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The concept of broken symmetry is used to study stability of equilibrium and time doubly-

periodic bifurcating solutions of the complex nonresonant Lorenz model as a function of the fre-

quency detuning on the basis of modi�ed Hopf theory. By contrast to the well-known real Lorenz

equations, the system in question is invariant under the action of Lie group transformations (ro-

tations in complex planes) and an invariant set of stationary points is found to bifurcate into an

invariant torus, which is stable under the detuning exceeding its critical value. If the detuning

then goes downward numerical analysis reveals that after a cascade of period-doublings the strange

Lorenz attractor is formed in the vicinity of zero detuning.
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I. INTRODUCTION

The well-known Lorenz equations:

_

X = �(�X +

Y );

_

Y = rX � Y + XZ;

_

Z = �bZ � XY were origi-

nally derived in [1] and have been studied intensively

for the last two decades (see, for example, [2-6] and ref-

erences therein). The above system (which will be re-

ferred as the real Lorenz model for X(t), Y (t) and Z(t)

that are real-valued functions) was obtained from a set

of hydrodynamic equations in the three-mode approxi-

mation to describe the convective motion of a layer of

uid that is warmer at the bottom than at the top, so

that � is the Prandtl number; r (controlling parameter)

is the Rayleigh number and is proportional to the tem-

perature di�erence; b depends on geometrical properties

of the uid layer.

One of the most striking features of the real Lorenz

model is the appearance of so-called strange Lorenz at-

tractor under the controlling parameter r exceeding its

critical value r

c

=

� + b+ 3

� � b� 1

� (� must be larger than

b+1). The term 'strange attractor'(or 'chaotic attractor')

is commonly used for an attracting set that has a rather

complicated structure and each trajectory within the at-

tractor is exponentially unstable. There is a number of

di�erent quantities to measure the complexity (stochas-

ticity) of the attractor structure: capacity (fractal dimen-

sion), information dimension, Hausdor� and Liapunov

(Kaplan-Yorke formula) dimensions, K-entropy and so

on.

Apparently, an understanding of the reasons for the

occurence of the chaotic behavior in dissipative nonlin-

ear dynamical systems such as the real Lorenz model

requires the study of bifurcations that produces qualita-

tive changes in the phase portrait of a system.

Since in this paper we are primary concerned with the

complex Lorenz model that can be regarded as a gener-

alization of the real Lorenz system (see below for details)

and our purpose is to study stability of certain bifurcat-

ing solutions of the system on the basis of bifurcation

analysis, it is of interest to discuss some relevant results

for the real Lorenz system.

Let us begin with stability and bifurcations of equi-

libria (steady states). The null steady state is given

by X = Y = Z = 0 and is asymptotically stable at

r < 1. This solution loses its stability at r = 1 and

there are two asymptotically stable bifurcating steady

states X = Y = �

p

b(r � 1); Z = r � 1 provided that

1 < r < r

c

. So we have two stationary points bifur-

cated from the zero state at r = 1 that correspond to the

initiation of a convective ow. Note that the linearized

operator governing stability of the solutions in question

(Liapunov's �rst theorem) has a pair of complex con-

jugate eigenvalues with negative real parts in the neigh-

borhood of r

c

. These eigenvalues become pure imaginary

at r = r

c

, so that the steady states are unstable under

r > r

c

. It follows that the Hopf bifurcation theory [4] can

be applied to show the existence of the bifurcating time

periodic solution. Stability of this branching solution is

determined by the Floquet exponents: the solution is sta-

ble (unstable) if it appears supercritically (subcritically).

In the case under consideration the bifurcation is found

to be subcritical [7]. This result lends support to the view

of 'drastic' conditions for the occurence of chaos in the

real Lorenz model.

Detailed description of how a strange Lorenz attractor

forms is beyond the scope of this paper. In brief, this

can be understood as being due to the occurrence of a

homoclinic orbit in the system: as r passes through the

value at which the homoclinic 'explosion' takes place, a

strange invariant set of trajectories is produced, includ-

ing an in�nite number of periodic orbit [2, 5, 6]. Note

that, in addition, the real Lorenz model is known to ex-

hibit period-doubling [8], intermittency [9] and hysteresis
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[10] in various ranges of its parameter space.

