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The relation div v

s

(t; r) = Q

(4)

(t; r) ! �Q

(4)

(�t; r) is considered for superuid helium 4 and

weakly interacting Bose gas. In respect to the latter it was shown that Q

(4)

is expressed in terms

of the phase �. It characterizes the order parameter h i =

p

�

c

e

i�

as a consequence of the broken

gauge symmetry. So, similarly to the Josephson e�ect the phase has here signi�cance.
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In [1{3] it has been shown that for superuid helium 3

(

3

He-A,

3

He-B) it is necessary to introduce the notion of

the magnetic type \charge" Q

(3)

(t; r). Namely, the nor-

malization condition A

ij

A

�

ij

= 1 for the matrix order

parameter A

ij

leads to the relation

_

A

ij

A

�

ij

+A

ij

_

A

�

ij

= 0

where

_

A

ij

denotes the equation of motion. The pre-

sented relation is equivalent to the condition of the form

div v

s

(t; r) = Q

(3)

(t; r) where v

s

denotes superuid ve-

locity. In

3

He-A the gauge symmetry and the rotation

symmetry in the spin space and the orbital space are

broken. The \charge" Q seems to occur because of the

breaking of the rotation symmetry in the spin space (see

also [4]).

Now we are interested in examining this problem in

the case of superuid helium 4. For the superuid Bose

system

h (t; r)i 6= 0 (1)

where  is a Bose �eld operator and h: : :i denotes av-

eraging with the density matrix. Formula (1) which is a

manifestation of the breaking of the gauge symmetry in

superuid

4

He (h�i plays a role of the parameter).

Because of the breaking of the gauge symmetry a

new hydrodynamical parameter, superuid velocity v

s

,

should be introduced to the description of our system.

According to [5] we can write

h (t; r)i =

p

�

c

(t; r)e

i�(t;r)

;

h (t; r)ih 

+

(t; r)i = �

c

(t; r): (2)

We see that h i vanishes if the density of the condensate

�

c

vanishes i.e.

p

�

c

can be treated as the order parame-

ter. The hydrodynamic variable v

s

is de�ned

v

s

(t; r) �

�h

m

r�(t; r)

! �v

s

(�t; r) = �

�h

m

r�(�t; r): (3)

The considered superuid Bose system is described

with the help of the Hamiltonian

^

H =

1

2m

Z

r 

+

(t; r)r (t; r)dr � �

Z

 

+

(t; r) (t; r)dr

+

1

2

Z Z

V (r� r

0

) 

+

(t; r) 

+

(t; r)dr

0

) (t; r) (t; r

0

)drdr

0

: (4)

We omitted here the additional term introduced in [5] in order to underline the breaking of the gauge invariance.

For the order parameter  (t; r) we have the following equation of motion

i�h

@ (t; r)

@t

= [ (t; r);

^

H ] = �� (t; r)�

�h

2

r

2

2m

 (t; r) +

Z

dr

0

V (r� r

0

)�̂(t; r

0

) (t; r): (5)

After averaging (5) and taking into account (2), (3) we have

551



Z. M. GALASIEWICZ

�h

@�

@t

= �+

�h

2

r

2

p

�

c

2m

p

�

c

�

mv

2

s

2

�

1

�

c

Z

VRReX

t

(t;R)dR; (6)

@�

c

@t

+ div(�

c

v

s

) = �2

Z

VRImX

t

(t;R)dR; (7)

X

t

(r; r

0

� r) = X

t

(r;R) = h�̂(t; r

0

) (t; r)ih 

+

(t; r

0

)i; (8)

(�

c

)

eq

= �

0

; R = r

0

� r:

Near the equilibrium �

c

' �

0

, we get the following relation which is of interest to us

divv

s

(t; r) = �

2

�

0

Z

V (R)ImX

t

(r;R)dR = Q

(4)

(t; r)! Q

(4)

(�t; r): (9)

In the absence of correlations, as in the mean-�eld approach, the expected value in (8) can be decoupled and

ImX

t

= Imh�̂(t; r)ih (t; r)ih 

+

(t; r)i) = Imh�̂(t; r)i�

c

= 0: (10)

Thus Q

(4)

= 0 because h�̂(t; r)i is real.

