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We review some aspects of the fermionic interpretation of the two-dimensional Ising model.

The use is made of the notion of the integral over the anticommuting Grassmann variables. For

simple and more complicated 2D Ising lattices, the partition function can be expressed as a fermionic

Gaussian integral. Equivalently, the 2D Ising model can be reformulated as a free-fermion theory on

a lattice. For regular lattices the analytic solution then readily follows by passing to the momentum

space for fermions. We also comment on the e�ective �eld{theoretical (continuum{limit) fermionic

formulations for the 2D Ising models near the critical point.
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I. INTRODUCTION

The two-dimensional (2D) Ising model in a zero mag-

netic �eld was �rst solved by Onsager in his celebrated

paper [1]. This remarkable solution has already con-

tributed much to our understanding of the nature of

the second order phase transitions in magnets [2{6]. The

original algebraic method used by Onsager, however, was

su�ciently complicated. The modern approaches to the

2D Ising model are based merely on the fermionic inter-

pretation of this model [7{23]. The fermionic structures

in the 2D Ising model were �rst recognized within the

transfer{matrix and combinatorial considerations [7, 8].

It was realized later on that the notion of the integral

over anticommuting Grassmann variables due to Berezin

[9, 10] is a powerful tool to analyze the 2D Ising models

[10{23]. Berezin himself was the �rst to apply the anti-

commuting variables to evaluate the partition function

of the 2D Ising model on a rectangular lattice [10]. His

method was based on the combinatorial considerations

[10]. The fermionic approaches to the 2D Ising model

have been developed later on by many authors [11{23].

In the forthcoming discussion we will merely follow a sim-

ple fermionic interpretation of the 2D Ising model intro-

duced in [17{19]. The approach is based on the integra-

tion over the anticommuting Grassmann variables and

the mirror-ordered factorization principle for the 2DIM

density matrix. The method does not involve the tradi-

tional transfer{matrix or combinatorial considerations.

Schematically, we have:

Q = Sp

(�)

Q (�)! Sp

(� j a)

Q (� j a) (1.1)

! Sp

(a)

Q (a) = Q :

Here we start with the original spin partition function,

Q, and introduce, in a special way, a set of new anticom-

muting Grassmann variables (a) thus passing to a mixed

(� j a) representation for Q. Eliminating the Ising spin

variables in this mixed (� j a) representation, we obtain

a purely fermionic expression for the same partition func-

tion Q. The partition function appears, in �nal form, as

a Gaussian fermionic integral. Equivalently, the 2D Ising

model is represented as a free-fermion �eld theory on a

lattice [17{19]. For the homogeneous (translationally in-

variant) lattices the analytic solution for the partition

function and free energy then readily follows by passing

to the momentum space for fermions by means of Fourier

substitution. In particular, this gives a few line derivation

of the Onsager result [17]. The exact solution for a �nite

lattice on a torus (periodic boundary conditions in both

directions) also follows within suitable modi�cation of

the fermionization procedure [18]. The decomposition of

the partition function on a torus into a characteristic sum

of four fermionic integrals follows here from a general rule

of transposition of two Grassmann variable functions de-

rived in Appendix A of [18]. The Ising models settled on

the lattices with complicated local structures have been

analyzed by the factorization method within the spin-

polynomial interpretation of the problem [19]. We will

pay more attention to this last case in sections 3{7. For

the application of the results of fermionic analysis [19] in

studies of regularly diluted Ising ferromagnets also see

[25, 26]. It is also important that the method works in

fact for the most general inhomogeneous distribution of

the coupling parameters over the lattice bonds [17]. This

may be of interest in studies of the disordered Ising mod-

els [20{23]. The Gaussian fermionic representations has

been recently constructed as well for the inhomogeneous

two-dimensional dimer problems [24].

In the straightforward variant of the method [17] we

introduce Grassmann variables already at the �rst stages

in order to decouple the local bond Boltzmann weights

into separable factors called Grassmann factors (GFs).

We then combine GFs with the same spin variables into

separable groups all over the lattice and then sum over

spin states in each group independently, thus passing to a

purely fermionic representation forQ. In general, the fac-

torization idea we apply resembles the idea of insertion

of the Dirac unity, � j a ih a j = 1, in quantum mechanics.
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However, the situation in our case is more complicated

since we deal here with Grassmann factors which are

neither commuting nor anticommuting, in general, with

each other. The key point of all the construction is then

the mirror-ordering procedure for the global products of

GFs [17]. This ordering procedure enables us to keep

nearby few relevant factors with the same spin variable

in the process of fermionization, which is the necessary

condition so that we can actually eliminate spin degrees

of freedom. The ordering procedure for global product of

GFs is the most important part of the solution [17{19].

It might be worthwhile also mentioning that the lacking

of a suitable ordering procedure for GFs in the 3D case is

a serious obstacle to deal with the 3D Ising model within

the fermionic factorization method. The same holds true

for the 2D Ising model in a non-zero magnetic �eld.