There are several physical problems leading to com-

plexi�cation of the Lorenz equations [11] where some

of the functions are complex-valued. As an example, we

shall keep in mind, the simplest one-mode laser equations

obtained in the semiclassical approximation [12]:

8

<

:

_

b = �(�+ i!) � b� ig � �

_� = �( + i!

a

) � �+ ig � b � S

_

S = (d

0

� S)=T � 4g � =(� � b)

(1)

where b is the dimensionless complex amplitude of the

electromagnetic �eld mode; ! (�) is the frequency (the

relaxation constant) of the mode; � is the dimensionless

dipole transition matrix element; S is the inversion of

the atomic level population; !

a

is the frequency of the

atomic transition; d

0

is the parameter characterizing the

intensity of pumping; g is the coupling constant;  (T

�1

)

is the transverse (longitudinal) relaxation constant.

After making the substitutions:

t! t; b = z

1

=(2g);

� = iS

0

z

2

=2; S = d

0

+ S

0

z

3

; S

0

= �=g

2

and going over to the interaction representation the sys-

tem (1) can be rewritten as the complex Lorenz model

[11]:

8

<

:

_z

1

= �(�(1 + i�) � z

1

+ z

2

)

_z

2

= �(1� i�+ i�) � z

2

+ (r + i�) � z

1

+ z

1

z

3

_z

3

= �bz

3

�<(z

1

� z

2

)

(2)

where � = �=; r = d

0

=S

0

; b = (T )

�1

; � = 0; � =

(!

a

� !)=(� + ) is the frequency detuning. Here the

parameter � is introduced to make the system identical

with those considered in [11].

Note that z

1

(t) and z

2

(t) are complex-valued func-

tions, so that the system (2) consists of �ve real equa-

tions.

In this paper we are aimed to study how the detun-

ing � inuences bifurcations of equilibrium and doubly-

periodic solutions in the complex Lorenz model (eq. (2)).

Since, by contrast to the real Lorenz model, the sys-

tem (2) has a continuous symmetry group (Lie group of

rotations in complex planes) we approach the problem

of detuning induced e�ects within the uni�ed concept of

symmetry breaking.

In Sec. 2 it is shown that due to the symmetry the null

equilibrium state of the complex Lorenz model (sponta-

neous emission) bifurcates into an invariant set of sta-

tionary points. Stability of the equilibrium states is stud-

ied as a function of detuning. It is found that under

� > b + 1 there is a critical value of the controlling pa-

rameter r (pumping intensity), r

c

, such that the states of

the invariant set become exponentially unstable at r > r

c

and r

c

is an increasing function of �

2

.

In Sec. 3 analytical power series Hopf technique is ex-

tended on the system invariant under the action of a

continuous symmetry group to construct bifurcating so-

lutions and to investigate their stability in the vicinity

of r = r

c

at � 6= 0. Due to the symmetry breaking the

bifurating solution is appeared to be doubly-periodic at

� 6= 0. It means that nonzero detuning results in the ap-

pearance of low-frequency Goldstone-type mode related

to the motion along an orbit of the group. Moreover,

the broken symmetry is found to a�ect stability of the

branching solution.

The results of numerical analysis and concluding re-

marks are given in Sec. 4. The dependence of the relevant

Floquet exponent on � is calculated. It is obtained that

there is a critical detuning �

c

such that the bifurcating

doubly-periodic solution is stable at j�j > �

c

. As a con-

sequence, there are di�erent routes to chaos depending

on the detuning.

II. SYMMETRY AND BIFURCATIONS OF

EQUILIBRIA

Taking r as a bifurcation (controlling) parameter,

eq. (2) can be rewritten as an autonoumous dynamical

system with quadratic nonlinearity:

_
x = f(x) = Lx+ f

2

(x;x) (3)

where

x = (x

1

; x

2

; x

3

; x

4

; x

5

);

z

1

= x

1

+ ix

2

; z

2

= x

3

+ ix

4

; z

3

= x

5

;

L = Df(0) (L

ij

=

@f

i

@x

j

(0));

f

i

2

(x;y) =

X

n;m

@

2

f

i

@x

n

@x

m

� x

n

� y

m

:

