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The problem of adsorbed monolayer of chain molecules is considered. A polymerizing uid of

hard discs using the two-dimensional (2D) Wertheim{Ornstein{Zernike (WOZ) equation and the

polymer Percus{Yevick (PPY) closure is studied. The formation of chains occurs due to the site{site

associative interactions. Computer simulations for the model are performed. We have compared the

structural properties from both methods to evaluate the possibility of application of the theory

for more sophisticated models. It is shown that the PPY theory, supplemented by the ideal chain

approximation, works quite well at low and intermediate densities for trimers and quadrimers At

high densities, the quality of the theoretical predictions deteriorates. We �nd that the equation of

state of Zhou et al. [J. Chem. Phys., 103, 2688 (1995)] supplemented by the e�ective chain length

parameter of Jackson and Gubbins agrees well with our simulation data.
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I. INTRODUCTION

The statistical mechanical theory of chemically asso-

ciating uids (CAF) has developed rapidly during last

decade. The theory that was pioneered by Wertheim

[1{4] is one of the most successful approaches in this

area of chemical physics. This method has been success-

fully used to investigate chemical association phenomena

(such as the formation of dimers and chains, for exam-

ple) in the bulk uids and mixtures, see eg. [5{11], as

well as to study inhomogeneous CAFs [12{14]. The the-

ory involves a multidensity Wertheim{Ornstein{Zernike

(WOZ) integral equation and thermodynamic pertur-

bation theory (TPT). The usual applications focus on

three-dimensional (3D) systems. In particular, the struc-

tural and thermodynamic properties have been obtained

for several models of associating uids. The adequacy

of the theoretical predictions has been thoroughly inves-

tigated and compared with computer simulations, see,

e.g.[15{20] and references therein.

However, experimental studies of monolayer adsorp-

tion on well characterized surfaces indicate that, in many

cases, the adsorbed molecules behave qualitatively simi-

lar to a two-dimensional (2D) uid. The microscopic de-

scription of the monolayers adsorbed on homogeneous

surfaces and their phase transitions has been the subject

of many theoretical investigations. These include both

computer simulations and integral equations. Most of

this research has been concerned with simple 2D models,

such as hard discs, Lennard{Jones discs, planar dumb{

bells, see eg. [21{26]. However, the structure of a mono-

layer of chain molecules is more sophisticated than these

simple uids. This structure is of interest both for basic

science and for several practical applications. One of the

issues that is worth examining is the equation of state

(EOS) of 2D chain uids and 2D associating uids. Very

recently, Zhou et al. [27] have attempted to apply TPT

for hard dumb{bells and hard chains made of discs. It

has been shown that for a tangent hard-disc dimer uid,

the TPT is even more accurate than successful EOS of

Boublik [24] from scaled particle theory. However, the

absence of exact, i.e. computer simulations results, does

not permit further progress in developing the equation

of state for 2D polymerizing and 2D chain uids.

Recently, we have initiated a study of 2D chemically

associating uids in our laboratory. In particular, the

Monte Carlo simulation technique in the canonical NST

ensemble has been applied for the 2D counterpart of the

model of Cummings and Stell for chemical association

[28]. A 2D model of polymerizing fused hard discs has

been studied in ref. [29] also using the NST ensemble.

In the present work, our main concern is the solution

of the WOZ equation for a 2D polymerizing uid model,

to study the results in the framework of computer simu-

lations, and to present a comparison of the results from

both approaches. A short-range nonassociative interac-

tion between monomers is taken in the form of a hard disc

potential. Each of the monomers contains two attractive

sites such that the site{site association results in the for-

mation of chain molecules. This model does not possess

�
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phase transitions, other than crystallization. Therefore,

our focus is the structure of the monolayer rather than

thermodynamic aspects related to phase transitions. It

would be interesting to study such transitions in the

framework of models with an attractive nonassociative

interaction, such as the Lennard{Jones potential, for ex-

ample.

In any case, the EOS of the model under study here is

obtained. Our expectation is that the model will serve as

a good reference to investigate ordering e�ects in a mono-

layer of short chains and chains of intermediate length

on homogeneous and heterogeneous surfaces. Possible ex-

tensions of the model and theory are outlined in the con-

cluding section.

II. A MODEL AND PROCEDURE

Let us consider a one-component uid of polymerizing

discs, a 2D counterpart of the model used by Wertheim

for chain formation [4]. It is assumed that in an exper-

iment the molecules that are able to form chains have

been deposited onto a homogeneous structureless sur-

face. Therefore, the mechanism of association does not

involve surface structure. In spite of this idealization, it

should be possible to initiate a systematic study of the

monolayers made of chains via a chemical reaction of the

Langmuir{Hinshelwood type mechanism.