If we start with factorization of the local bond Boltz-

mann weights, as we do for the standard rectangular lat-

tice in [17, 18], we obtain the fermionic representation

for Q with four variables per site. Starting by the fac-

torization of the bond weights, the number of fermionic

variables per site will be even larger for more compli-

cated lattices. An important modi�cation of the method

was introduced in [19], where we start with the factor-

ization of the local cell weights presented by three-spin

polynomials. The spin-polynomial interpretation for the

2D Ising models arises if we multiply few local weights

forming elementary cell in Q. E�ectively, this reduces

the number of uctuating degrees of freedom already on

the level of the spin-variable formulation of the prob-

lem, prior to fermionization. Respectively, the Gaussian

integral for Q appears here with only two fermionic vari-

ables per site, see (4.1) below, which provides essential

simpli�cations in the forthcoming analysis [19]. For a

set of 2D Ising models, including rectangular, triangu-

lar and hexagonal Ising lattices as the simplest cases,

this gives analytic solution in terms of the parameters

of the three-spin polynomial characterizing elementary

cell. The exact lattice integral (4.1) is also a suitable

starting point to pass to the e�ective continuum{limit

formulation near T

c

. The continuum{limit formulation

corresponds to the low-momentum sector of the exact

lattice theory responsible for the critical-point singulari-

ties and the large-distance behaviour of correlations near

T

c

. The resulting theory is the massive 2D Majorana the-

ory, with mass vanishing at T

c

. By doubling of fermions

in Majorana representation, we can pass as well to the

2D Dirac �eld theory of charged fermions. Below we com-

ment on some aspects of the fermionic interpretation of

the 2D Ising model in more detail. The fragments of the

present discussion have been reported also in [27, 28].

In the next section we outline shortly the basic rules of

fermionic integration.

II. GRASSMANN VARIABLES

We remember that Grassmann variables are the purely

anticommuting fermionic symbols. Given a set of Grass-

mann variables a

1

; a

2

; :::; a

N

, we have a

i

a

j

+ a

j

a

i

= 0,

a

2

j

= 0. The Beresin's rules of integration for one variable

are [9]:

Z

da

j

� a

j

= 1 ;

Z

da

j

� 1 = 0 : (2.1)

In the multidimensional integral, the di�erentials

da

1

; da

2

; ::: ; da

N

are again anticommuting with each

other and with the variables. The basic relations of the

Grassmannian analysis concern the Gaussian fermionic

integrals [9, 10]. The Gaussian integral of the �rst kind

is related to the determinant:

Z

N

Y

j=1

da

�

j

da

j

exp

0

@

N

X

i=1

N

X

j=1

a

i

A

ij

a

�

j

1

A

= det

^

A ; (2.2)

where fa

j

; a

�

j

g is a set of completely anticommuting

Grassmann variables, the matrix in the exponential is

arbitrary. The fermionic exponential here is assumed in

the sense of its series expansion. The series terminates

at some stage due to the property a

2

j

= 0. The corre-

spondent �nite polynomial for the exponential in (2.2)

can be obtained also by multiplying the elementary fac-

tors exp (a

i

A

ij

a

�

j

) = 1+a

i

A

ij

a

�

j

. The appearance of the

determinant in (3) is due to the known interrelations be-

tween fermionic algebra and determinant combinatorics.

By convention, the variables a

j

and a

�

j

can be considered

as complex conjugated fermionic �elds, otherwise these

are simply independent variables. The Gaussian integral

of the second kind, for real fermionic �elds, is related to

the Pfa�an of the associated skew-symmetric matrix:

Z

da

N

::: da

2

da

1

exp

0

@

1

2

N

X

i=1

N

X

j=1

a

i

A

ij

a

j

1

A

= Pfa�

^

A;

A

ij

= �A

ji

: (2.3)

The Pfa�an is some combinatorial polynomial in ele-

ments A

ij

which has been known in mathematics for

a long time. Under another name, the Pfa�an is also

well known in physics since the Pfa�an combinatorics

is identical with that of the fermionic version of Wick's

theorem. For any skew-symmetric matrix (A

ij

= �A

ji

)

we have:

det

^

A = (Pfa�

^

A )

2

: (2.4)

This identity can be most easily proved just in terms of

the fermionic integrals like (2.2) and (2.3). The fermionic

averages (Green's functions) correspondent to the inte-

grals (2.2) and (2.3) can be de�ned in a natural way. The

linear superpositions of Grassmann variables are again

Grassmann variables and it is possible to make a linear

change of variables in the fermionic integrals. As com-

pared with the rules of commuting analysis, the only

di�erence is that Jacobian will now appear in the in-
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verse power [9, 10]. [It might be also interesting to com-

pare (2.2) with the analogous Gaussian integral over the

commuting complex{variable �elds in common analysis].

In physical applications, the new fermionic variables of

integration are often introduced by Fourier substitution

(transformation to the momentum space).

III. THE SPIN-POLYNOMIAL

INTERPRETATION

In order to construct the fermionic representation for

Q with the minimal number of fermionic variables per

site, we start with the spin-polynomial formulation of

the problem [19]. This can be most simply illustrated by

an example of the Ising model on a triangular lattice.

