyperradius
values are shown in fig. 2. As it was shown in [35] the
states of helium-like atoms are conveniently character-
ized by two numbers ¢ = n+1[ and p =l —n. One of these
numbers is connected with the generalized angular mo-
mentum (A = o + 1) while the second is indicating the
number of states in a multiplet. These numbers are char-

acterizing the adiabatic potential unambiguously. As it
is seen from fig. 1 some potentials are describing the at-
traction in some region of hyperradius which secures the
existence of bound states, while other potentials show
repulsion which shows itself only in scattering and ioni-
sation.

The wave functions or more precisely their square of
moduli is proportional to the electric probability density
at fixed hyperradius. As follows from fig. 2 this quantity
depends very strongly on hyperradius. At small values
of R it is close to “free” (4), while at large values of
R the density depends on R very strongly. This state-
ment is visualized in more details in fig. 3. The analysis
of this fig. shows that the correlation in respect of « is
more essential in comparison with the dependence on 6.
This fact indicates that the quantum number [ can be
used with a good precision for characterizing the states
of systems, especially for the lower one- and two-electron
excited states.

The obtained wave functions allow to define the nona-
diabatic potentials which provide the coupling between
the channels in the system of radial equations [29, 34].
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Fig. 2. Angular parts of wave functions of the ground state H™ and of the autoionising Us_; term of He.
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Fig. 3. The dependence of wave functions f3_; () and gz—1 (f) for the helium atom.

The existence of the crossing of the potentials
U,_» and Uy indicates the mixing of the configurations

s? and d? at small values of hyperradius and configu-

rations s2 and p? at the asymptotical values of R. In
the vicinity of the crossing points the transitions be-
tween these configurations are possible. It is interesting
to note that similar transitions were not observed in a
polyspheric system. However in the case of pee™ in [26]
a similar crossing was obtained for adiabatic potentials

in the vicinity of R ~ 9 a.u. In our case, as it is shown in

fig. 1 two crossings are obtained both for H~ and for He.
Similar crossings of terms in collisions of heavy particles
[36] result in the oscillations of cross-sections. It would
be of certain interest to check this idea in the case of
electron—atom or electron—ion scattering.

In conclusion we can say that using two-dimensional
adiabatic basis allows one to describe both angular and
radial correlations of helium-like systems, to limelight
the region of CI in which nonadiabatic correlations play
an important role.
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JBOBUMIPHUI BA3WC OJISI JOCJIIXKEHHS KYTOBUX KOPEJISIIIN
B T'EJIIEIIOOIBHNX CUCTEMAX

M. L FaﬁcaKf, M. M. ,HOBraHH'{T, B. L I[enm;en”, B. B. Onucsxo!f
J‘IHcmumym eaexmponnol Ppizuxwuy HAH Yxpainu, 294016 m. Yorczopod, sys. Yuisepcumemcvra, 21
1 Vorczopodevruts deporcasruts yrnisepcucem, 294000 m. Yoczopod, eya. Bosowuna, 32

Ha muisixy BUKOpMCTAHHSI METOLY TinmepChepUIHNX KOOPIMHAT 3AMPOMOHOBAHO BUKOPUCTAHHS IBOBUMIDHOTO
0a3ucy i HOC/IIKEHHs BHECKY KYTOBHUX KOPEJISAIiil y CIeKTPOCKOMYHI XapAKTePUCTUKN TPUIACTUHKOBUX CHU-
crem. Po3po6sieHo asropuTM Ta CKJIQOEHO KOMIUIEKC MPOrpaM, sKi JAIOTh MOXKJIMBICTH PO3B’A3yBaTH 330a4y
Ha BJIACHI 3HAYEHHSI IS JIHIRHUX TudepeHIis/IbHIX PIBHAHD Y 9YaCTUHHUX MOXIIHUX IPYTrOro MOPSIIKY Bil IBOX
HE3AJIeXKHUX 3MIHHUX 13 3MIHHUME KOeilieHTaMu, IKi MOXKYTh MATU CUHIYJIAPHICTh HA MPAHUN] 00/1aCTi iHTErPy-
Banusi. Ha ocHOBI po3s’sisyBanus kpaitoBol 3a1a4i IBOX HE3AIEKHUX 3MIHHIX B aIisi0ATHIHOMY HAOJIMKEHHI TPO-
BEIEHO PO3PAXYHKU IJIS MECTH HUKYNX aiT0ATUIHUX MOTEHI[ISIIB Ta KYyTOBUX YaCTUH XBUJILOBUX (DYHKIIIH, 110
ONMUCYIOTh OJHOYACTUHKOBI Ta MBOYACTHHKOBI (aBToiioHizamiiini) 36ymxenns S-CTaHiB HBOEJTEKTPOHHAX CHCTEM

He Ta H™.

Busisteno nificHi TOYKM TepeTHHY amisOATHIHUX MOTEHIISAJIIB, sKi XapaKTepn3yloTh O0JIacTi HeamistoaTnd-

HEX IIEPEXOIiB MiXK CepisMu aBTOOHI3amiiHNX cTaHiB. 3ampomoHoBaHa KJacudikamis aaigsOaTHIHIX TOTEHIIATIB

TPUYACTUHKOBUX CUCTEM HA OCHOBI By3JIOBHUX JIiHil KyTOBOI YacTunu XBuIb0B01 dyHKii. [JoCTIinKeHo BHECOK BH-

X MOHOIOJIB B aaistbaTUYHI MOTEHIisIn Ta KanasoBi dyuknii. [Tokazano, Mo BKIOYEHHS Y0TUPHOX TOJAHKIB

PO3KJIaIy TOTEHINTY MiXKeJeKTPOHHOI B3AEMO/IIl JO3BOJISE ONEPKATH aTisIOATUIH] TOTEHIISIN 3 TOIHICTIO 1074

a.o.. Ha Binminy Bim craHmapTHOTO HigXoay, BUKOPUCTAHHS ABOBUMIPHOTO 0A3WMCY [1A€ MOXKJIUBICTDH O1/IbII MOBHO

ONMMCATH KOPEJISIIHII pyX €JIeKTPOHIB yKe B amiabarnaHoMy HAO/IMKEHHI.

027