Clearly, system (2) is invariant under the transforma-

tions:

z

1

! exp(i�) � z

1

; z

2

! exp(i�) � z

2

; z

3

! z

3

;

so that eq. (3) has a continuous symmetry group G of

rotations in the x

1

� x

2

and x

3

� x

4

planes, G � U(1):

f(T (�) � x) = T (�) � f(x); T (�) 2 G: (4)

Note that there is an additional discrete symmetry in

the complex Lorenz model:

z

1

! z

1

; z

2

! z

2

; z

3

! z

3

; �! ��; �! ��:
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The latter implies no dependence on the sign of detuning

at � = 0. (In what follows we shall concentrate on this

case, assuming, for brevity, that � � 0.)

Eq. (4) gives

f(T (�) � x

st

) = 0) jDf(x

st

)j = 0; (5)

where x

st

is a noninvariant equilibrium solution to eq. (3)

and its orbit T (�) �x

st

produces an invariant set of equi-

libria. The second equation in (5) is obtained by di�er-

entiating the �rst one with respect to �. Along this line

we come to the conclusion that the matrix of the �rst

approximation, that govern linearized stability of x

st

, is

degenerate and its eigenvector (null vector) for the zero

eigenvalue is e

0

= K �x

st

; where K =

d

d�

T (�)j

�=0

is the

generator of G.

It can be readily shown that the null stationary point

related to the regime of spontaneous emission loses its

stability after the pumping intensity exceeded its critical

value

r > 1 +�

2

(6)

and the solution bifurcated from the zero state can be

taken in the form

x

st

1

= x

st

3

= q =

p

b � (r � 1��

2

); (7)

x

st

2

= 0; x

st

4

= � � q; x

5

= 1 +�

2

� r:

According to eq. (5), the stationary point (7) provides

an invariant set of the steady states corresponding to

the appearance of coherent light emission (laser genera-

tion). In the �rst approximation stability of the state (7)

is determined by eigenvalues of the following matrix:

Df(x

st

) = L

c

=

0

B

B

B

@

�� � � � � 0 0

�� � � �� 0 � 0

1 +�

2

0 �1 �� q

0 1 +�

2

� �1 0

q �� � q �q 0 �b

1

C

C

C

A

: (8)

As it can be seen from eq. (5), jL

c

j = 0 and the kernel

of L

c

is de�ned by the null vector e

0

= (0; 1; ��; 1; 0).

If all other four eigenvalues have negative real parts, then

symmetry arguments combined with Liapunov theorem

lead to the conclusion that the set of stationary points

is asymptotically stable. Obviously, the steady state on

the orbit cannot enjoy the property of being asymptot-

ically stable for there is another steady state in any of

its neighborhoods. So, in this case we have the asymp-

totically stable invariant set of stable stationary points.

Some straightforward algebra on the subject was made

in [13] for � = 0.

If � > b+1 (this condition is found to be independent

of � and �), there is a critical value of the bifurcation

parameter, such that the solution in question is unstable

at r > r

c

and L

c

has a pair of complex conjugate imag-

inary eigenvalues �

1

= �

2

= i� at r = r

c

. Equations for

r

c

and � can be derived by making use of Routh-Hurwitz

criteria:

p

1

p

2

p

3

= p

2

1

+ p

0

p

2

3

; (9)

�

2

=

p

1

p

3

; (10)

where p

i

are coe�cients of the characteristic polynomial:

p

0

= 2�b(1 + �)(r � 1��

2

); (11)

p

1

= b((1 + �

2

)�

2

+ 3�(r � 2) + r); (12)

p

2

= (� + 1)

2

+ 1 + r + 2� +�

2

((� � 1)

2

� b); (13)

p

3

= 2� + b+ 2: (14)

In addition, it can be obtained that <(

d

dr

�

1

j

r=r

c

) > 0

and then, if not symmetry induced degeneracy of L

c

, we

could meet all conditions for the occurence of the Hopf

bifurcation.