The triangular lattice can be viewed as a rectangular

one with an additional diagonal interaction introduced

in each rectangular cell. Let the lattice sites on the corre-

sponding rectangular net be marked by integer Cartesian

coordinates mn , with m = 1; 2; :::; L, n = 1; 2; :::; L run-

ning in horizontal and vertical directions, respectively.

Here L is the lattice length, N = L

2

is the total number

of sites and spins in a lattice. At �nal stages we assume

L

2

! 1. With each lattice site we associate the Ising

spin variable �

mn

= �1. The Hamiltonian of the Ising

model on a triangular lattice is then given as follows:

�� H (�) =

X

mn

[ b

1

�

mn

�

m+1n

+ b

2

�

m+1n

�

m+1n+1

+ b

3

�

mn

�

m+1n+1

] ; � = 1=kT ; (3.1)

where b

�

= J

�

=kT are the dimensionless coupling constants, J

�

are the magnetic exchange energies, and kT is the

temperature in energy units. To be de�nite, in what follows we will merely keep in mind the ferromagnetic case,

b

�

> 0, though this restriction is not essential until we pass to the continuum limit formulations. The partition

function and the free energy per site are:

Z =

X

(�)

e

��H(�)

; � � f

Z

= lim

N!1

1

N

ln Z ; (3.2)

where the sum is taken over the 2

N

spin con�gurations provided by �

mn

= �1 at each site.

Noting the identity for the typical bond weight: e

b ��

0

= cosh b+sinh b���

0

, which readily follows from (��

0

)

2

= +1,

we �nd:

Z = (2 cosh b

1

cosh b

2

cosh b

3

)

N

Q ; N = L

2

!1 ; (3.3)

where Q is the reduced partition function:

Q = Sp

(�)

f

Y

mn

( 1 + t

1

�

mn

�

m+1n

) (1 + t

2

�

m+1n

�

m+1n+1

) (1 + t

3

�

mn

�

m+1n+1

) g ; (3.4)

where t

�

= tanh b

�

, b

�

= J

�

=kT , and Sp

(�)

is the properly normalized spin averaging [19]:

Sp

(�)

(:::) =

Y

mn

Sp

(�

mn

)

(:::) = 2

�N

X

(�)

(:::) ; Sp

(�

mn

)

(:::) =

1

2

X

�

mn

=�1

(:::) ; (3.5)

the local averaging is normalized here in such a way that Sp (1) = 1, also note that Sp (�

mn

) = 0. The reduced

partition function Q will be the main subject of our interest.

In order to pass to the spin-polynomial interpretation, we have to multiply the three bond weights forming a

triangular cell in Q. Let us introduce the local enumeration of sites at our rectangular net:

(�

1

j�

2

j�

3

j�

4

)$ (�

mn

j�

m+1n

j�

m+1n+1

j�

mn+1

) : (3.6)

The elementary cell in (3.1) and (3.4) is formed by a triangle of spins (�

1

; �

2

; �

3

)

mn

. Noting that �

j

= �1, and

hence �

2

j

= 1, we can multiply the weights in (3.4) making use of the properties like �

1

�

2

� �

2

�

3

= �

1

�

3

, etc. For the

product of the three bond weights from (3.4) we then obtain the three-spin polynomial as is given in (3.7) below.

This polynomial can be considered as the e�ective Boltzmann weight of a triangular elementary cell taken as a whole:
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P

123

(�) = (1 + t

1

�

1

�

2

) (1 + t

2

�

2

�

3

) (1 + t

3

�

1

�

3

)

= (1 + t

1

t

2

t

3

) + (t

1

+ t

2

t

3

)�

1

�

2

+ (t

2

+ t

1

t

3

)�

2

�

3

+ (t

3

+ t

1

t

2

)�

1

�

3

(3.7)

= �

0

+ �

1

�

1

�

2

+ �

2

�

2

�

3

+ �

3

�

1

�

3

:

In the last line we write the three-spin polynomial in general notation, for the given case of a triangular lattice we

have:

�

0

= 1 + t

1

t

2

t

3

; �

1

= t

1

+ t

2

t

3

; �

2

= t

2

+ t

1

t

3

; �

3

= t

3

+ t

1

t

2

; (3.8)

while the case of a rectangular lattice follows with t

3

= 0, which corresponds to b

3

= 0 in the Hamiltonian (3.1). For

a rectangular lattice we have: �

0

= 1; �

1

= t

1

; �

2

= t

2

; �

3

= t

1

t

2

. The hexagonal and more complicated lattices can

be characterized by the three-spin polynomials like (3.7) as well, with their own sets of the �-parameters. Thus we

come to the three-spin polynomial partition function [19]:

Q = Sp

(�)

Y

mn

(�

0

+ �

1

�

mn

�

m+1n

+ �

2

�

m+1n

�

m+1n+1

+ �

3

�

mn

�

m+1n+1

) : (3.9)

In what follows we assume �

0

; �

1

; �

2

; �

3

to be arbitrary parameters. Particular Ising lattices are speci�ed by the

choice of the �-parameters [19, 25, 26].