The hard discs are chosen to be of the unit diameter,

d

0

= 1. Each of discs has two attractive sites located in-

side its core. The sites are assumed distinguishable, they

are denoted as A and B. The interparticle pair potential

is considered as a sum of the nonassociative contribution

(spherically symmetric repulsion) and of strong attrac-

tive, �nite range site{site interactions,

U(12) = U

non

(r

12

) + U

AB

(12) + U

BA

(12); (1)

where 1 and 2 denote the positions r

1

; r

2

and orientations




1

;


2

of two particles (the orientation of particles are

chosen in the laboratory frame using the position of site

A for the sake of concreteness), the distance between cen-

ters of particles is r

12

=jr

1

-r

2

j. The nonassociative part

of the total potential U

non

(r) is chosen in the form

U

non

(r) =

8

<

:

1; for r < L

D

0

; for L < r < 1; (D

0

> 0)

0; for r > 1

; (2)

the associative potentials U

AB

(12); U

BA

(12) of site{site

attraction are given as

U

GG

0

(x) =

�

�("

as

+ D

0

)[1� �

GG

0

]; for x < �; ("

as

> 0)

0; for x > �

: (3)

Here G denotes one of the sites, A or B; and G

0

denotes its complementary site; GG

0

denotes AB or BA; x is the

distance between sites A, B. The sites having the same label do not interact, however. The bonding length parameter,

L; is the distance between the centers of two associated particles. The parameter � is the range of site{site attractive

square well that must guarantee only one bond per site for the formation of chain or ring-type structures, i.e. without

branched con�gurations. To ensure this, a steric saturation condition,

L < 2l

d

+ � < L + (2�

p

3)l

d

; (4)

is imposed, where l

d

is the distance between the center of the hard sphere and the location of the site.

Similarly to the applications that have been developed for 3D systems, [5{8], we assume that the sites are inde-

pendent of each other. Thus, formally the hard disc monomers are freely joined. However, the exibility of a macro-

molecule is restricted due to the minimum value of the angle between two adjacent bonds, i.e. 2 arcsin[1=2L] � � � �.

This restriction results from the impermeability of monomers next to the nearest neighbors. By changing the param-

eter of bond length, L; one can consider chains with di�erent degree of exibility, i.e. it is possible to form totally

exible chains (L = 1) up to almost completely rigid chains (L ' 0:5). It is expected that the probability of the

formation of ring-type structures would increase with increasing L.

The most important ingredient necessary in the following application of Wertheim's theory is the associative

'Mayer' function,

F

or

as

(1; 2) = exp[��U

non

(r

12

)]fexp[��U

GG

0

(x)] � 1g: (5)

The theory considers F

or

as

(1; 2) in its orientationally averaged form, F

as

(r

12

) [2],
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F

as

(r

12

) =

R

d


1

R

d


2

exp[��U

non

(r

12

)]fexp[��U

GG

0

(x)]� 1g

=

(

exp(�"

as

)(2�� 2l

d

+ r)

(�+2l

d

�r)

2

24l

2

d

r

;
L < r < 2l

d

+ �

0; otherwise

;

(6)

where

R

d
 denotes integration over orientation of a

particle. However, the theory involves the orientational

correlations via a special form of the Ornstein{Zernike

(OZ) equation and closure relations. Those are formu-

lated for the partial correlation functions describing dif-

ferent bonding states of particles.

The associative model presented above yields the for-

mation of chains and ring-type structures. The investiga-

tion of such a polydisperse system requires, a selfconsis-

tent determination of the fractions of each species (chains

and rings). This is a di�cult task on its own and will be

omitted for the sake of simplicity at this initial stage of

our investigation of 2D models. We will neglect the pos-

sibility of ring formation by dropping the contribution of

ring diagrams to the free energy, see Refs. [4,5] for more

detail. The ideal chain approximation (ICA) is used [5,

30]. The site{site association results in the formation of

only chain molecules.