III. HOPF-TYPE BIFURCATION

There are di�erent techniques to investigate Hopf bi-

furcations and stability of bifurcating time periodic so-

lutions [4]. In this section we adopt the perturbative

method, closely related to the analytical technique by

Hopf, to explicitly construct the bifurcating solution in

the form of power series over small parameter � charac-

terizing amplitude of the solution in the neighborhood

of the bifurcation point r = r

c

[4, 14]. Coe�cients of the

power series can be derived by making use of Fredholm

alternative and linearized stability of the solution, deter-

mined by the Floquet exponents which can be studied

on the basis of the factorization theorem [15].

In trying to make analysis along the above line we need

to modify the method to bypass mathematical di�cul-

ties arising from the degeneracy of L

c

. To avoid equations

that have no solutions it is assumed that the symmetry

is 'spontaneously' broken and the bifurcating solution is

taken in the form:

x = T (��) � u(t) = T (��) � (x

st

+ � � z(t)): (15)

Substitution of eq. (15) in eq. (3) gives the equation for

u(t) :

_
u+ � �Ku = f(u): (16)

Let us introduce the renormalized frequency 
(�) =

�=(1+�(�)), so that z(s) = z(
t) is a 2�-periodic vector-

valued function. The equation for z(s) reads
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� � (
_
z+

_

� � (e

0

+ � �K � z))

= (1 + �) � (L

c

z+ � f

2

(z; z)) (17)

where L

c

is de�ned by eq. (8) and the dot stands for the

derivative with respect to s. The 2�-periodic solution of

eq. (17) can be found in the form of power series in �:

z(s) =

1

X

n=0

z

n

(s) �

n

; � =

1

X

n=1

�

n

�

n

;

(18)

_

� =

1

X

n=0

!

n

�

n

:

As is seen from eqs. (7, 8), the quantity q =

p

b � (r � 1��

2

) can be conveniently chosen as a bi-

furcation parameter, so that

q = q

c

+�q = q

c

+

1

X

n=1

q

n

�

n

; (19)

L

c

= L

(0)

c

+ L

(1)

c

��q; (20)

e

0

= Kx

st

= e

(0)

0

+ e

(1)

0

��q; (21)

where L

(0)

c

; e

(0)

0

are L

c

; e

0

at q = q

c

. Recall that L

(0)

c

has

a pair of pure imaginary complex conjugate eigenvalues:

L

(0)

c

e

1

= i� e

1

; L

(0)

c

e

2

= �i�e

2

. (For brevity, the su-

perscript (0) will be omitted from the eigenvector nota-

tions.) Note that eigenvectors fe

�

0

; ::: e

�

5

g of the operator

adjoint to L

(0)

c

and fe

0

; ::: e

5

g are mutually orthogonal:

he

�

i

; e

j

i = �

ij

.

According to the standard perturbative technique, the

insertion of eqs. (18-21) into eq. (17) yields the equations

to be solved for z

n

(s) successively. In the case of n > 0,

the equations can be written in the form:

f� �

d

ds

� L

(0)

c

g z

n

(s)

= f

(n)

(s) = f

(n)

0

+

2n�2

X

k=1

[ f

(n)

k

� exp iks+ c:c: ]: (22)

Parameters q

n

, !

n

and �

n

can be found by making use

of Fredholm alternative. The latter states that eq. (22)

has 2�-periodic solutions if and only if

he

�

0

; f

(n)

0

i = 0; (23)

he

�

1

; f

(n)

1

i = 0: (24)

Note that eq. (23) is the solvability condition for the time

independent part of z

n

(s) and eq. (24) is to get rid of the

so-called secular terms.

In order to reduce the remaining arbitrariness in choice

of the solutions, z

n

(s) are subjected to the following ad-

ditional constraints:

he

�

0

; z

n

(s)i = 0; (25)

Z

2�

0

he

�

1

; z

n

(s)i exp (�is)ds = 0; n > 0: (26)

In the zero-order approximation we have

f� �

d

ds

� L

(0)

c

g z

0

(s) = ��!

0

e

0

(27)

so that

z

0

(s) = A � e

1

exp (is) + c:c:; !

0

= 0 (28)

where A is a complex integration constant that is de-

termined by the initial condition for z

0

(s) and can be

eliminated from the consideration by renormalizing the

eigenvector e

1

.

After some rather straightforward calculations the fol-

lowing results can be obtained:

q

2n+1

= �

2n+1

= !

2n

= 0; (29)

� � !