IV. FREE{FERMION REPRESENTATION AND ANALYTIC

RESULTS (THE LATTICE CASE)

The three-spin polynomial partition function (3.9) can be transformed into a fermionic Gaussian integral following

(1.1). The starting point is factorization of the local polynomial weights in (3.9). We need only two variables per site

in the process of fermionization. The partition function then appears as the following Gaussian fermionic integral

[19]:

Q =

Z

Y

mn

dc

�

mn

dc

mn

exp

X

mn

[ (�

0

c

mn

c

�

mn

� �

1

c

mn

c

�

m�1n

� �

2

c

mn

c

�

mn�1

� �

3

c

mn

c

�

m�1n�1

)� �

1

c

mn

c

m�1n

� �

2

c

�

mn

c

�

mn�1

] ; (4.1)

where c

mn

; c

�

mn

are the totally anticommuting Grassmann variables, two per site. The free-fermion representation

(4.1) is exact. Integral (4.1) is equivalent to the original partition function (3.9) up to the boundary e�ects, which

are inessential as L

2

! 1. The explicit evaluation of integral (4.1) can be performed by passing to the momentum

space by means of Fourier substitution:

c

mn

=

1

L

X

pq

c

pq

e

i

2�

L

(mp+nq)

; c

�

mn

=

1

L

X

pq

c

�

pq

e

� i

2�

L

(mp+nq)

: (4.2)

Here c

pq

; c

�

pq

are the new fermionic variables of integration. Integral (4.1) now appears in the form of

Q =

Z

Y

pq

dc

�

pq

dc

pq

exp

X

pq

h

c

pq

c

�

pq

�

�

0

� �

1

e

i

2�p

L

� �

2

e

i

2�q

L

� �

3

e

i

2�

L

(p+q)

�

� �

1

c

pq

c

L�pL�q

e

i

2�p

L

� �

2

c

�

L�pL�q

c

�

pq

e

i

2�q

L

i

: (4.3)

Note that the fermionic measure transforms in a trivial way by passing from (4.1) to (4.3). This is because the

Jacobian of substitution (4.2) is unity which follows from the orthogonality of the Fourier eigenfunctions.

It is easy to see that the integral (4.3) decouples into a product of simple low-dimensional integrals. Since the

variables with the momenta pq and L� pL� q interact in (4.3), we have to single out in the fermionic action in (4.3)

the combined (pq jL�pL�q) term. Let S

pq

be the term already given explicitly in the pq sum above. It then follows

that the integral (4.3) is the product of the following independent factors:
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Q

2

pq

=

Z

D

pq

exp

�

S

pq

+ S

L�pL�q

) ; D

pq

= dc

�

L�pL�q

dc

L�pL�q

dc

�

pq

dc

pq

: (4.4)

The elementary integral (4.4) can be readily evaluated by elementary tools (for instance, simply using de�nitions

(2.1)) and its value is given as a factor in the product (4.5) below. By comparing the fermionic measures in (4.3) and

(4.4), it follows that the partition function itself, Q, arises if we multiply the factors (4:4) over only one half of the

points in the momentum space. That is, we have to multiply the factors (4.4) in such a way that if the given mode

pq is already included into the product, then the conjugated mode L� pL� q is not to be included, and vice versa.

Respectively, the total product of factors (4.4) over the complete set of momentum modes, 0 � p; q � L � 1, will

yield the squared partition function. Thus, for the partition function (4.1) we �nd [19]:

Q

2

=

L�1

Y

p=0

L�1

Y

q=0

�

(�

2

0

+ �

2

1

+ �

2

2

+ �

2

3

)� 2 (�

0

�

1

� �

2

�

3

) cos

2�p

L

� 2 (�

0

�

2

� �

1

�

3

) cos

2�q

L

� 2 (�

0

�

3

� �

1

�

2

) cos

2�(p+ q)

L

�

: (4.5)

Respectively, the free energy per site is:

��f

Q

= lim

L!1

(

1

L

2

lnQ )

=

1

2

2�

Z

0

2�

Z

0

dp

2�

dq

2�

ln

�

(�

2

0

+ �

2

1

+ �

2

2

+ �

2

3

)� 2 (�

0

�

1

� �

2

�

3

) cos p

� 2 (�

0

�

2

� �

1

�

3

) cos q � 2 (�

0

�

3

� �

1

�

2

) cos(p+ q)

�

: (4.6)

In particular, the exact solutions for the rectangular, triangular, and hexagonal Ising lattices follow from (4.6) under

the correspondent speci�cations of the parameters �

j

[19].

Here we consider as an illustration the simplest case of the standard rectangular lattice. For this lattice, we have

�

0

; �

1

; �

2

; �

3

$ 1; t

1

; t

2

; t

1

t

2

. From (4.6), the free energy is:

��f

Q

�

�

rect

=

1

2

2�

Z

0

2�

Z

0

dp

2�

dq

2�

ln

�

(1 + t

2

1

) (1 + t

2

2

)� 2t

1

(1� t

2

2

) cos p

� 2t

2

(1� t

2

1

) cos q

�

: (4.7)

The free energy (4.7) is associated with the reduced partition function, Q, while the true partition function is

Z = (2c

1

c

2

)

N

Q, see (3.3) and (3.4) with t

3

= 0. Also we remember the identities like c

2

�

(1 + t

2

�

) = cosh 2b

�

,

2 t

�

c

2

�

= sinh 2b

�

, etc, with b

�

= J

�

=kT . From (4.7), the true free energy per site then appears in the form of

��f

Z

�

�

rect

= ln 2 +

1

2

2�

Z

0

2�

Z

0

dp

2�

dq

2�

ln

�

cosh 2b

1

cos 2b

2

� sinh 2b

1

cos p

� sinh 2b

2

cos q

�

: (4.8)

This is the famous Onsager solution for the free energy of

the 2D Ising model on a rectangular lattice [1]. An inter-

esting comment on the structure of this solution follows

immediately after equation (108) in [1].