Now we will try to get expression for div v

s

for a simple model of weakly interacting Bose systems. They are

described by the Hamiltonian (6) (�-�xed ensemble)

^

H =

U

0

b

+

0

b

0

2V

+

X

p 6=0

�

�h

2

p

2

2m

� �

�

b

+

p

b

p

+

U

0

2V

X

p 6=0

[b

2

0

b

+

�p

b

+

p

+ b

+2

0

b

p

b

�p

+ b

+

0

b

0

b

+

p

b

p

]: (11)

The Hamiltonian (11) leads to the following equations of motion

i�h

@b

k

(t)

@t

=

�

�h

2

p

2

2m

� �

�

b

k

(t) +

U

0

�

0

V

[b

+

�k

(t) + 2b

k

(t)];

�i�h

@b

+

k

(t)

@t

=

�

�h

2

p

2

2m

� �

�

b

+

�k

(t) +

U

0

�

0

V

[2b

+

�k

(t) + b

k

(t)]: (12)

In addition

i�h

@b

0

(t)

@t

= (U

0

�

0

� �)b

0

(t)

= ��b

0

+ U

0

�

0

(2b

0

+ b

+

0

)� U

0

�

0

(b

0

+ b

+

0

);

�i�h

@b

+

0

(t)

@t

= (U

0

�

0

� �)b

+

0

(t) (13)

= ��b

+

0

+ U

0

�

0

(2b

+

0

+ b

0

)� U

0

�

0

(b

0

+ b

+

0

);

Eqs. (12), (13) give

i�h

@ (t; r)

@t

= �� (t; r) �

�h

2

2m

r

2

 (t; r)

+U

0

�

0

[2 (t; r) +  

+

(t; r)]� 2U

0

�

0

p

�

0

;

i�h

@ 

+

(t; r)

@t

= �� 

+

(t; r) +

�h

2

2m

r

2

 

+

(t; r) (14)

�U

0

�

0

[2 

+

(t; r) +  (t; r)] + 2U

0

�

0

p

�

0

:

From formula (2) we �nd

i�h

@h i

@t

= e

i�

�

i�h

2

p

�

c

@�

c

@t

� �h

p

�

c

@�

@r

�

;

i�h

@h 

+

i

@t

= e

�i�

�

i�h

2

p

�

c

@�

c

@t

+ �h

p

�

c

@�

@r

�

: (15)

On the basis of eqs. (15) we can derive the equation anal-

ogous to (7). Namely

@�

c

@t

= �i

�

c

�h

�

e

i�

i�h

@h 

+

i

@t

+ e

i�

i�h

@h i

@t

�

: (16)
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Now we average eqs. (14) and substitute (16). We have

@�

c

@t

+r(�

c

v

s

) = �

U

0

�

c

p

�

c

�h

� sin�(

p

�

c

cos��

p

�

c

): (17)

Near the equilibrium �

c

� const. We have

divv

s

(t; r) = �

4U

0

�

0

�h

p

�

c

� sin�(

p

�

c

cos��

p

�

c

) = Q

(4)

(t; r): (18)

We see that in the expression for Q

(4)

(t; r) the phase

plays an important role similarly as it happens at the

consideration of the Josephson e�ect. The existence of

the phase is a consequence of the gauge symmetry break-

ing. In the case of

3

He-A more important is the breaking

of the rotation symmetry in the spin space.
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PROBLEMA \ZAR�DU" Q

(4)

= div v

s

DL� NADPLINNOÕ XVIDKOSTI

U VIPADKU BOZE SISTEM
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Rozgl�dat~s� sp�vv�dnoxenn� div v

s

(t; r) = Q

(4)

(t; r) ! �Q

(4)

(�t; r) dl� nadplinnogo gel�� 4 � slabko

vzamod��qogo Boze gazu. Dl� ostann~ogo vipadku pokazano, wo Q

(4)

vira�at~s� qerez fazu �. Vona ha-

rakterizu parametr por�dku h i =

p

�

c

e

i�

v rezul~tat� poruxenn� kal�bruval~noÝ simetr�Ý. Ot�e, pod�bno

do efektu D�ozefsona faza v�d�gra tut va�livu rol~.

553