1

= 2 � jAj

2

� he

�

0

; f

2

(e

1

; e

2

)i; (30)

z

1

(s) = b

0

+ fA

2

� b

1

� exp (2is) + c:c:g (31)

�q

2

� <(

@

@q

�

c

) = <(k) (32)

where �

c

is the eigenvalue of L

c

, such that �

c

= i� at

q = q

c

,

k = 2 � jAj

2

� f 2 � he

�

1

; f

2

(e

1

;b

0

)i

+he

�

1

; f

2

(e

2

;b

1

)i g � � � !

1

� he

�

1

;Ke

1

i (33)

and the vectors b

0

; b

1

are solutions of the equations:

f2i�� L

(0)

c

gb

1

= f

2

(e

1

; e

1

); (34)

�L

(0)

c

b

0

= f

2

(e

1

; e

2

)� he

�

0

; f

2

(e

1

; e

2

)i � e

0

: (35)
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At this stage we get the modi�cation of Hopf's the-

ory with the allowance for the symmetry breaking, so

that bifurcating solution appears to be doubly periodic.

In other words, there are two types of frequencies: the

basic frequency 
 and the Goldstone-type low frequency

mode with �

_

� � �

2

. (The latter can be inferred from

eq. (30).) It is of interest to note that another distinctive

feature of the above results is the last term of eq. (33).

This term, being geometrical in nature, accounts for the

broken symmetry and will be shown to be of importance

for stability analysis.

In the Hopf theory the conclusion on stability of the bi-

furcating solution can be drawn from eqs. (32, 33) based

on the factorization theorem [4, 14-15] that states about

the stability depending on the sign of <(k): if <(k) < 0,

then bifurcation is supercritical and the time periodic

branching solution is stable at q > q

c

; if <(k) > 0 the

solution appears subcritical.

This raises the question as to whether the above result

can be applied in the case under consideration. In the re-

maining part of the section we outline a way to recover

the factorization theorem. The basic idea is to use an

extended version of ansatz [14, 15] for the perturbation

of u(s):

u(s)! u(s) + exp (s) � v(s); (36)

where  is the Floquet exponent and v(s) is the 2�-

periodic part of the perturbation.

The linearization of eq. (16) gives an equation for v(s):

 � v =

~

L � v; (37)

where

~

L = Df(u)� � �

_

� �K � 
 �

d

ds

.

In addition, we have

~

L �
_
u =

~

L �Ku = 0; (38)

~

L � u

0

= 


0

�
_
u+ (�

_

�)

0

Ku

+� � q

0

� (

_

� �K � e

(1)

0

� L

(1)

c

� z); (39)

where the prime stands for the partial derivative with

respect to �.

Eqs. (38) is a direct consequence of the system invari-

ance with respect to translations s ! s + const (the

system is autonomous) and under the action of the Lie

group of symmetry.

In order to get �-expansion for the Floquet exponent

 let us assume the following form of v(s) (the above-

mentioned ansatz):

v = u

0

+ �

1

�
_
u+ �

2

�Ku+ � � q

0

�
~
v: (40)

From this point onwards we can proceed in exactly the

same way as in [14, 15]: equation for
~
v is derived by sub-

stituting eq. (40) into eq. (37) and the use of eqs. (37,

39). The coe�cients of the equation are given in terms of

�

1

; �

2

and �

3

: q

0

� �

1

=  ��

1

�


0

, � � q

0

� �

2

=  ��

2

� (�

_

�)

0

,

� � q

0

� �

3

= . After expanding of the coe�cients and
~
v

in the power series over �, it is not di�cult to derive the

�nal result for  in the lowest order of �:

<() � 2 � �

2

� <(k): (41)

Thus, the factorization theorem is recovered by mak-

ing use of the ansatz (40). It follows that eqs. (32, 33) are

key equations for making conclusion on stability of the

bifurcating invariant torus. In particular, eq. (41) implies

that the torus is stable at r > r

c

under <(k) < 0.

IV. NUMERICAL RESULTS AND DISCUSSION

In the previous section we have studied how symme-

try of the system a�ects Hopf-type bifurcation at r = r

c

.

Our �ndings are:

1. An invariant set of equilibria bifurcates into an in-

variant torus. In other words, the branching so-

lution is time doubly-periodic, so that Goldstone-

type low frequency mode is found to appear due to

the symmetry breaking.