As follows from (4.7) for a rectangular lattice the crit-

ical point is �xed by the condition:

1� t

1

� t

2

� t

1

t

2

= 0 ; t

�

= tanh(J

�

=kT ) ; (4.9)

equivalently, this condition can be written in the form of

sinh(2J

1

=kT ) sinh(2J

2

=kT ) = 1 ; (4.10)

which rather corresponds to the solution in the form

of (4.8). In both formulations the ferromagnetic case is

assumed, b

1

; b

2

> 0, equivalently, t

1

; t

2

> 0. The free
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energy is known, the speci�c heat can be obtained by

di�erentiation with respect to the temperature: C=k =

�

2

(@

2

(��f)=@�

2

), where C=k is the dimensionless spe-

ci�c heat, � = 1=kT , and k is the Boltzmann constant.

The singularity in the speci�c heat appears to be loga-

rithmic near T

c

: C=k � j ln j� jj, � = (T � T

c

)=T

c

! 0, as

it can be deduced from (4.7) and/or (4.8). Also see the

discussion in the next section.

V. THE SYMMETRIES AND THE CRITICAL

POINT

The symmetries provided by the above exact solution

(4.5) and (4.6), and the closely related question on the

location of the critical point, have an interesting interpre-

tation within the spin-polynomial language [19]. Making

use of the local enumeration of sites in the elementary

cell, see (3.6), the cell weight in the density matrix in

(3.9) is given as the three-spin polynomial:

P

123

(�) = �

0

+ �

1

�

1

�

2

+ �

2

�

2

�

3

+ �

3

�

1

�

3

: (5.1)

It appears also to be useful to introduce the associated

three-spin polynomial:

F

123

(�) = �

0

� �

1

�

1

�

2

� �

2

�

2

�

3

� �

3

�

1

�

3

; (5.2)

and we note the following interesting identity [19]:

(F

123

(�))

2

= (�

0

� �

1

�

1

�

2

� �

2

�

2

�

3

� �

3

�

1

�

3

)

2

= (�

2

0

+ �

2

1

+ �

2

2

+ �

2

3

)� 2 (�

0

�

1

� �

2

�

3

)�

1

�

2

�2(�

0

�

2

� �

1

�

3

)�

2

�

3

� 2(�

0

�

3

� �

1

�

2

)�

1

�

3

: (5.3)

It is seen that the combinations of the �-parameters oc-

curring in (F

123

)

2

are exactly the same as in the momen-

tum modes Q

2

(p j q) in (4.6):

Q

2

(p j q) = (�

2

0

+ �

2

1

+ �

2

2

+ �

2

3

)

�2 (�

0

�

1

� �

2

�

3

) cos p � 2 (�

0

�

2

� �

1

�

3

) cos q

�2 (�

0

�

3

� �

1

�

2

) cos(p+ q) ; (5.4)

where 0 � p; q � 2�, the limit L

2

! 1 is already as-

sumed.

It appears that the following combinations of the �-

parameters play an important role in discussing the sym-

metries and the critical point [19]:

�

�

0

=

1

2

(�

0

+ �

1

+ �

2

+ �

3

) ;

�

�

1

=

1

2

(�

0

+ �

1

� �

2

� �

3

) ;

�

�

2

=

1

2

(�

0

� �

1

+ �

2

� �

3

) ;

�

�

3

=

1

2

(�

0

� �

1

� �

2

+ �

3

) ;

��

0

=

1

2

(�

0

� �

1

� �

2

� �

3

) ;

��

1

=

1

2

(�

0

� �

1

+ �

2

+ �

3

) ;

��

2

=

1

2

(�

0

+ �

1

� �

2

+ �

3

) ;

��

3

=

1

2

(�

0

+ �

1

+ �

2

� �

3

) :

(5.5)

The parameters �

�

and �� are in fact the eigenvalues of

the polynomials

1

2

P

123

and

1

2

F

123

, respectively. By the

"eigenvalues" we mean the four numbers which takes the

polynomial as the spin variables run over their permis-

sible values �1. We note also the following important

identity [19]:

��

0

��

1

��

2

��

3

= �

�

0

�

�

1

�

�

2

�

�

3

� �

0

�

1

�

2

�

3

: (5.6)

There are some evident symmetries in the solution

(4.6). For instance, the free energy (4.6) is a symmet-

ric function with respect to arbitrary permutations of

the �

0

; �

1

; �

2

; �

3

parameters. We can as well change the

signs of any two of them, with ��f

Q

unchanged. There is

also a less evident hidden symmetry in the solution, cor-

responding to the Kramers{Wannier duality in the case

of the standard rectangular lattice. Namely, the parti-

tion function Qf�g is invariant under the transforma-

tion �

j

$ �

�

j

. This symmetry in fact holds already for

the parameters of the separable fermionic modes (5.4),

and can be proved making use of (5.3), for further details

see [19].

In order to establish the possible critical points,

we have to look for zeros of the Q

2

(p j q) momen-

tum modes. As it can be guessed already from the

analogy between (5.4) and (5.3), there are four excep-

tional modes with (p j q) = (0 j 0); (0 j�); (� j 0); (� j�).

For these modes we have, respectively, Q

2

(p j q) =

(2��

0

)

2

; (2��

1

)

2

; (2��

2

)

2

; (2��

3

)

2

. Remember that the

parameters �

j

and hence ��

j

are some functions of tem-

perature. Thus, if at some temperature one of the above

momentum modes vanishes, we fall at the point of phase

transition. It can be shown that all other Q

2

(p j q) modes

are de�nitely positive at all temperatures, there are

no other critical points for physical values of the �-

parameters. The possible criticality conditions can be

combined into one equation:

��

0

��

1

��

2

��

3

= 0 : (5.7)
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It can be shown also that if all bond interactions are fer-

romagnetic then ��

1

; ��

2

; ��

3

never become zero, and the

critical point can only be associated with ��

0

= 0. Thus,

for the purely ferromagnetic interactions the unique crit-

ical pont is de�nite by the equation:

2 ��

0

= �

0

� �

1

� �

2

� �

3

= 0 : (5.8)

The criticality conditions with ��

k

= 0, k = 1; 2; 3, can

only be realized when the antiferromagnetic interactions

are involved in the Hamiltonian.

If the critical point is associated with ��

j

= 0, then the

singular part of the free energy (4.6) near T

c

is given as

follows [19]:

��f

Q

j

singular

=

(2��

j

)

2

16�

p

(�

0

�

1

�

2

�

3

)

c

ln

const

(2��

j

)

2

; (5.9)

which implies that, near T

c

, in the order of magnitude

��f

Q

� �

2

ln �

2

, where � � jT � T

c

j. The speci�c heat

has thus the log-type singularity, C � j ln � j as T ! T

c

(Onsager, 1944).

It is seen that the eigenvalues (5.5) play an important

role, but it is not so clear, in fact, how the role of the poly-

nomial F

123

can be understood in a less formal way, at

the level of the original spin-variable formulation of the

problem, prior to the analytic solution. The special role

which the parameters (5.5) play in the inherent structure

of the 2D Ising model is con�rmed by the expression for

the spontaneous magnetization. The 8th power of the

spontaneous magnetization M = h�

mn

i for model (3.9)

is given by the following very simple expression [19]:

M

8

= (�1)

��

0

��

1

��

2

��

3

�

0

�

1

�

2

�

3

= 1 �

�

�

0

�

�

1

�

�

2

�

�

3

�

0

�

1

�

2

�

3

: (5.10)

This expression for M

8

holds true when the right hand

side varies between 0 and 1, and M

8

= 0 otherwise. It is

easy to check that the known expressions for the sponta-

neous magnetizations of the rectangular, triangular, and

hexagonal lattices follow easily from (5.10) as particular

cases. From (5.10) we �ndM � �

1

8

as � � jT�T

c

j ! 0,

with the universal value of the critical index � = 1=8 for

the magnetization at the critical isobar. What are the

hidden reasons for such a simple expression forM

8

, this

is yet unknown.

VI. MAJORANA FIELDS

The fermionic integral for Q given in (4.1) also appears

to be a suitable starting point to formulate the conti-

nuum limit �eld theories for the correspondent models

near T

c

[27]. For other approaches to the continuum-

limit formulation of the 2D Ising model also see [15],

[16], [22]. Assuming the purely ferromagnetic case, with

�

0

; �

1

; �

2

; �

3

all positive, we write once again the exact

lattice action from (4.1) as follows:

S (c) =

X

mn

�

(�

0

� �

1

� �

2

� �

3

) c

mn

c

�

mn

+ �

1

c

mn

(c

�

mn

� c

�

m�1n

)

+ �

2

c

mn

(c

�

mn

� c

�

mn�1

) + �

3

c

mn

(c

�

mn

� c

�

m�1n�1

)

+ �

1

c

mn

(c

mn

� c

m�1n

) + �

2

c

�

mn

(c

�

mn

� c

�

mn�1

)

�

; (6.1)

with c

2

mn

= c

� 2

mn

= 0 . Let us de�ne the lattice derivatives as follows: @

m

x

mn

= x

mn

�x

m�1n

; @

n

x

mn

= x

mn

�x

mn�1

,

also note that x

mn

�x

m�1n�1

= @

m

x

mn

+@

n

x

mn

�@

m

@

n

x

mn

. Introducing the new notation for the fermionic �elds,

c

mn

; c

�

mn

!  

mn

;

�

 

mn

, we �nd action (6.1) in the form:

S ( ) =

X

mn

�

m 

mn

�

 

mn

+ �

1

 

mn

@

m

�

 

mn

+ �

2

 

mn

@

n

�

 

mn

��

3

 

mn

@

m

@

n

�

 

mn

+ �

1

 

mn

@

m

 

mn

+ �

2

�

 

mn

@

n

�

 

mn

] ; (6.2)

�

1

= �

1

+ �

3

; �

2

= �

2

+ �

3

; m = �

0

� �

1

� �

2

� �

3

= 2 ��

0

:

It is easy to recognize in this still exact lattice action a typical relativistic �eld{theoretical like structure with the

mass term and kinetic part. Since we assume the ferromagnetic case, the criticality condition is 2 ��

0

= 0 , see (5.8).