2. It is found that the factorization theorem holds

in the case under consideration and the sign of

<(k) with k de�ned by eq. (33) determines stabil-

ity of the torus. The last symmetry induced term in

eq. (33) implies that the broken symmetry a�ects

stability of the branching solution.

Note that the frequency of the Goldstone-type mode as

well as the last term of eq. (33) tend to zero as �! 0.

In �g. 1 the dependencies of <(k) on detuning (�) for

� = 5 (solid line) and � = 10 (dashed line) at b = 1

are shown. It is seen that in both cases there is a criti-

cal detuning �

c

at which <(k) changes its sign, so that

bifurcation being subcritical at � < �

c

becomes super-

critical at � > �

c

. The latter means that an invariant

set of equilibria eq. (7), corresponding to the laser gener-

ation, bifurcates into the stable torus as r passes through

r

c

under � > �

c

.

To get some idea of qualitative changes of the attractor

structure in relation to the detuning, there are three tra-

jectories in 3D <(z

1

)�<(z

2

)�z

3

space in �g. 2 presented

at � = 5; b = 1 and r = r

c

+ 0:2 for various values of �.

�g. 2a clearly reveales the attractor as an invariant torus

at � = 0:5 > �

c

� 0:41, whereas we have a well-known

Lorenz attractor under � = 0 (�g. 2c). As is shown in

�g. 2b, the intermediate case of � = 0:1 corresponds to

an entangled structure which is hard to interpret.
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Fig. 1. Dependence of <(k) (see eq. (33)) on � at b = 1

for � = 5 (solid line) and � = 10 (dashed line). In both of the

cases the coe�cient is shown to change its sign provided the

detuning exceeded its critical value.

One of the ways to clarify the point is to look at the

relevant Fourier spectra. To this end, the Fourier spectra

jz

1

(!)j and jz

3

(!)j are calculated at � = 0:5 (�g. 3) and

� = 0:1 (�g. 4). Notice that jz

1

(!)j

2

is proportional to

the power spectrum of the electromagnetic �eld.

The Fourier spectrum jz

1

(!)j for � = 0:5, depicted in

�g. 3, indicates the high frequency peak at ! � � = 5:5

and the two intensive low frequency peaks at ! = 0

and ! � 0:04. Since the frequency ! � 0:04 does not

contribute to the spectrum jz

3

(!)j, this peak can be at-

tributed to the Goldstone-type mode. So, the numerical

results are in agreement with the ones obtained from

the theoretical analysis of Sec. 3. As far as the numeri-

cal analysis is concerned, it should be emphasized that,

working with a relatively small number of points (less

than 20000), we are not to present the results of high pre-

cision calculations, but our calculations has been made

with reasonable accuracy for the investigation of the the-

oretical predictions qualitatively.

Coming back to �g. 2b and looking at the Fourier spec-

tra given in �g. 4, let us recall that, according to the the-

ory of Sec. 3 and �g. 1, the relevant Floquet exponent

is pure imaginary at � = �

c

. So changing � from the

above �

c

, where the invariant 2D torus is stable, down-

ward (r is �xed) we encounter another bifurcation point

at � = �

c

, and the torus is expected to bifurcate into a

3D torus, embedded in the 5D phase space of the com-

plex Lorenz model. Computer simulation con�rms this

conclusion. Comprehensive analysis of this secondary bi-

furcation is beyond the scope of this paper and will be

published elsewhere. (Some results on the subject were

obtained in [16]). A further decrease of � would result in

other bifurcations. Taking into account that the spectra

of �g. 4 are typical of period doublings, it can be sug-

gested that the chaotic attractor forms at relatively small

� after a cascade of doublings. The irregular Fourier

spectrum at � = 0:05, displayed in �g. 5, is clearly as-

sociated with chaotic dynamics of the system.
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Fig. 2. Trajectories in 3D <(z

1

) � <(z

2

) � z

3

subspace

(X-axis is for <(z

1

), Y-axis is for <(z

2

) and Z-axis is for z

3

)

at � = 5; b = 1 and r = r

c

+ 0:2 for three di�erent values of

the detuning: a) � = 0:5; r

c

� 23:41; b) � = 0:1; r

c

� 15:28;

c) � = 0:5; r

c

� 15:07. The plots indicate transition of the at-

tractor from the invariant torus (�g. 1a) to the Lorenz strange

attractor (�g. 1c) with a decrease of �.