The parameter m = �

0

��

1

��

2

��

3

= 2 ��

0

plays the role of mass in the �eld{theoretical interpretation. The mass

vanishes at the critical point, m � jT � T

c

j ! 0 as T ! T

c

. The ordered phase corresponds to m < 0 .

Taking in (6.2) the formal limit to the continuum Euclidean space, with (mn) ! x = (x

1

jx

2

),  

mn

!  (x) =

 (x

1

jx

2

), and @

m

! @

1

= @=@x

1

, @

n

! @

2

= @=@x

2

, and neglecting the second order kinetic term with @

1

@

2

, we

obtain the Majorana like fermionic action of the correspondent continuum theory:
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S =

Z

d

2

x [m (x) (x) + �

1

 (x) @

1

 (x) + �

2

 (x) @

2

 (x)

+�

1

 (x) @

1

 (x) + �

2

 (x) @

2

 (x) ] ; (6.3)

where the parameters �

1

, �

2

, m are de�ned in (6.2). A nonstandard feature in this action are the "nondiagonal"

kinetic terms  @

1

�

 ,  @

2

�

 . These terms can be eliminated by a suitable linear transformation of the �elds:  =

 

1

+ � 

2

;

�

 = � 

1

+ �� 

2

, where  

1

;  

2

are new Majorana components. The condition that the nondiagonal like

terms will not appear in (6.4) is � = ���. Omitting further details, after a suitable transformation of the �elds and

the axis in the d

2

x space, from (6.3) we obtain Majorana action in the canonical form (cf. [15,16]):

S =

Z

d

2

x

�

m 

1

(x) 

2

(x) +  

1

(x) @

0

 

1

(x) �  

2

(x) @

0

 

2

(x)

�

; (6.4)

@

0

=

1

2

(@

1

+ i@

2

) ; @

0

=

1

2

(@

1

� i@

2

) ; 2D Majorana ;

with the rescaled mass:

m =

�

0

� �

1

� �

2

� �

3

�

2

p

(�

0

�

1

�

2

�

3

)

c

�

1=2

: (6.5)

The 2D Ising model is presented now as a �eld theory of free massive two-component Majorana fermions in Euclidean

d

2

x space. The new Majorana �elds in this representation,  

1

;  

2

, are the linearly transformed �elds  ;

�

 from

(6.3). The axis of the d

2

x space are also rescaled and rotated as we pass from (6.3) to (6.4). Respectively, the mass

is rescaled according to (6.5), here ( )

c

means the criticality condition (�

0

� �

1

� �

2

� �

3

)

c

= 0.

In matrix notation, the Majorana action (6.4) becomes:

S

major

=

1

2

Z

d

2

x

�

 

1

 

2

��

m

�

0 1

�1 0

�

+

�

@

1

+ i @

2

0

0 �@

1

+ i @

2

���

 

1

 

2

�

: (6.6)

Introducing the standard Pauli matrices:

�

1

=

�

0 1

1 0

�

; �

2

=

�

0 �i

i 0

�

; �

3

=

�

1 0

0 �1

�

; (6.7)

the action (6.6) can be written also in the form:

S

major

=

1

2

Z

d

2

x 	 (x) [m (i �

2

) + @

1

(�

3

) + i @

2

(1) ] 	 (x) ; 	(x) =

�

 

1

 

2

�

; (6.8)

or in the form:

S

major

=

1

2

Z

d

2

x

~

	 (x) [m + @

1

(�

1

) + @

2

(�

2

) ] 	 (x) ;

~

	 (x) = 	 (x) (i �

2

) : (6.9)

Introducing the 2D gamma-matrices in a natural way: 

1

= �

1

, 

2

= �

2

, the action (6.9) becomes:

S

major

=

1

2

Z

d

2

x

~

	 (x) [ m +

^

@ ] 	 (x) ;

^

@ = 

1

@

1

+ 

2

@

2

;

^

@

2

= @

2

1

+ @

2

2

; (6.10)

which is the 2D Majorana action written in the standard form assumed in relativistic �eld theory. Notice that the

conjugated Majorana spinors

~

	 and 	 here are not the truly independent �elds since they both are built from the

same component �elds  

1

,  

2

. The truly independent left and right spinors

�

	 and 	 appear if pass to the Dirac

theory. This is commented in the next section.
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VII. THE DIRAC FIELDS

We can pass to the Dirac �eld theory of charged fermions by doubling the number of fermions in the Majorana

representation (6.4)-(6.10). On a formal level, this corresponds to passing from the Pfa�an like Gaussian integral to

the determinantal Gaussian integral according to the identity jPfa�A j

2

= detA, see (2.4). To this end, we take the

two identical copies S

0

and S

00

of the Majorana action (6.10) and consider the combined action S

dirac

= S

0

+ S

00

. In

this combined action we introduce the new Dirac fermionic �elds 	 = ( 

1

j 

2

) and 	 = ( 

�

1

j 

�

2

) by substitution:

	 =

1

p

2

�

	

0

+ i	

00

�

; 	 =

1

p

2

�

~

	

0

� i

~

	

00

�

; (7.1)

where 	

0

;	

00

;

~

	

0

;

~

	

00

are the original Majorana spinors. In terms of the new �elds the combined action S

dirac

=

(S

0

+ S

00

)

majorana

becomes:

S

dirac

=

Z

d

2

x 	(x) [m +

^

@ ] 	 (x) ;

^

@ = 

1

@

1

+ 

2

@

2

; (7.2)

where the gamma matrices are the same as in (6.10). If written in components, the substitution inverse to (7.1) takes

the form:

 

0

1

=

1

p

2

( 

1

+  

�

2

) ; i  

00

1

=

1

p

2

( 

1

�  

�

2

) ;

 

0

2

=

1

p

2

( 

2

�  

�

1

) ; i  

00

2

=

1

p

2

( 

2

+  

�

1

) : (7.3)

The four components of the Dirac spinors 	, 	 are all independent variables. By convention, we can assume  

�

1

;  

�

2

to

be complex conjugated to  

1

;  

2

. In this case 	 is the hermitian conjugated to 	. The advantage of the transformation

from Majorana to Dirac formulation is that we gain in the latter case the gauge symmetry which can be useful in

some cases [22]. The continuum-limit formulations like (6.10) and (7.2) captures all relevant features of the exact

lattice theory at low momenta, or at large space scales, which is only important for the critical-point singularities in

thermodynamic functions near T

c

. For the simplest case of the standard rectangular lattice, the continuum limit was

used to study the behaviour of the 2DIM spin correlation functions at large separation in [15,16]. Another important

�eld of application of the continuum-limit formulation are the Ising models with quenched disorder [20{23].

In conclusion we note that the singular part of free energy and speci�c heat can be extracted, in the exact form,

from (6.10) and/or (7.2). For instance, starting from (7.2), we �nd:

�� f

sing

=

1

2

ln Q

2

=

1

2

Z

d

2

x ln Q

2

(x) =

1

2

Z

d

2

p

(2�)

2

ln Q

2

(p)

=

1

8�

2

Z

d

2

p ln(m

2

+ p

2

) =

�

8�

2

m

2

ln

const

m

2

+ ::: : (7.4)

This is equivalent to equation (5.9) obtained directly

from the exact expression for the lattice free energy (4.6),

taking into account the de�nition of the e�ective mass

given in (6.5).

VIII. CONCLUSIONS

We have discussed some aspects of a simple fermionic

interpretation of the 2D Ising models in terms of the an-

ticommuting integrals. For any planar 2D Ising model,

the partition function can be expressed as a fermionic

Gaussian integral. The analytic solutions for regular lat-

tices then easily follow by transformation to the momen-

tum space. The continuum limit �eld{theoretical formu-

lations for the 2D Ising models also can be deduced read-

ily from the exact lattice fermionic integral for the par-

tition function. The di�erences between particular lat-

tices are merely adsorbed, in the �eld{theoretical limit,

in the de�nition of the e�ective mass. Finally, the free-

fermion interpretation for the 2D Ising model shows that

this model, which in its original formulation is a rather

discrete combinatorial problem, can be placed, in fact,

into a common range of the typical models of quantum

statistics and solid state physics.
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FERM�ONN� �NTE�RALI TA ANAL�TIQN� ROZV'�ZKI

DL� DVOVIM�RNIH MODELE� �Z�N�A

V. N. Plqko

Ob'dnani� �nstitut �dernih dosl�d�en~, laborator�� teoretiqnoÝ f�ziki �m. Bogol�bova

Ros��, Moskovs~ka oblast~, 141980, Dubna

Rozgl�nuto de�k� aspekti ferm�onnoÝ �nterpretac�Ý dvovim�rnoÝ model� �z�n�a. Vikoristano pon�tt� �n-

te�rala za antikomutu�qimi �rassmanovimi zm�nnimi. Dl� prostih ta skladn�xih dvovim�rnih �z�n�ovih

�ratok statistiqnu sumu mo�na viraziti qerez ferm�onni� �aus�v �nte�ral. Takim samim qinom dvo-

vim�rnu model~ �z�n�a mo�na pereformul�vati �k teor�� v�l~nih ferm�on�v na �ratc�. Tod� dl� regul�rnih

�ratok legko vivesti anal�tiqni� rozv'�zok perehodom do �mpul~snogo prostoru dl� ferm�on�v. Tako� na-

vod�t~s� efektivn� teoretiko{pol~ov� (v granic� kontinuumu) ferm�onn� formul�vann� dl� dvovim�rnih

modele� �z�n�a b�l� kritiqnoÝ toqki.
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