In Sec. 1 the complex Lorenz model was derived from

the one-mode laser equations (1), so we need to discuss

whether it is possible to observe the above e�ects exper-
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imentally. Typically, it is di�cult to meet the condition

r > r

c

in the one-mode regime and it was just a few

experiments with gas lasers, where the threshold of equi-

librium state instability was exceeded [17, 18]. Based on

the above theory, in experimental setup of [17] with ho-

mogeneously broadened one-mode CO

2

laser one could

expect three di�erent types of the system behaviour as

the pumping increases:

� At su�ciently small detuning � < �

0

, (�

0

� 0:07

at � = 5 and b = 1) the chaotic attractor forms

abruptly during the passage of r through r

c

;

� The system undergoes a cascade of doublings be-

fore its transition to chaos at �

0

< � < �

c

;

� If � > �

c

, the system does not reveal chaotic be-

haviour even if r � (10� 20) r

c

.

In conclusion, it is interesting to point out that, fol-

lowing the line of [19], where three parameter kinetics

of a phase transition was investigated by using the real

Lorenz model, the complex Lorenz model can be used in

studying the kinetics of a non-equilibrium second-order

phase transition in the case of complex order parameter.

From this standpoint, the model (2) can be considered

within the synergetic concept of a phase transition [20].

It means that a phase transition is realized as a result

of mutual coordination between the complex order pa-

rameter (z

1

), the conjugate �eld (z

2

) and the control

parameter (z

3

). The results, given at the beginning of

this section, can be regarded as an extension of the anal-

ogy between non-equilibrium phase transitions and phase

transitions in thermodynamic systems.
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Fig. 3. Fourier spectra jz

1

(!)j and jz

3

(!)j at � = 5; b = 1

and r = r

c

+ 0:2 for � = 0:5. There are three peaks in the

spectrum jz

1

(!)j: ! = 0, ! � 0:04 (see the inset in the upper

right corner), ! � � = 5:5. The second peak, associated with

the Goldstone-type mode, is absent in the spectrum jz

3

(!)j.
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Fig. 4. Fourier spectra jz

1

(!)j and jz

3

(!)j at � = 5; b = 1

and r = r

c

+ 0:2 for � = 0:1. Both spectra are typical of

doublings.
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Fig. 5. The irregular (noisy) Fourier spectrum jz
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+ 0:2 for � = 0:05.
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PORUXENN� SIMETR�Õ � B�FURKAC�Õ V KOMPLEKSN��

MODEL� LORENCA

O. D. Kisel~ov

Qern�g�vs~ki� tehnolog�qni� �nstitut, kafedra viwoÝ ta prikladnoÝ matematiki,

vul. Xevqenka, 95, Qern�g�v, UA{250027, UkraÝna

E-mail: kisel@elit.chernigov.ua; adk@kid.ti.chernigov.ua

Vikoristano koncepc�� poruxenoÝ simetr�Ý dl� vivqenn� st��kosti stac�onarnih ta dv�q� per�odiqnih u

qas� b�furkac��nih rozv'�zk�v kompleksnoÝ model� Lorenca na p�dstav� modif�kovanoÝ teor�Ý Hopfa zale�no

v�d v�dstro�vann� qastoti. Na v�dm�nu v�d dobre v�domih r�vn�n~ Lorenca, c� sistema  �nvar��ntno�

wodo peretvoren~ grupi L� (obertann� v kompleksnih plowinah). Zna�deno, wo b�furkac�� �var��ntnoÝ

mno�ini stac�onarnih toqok privodit~ do utvorenn� �nvar��ntnogo toru, �kwo v�dstro�vann� pereviwu

�ogo kritiqne znaqenn�. Rezul~tati qislovogo anal�zu pokazali, wo pri zmenxenn� v�dstro�vann� p�sl�

kaskadu b�furkac�� podvonn� per�odu v okol� toqnogo rezonansu utvor�t~s� divni� atraktor Lorenca.
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