The WOZ matrix equation for the partial correlation

functions reads [2]

h(r) = c(r) +

Z

c(s)�h(jr� sj)ds; (7)

where for the model in question the 4 � 4 matrix � is

given by [5]

��� =

0

B

@

�

�

�

B

�

A

�

0

�

B

0 �

0

0

�

A

�

0

0 0

�

0

0 0 0

1

C

A

:

The density parameters �

ij

(i; j = 0; 1; 2; 3) result from

the classi�cation of diagrams in the expansion of the one-

particle density [2,4]. These parameters are related to the

partial densities �

�

as follows,

�

0

= �

0

; �

G

= �

G

+ �

0

; (8)

�

�

= �

0

+ �

G

+ �

G

0

+ �

�

= �;

where � is the total number density. The lower index

� denotes the unbounded (� = 0), the singly bonded

(� = G), and the doubly bonded (� = �) states of a

particle, respectively. The partial pair and direct corre-

lation functions, h

ij

(r) and c

ij

(r) are the elements of the

symmetric matrix t (=h or c)

t =

0

B

@

t

00

t

0A

t

0B

t

0�

t

A0

t

AA

t

AB

t

A�

t

B0

t

BA

t

BB

t

B�

t

�0

t

�A

t

�B

t

��

1

C

A

:

The PPY approximation is

y

ij

(r) = g

ij

(r) � c

ij

(r); (9)

where g

ij

(r) = h

ij

(r)+�

i0

�

j0

; and the functions y

ij

(r) are

the analogues of the cavity correlation functions. These

are related to the partial radial distribution functions

g

ij

(r) via the de�nition [4],

g

ij

(r) = e

��U

non

(r)

y

ij

(r) + F

as

y

00

(r)�

[1;2]

ij

; (10)

where we have used the notation �

[1;2]

ij

= �

i1

�

j2

+ �

i2

�

j1

.

In the ICA, the relation between the elements of the

matrix � is given as follows [2,4]

�

�

=

�

G

�

G

0

�

0

;

�

G

�

0

= m =

1

2

+

r

1

4

+ �I

as

; (11)

where �

�

=

1

6

��

�

, m is the mean number of beads per

chain and

I

as

= 2�

1

R

0

drF

as

(r)y

00

(r)r: (12)

If the site{site potential is prescribed, equation (11)

explicitly de�nes the mean chain length, m. We empha-

size that such a parameter appears only in the framework

of the ICA approximation. However, one can prescribe

the mean chain length and choose the association en-

ergy �"

as

so as to provide a desirable m at given density

of particles. We choose this option to make a compari-

son with simulations, similarly to the previous studies of

Chang and Sandler [5] in the case of 3D chains.

The total radial distribution function g(r) is given in

terms of the partial functions, g

ij

(r);

g(r) =

1

�

2

X

kn

�

0k

g

kn

(r)�

n0

(13)

= 1 + h

00

(r) +

2

m

[h

0G

(r) + h

G0

(r)]
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+

2

m

2

[h

GG

(r) + h

GG

0

(r)]:

The results of WOZ{PPY approximation (comple-

mented by the ICA) for the function g(r) are discussed

in comparison with the simulation data. However, �rst

let us proceed with the discussion of the numerical al-

gorithm that is necessary for the solution of the WOZ

equations in two dimensions.

The method for solving the 2D OZ equation has been

presented in detail by Lado [31]. In contrast to the 3D

case, which requires Fourier{transformation of the cor-

relation functions, 2D models require Hankel{transforms

of the correlation functions

t

��

(r) =

1

2�

1

R

0

dkkJ

0

(kr)t

��

(k); (14)

where both r and k are two-dimensional quantities, J

0

(x)

is the zeroth-order Bessel function of the �rst kind and

t stands for h or c as appropriate. The Bessel functions

has been calculated using a common routine [32]. The

Hankel transforms has been obtained on a grid using the

zeros of the Bessel function; the cuto� distance is chosen

to be, r = 6. Three hundred points on this interval has

been taken. A similar number of points has been chosen

for the inverse transformation.

III. MONTE CARLO SIMULATIONS

To evaluate the accuracy of the theoretical predictions

we have performed NST simulations. The procedure is

similar to that described in [18,19]. The unit cell in the

xy plane is a rectangle with length l

x

in x direction

and l

y

in y direction. Periodic boundary conditions have

been used in y direction. We have restricted the system

by impenetrable hard walls along x axis at x = 0 and

x = l

x

This common method [18], has been used to ob-

tain the pressure of the system using the contact theorem

�P = �(x = 0), where �(x) is the monomer density pro-

�le of the uid near a hard wall. Care about the choice

of the length of the simulation box in x direction must

be taken. Longer chains require a larger box because the

bulk uid properties are obtained from the central part

of the box.

Initially, we choose n hard discs and randomly insert

them into the box (n is the number of chains desired).

These discs are then grown into chains by the addition of

beads using a 'growth and equilibration' algorithm [19].

Growth cycles, between attempts to move a randomly

chosen molecule and attempts to add one bead to a ran-

domly chosen molecule, are continued until all chains

are completely grown to the desired number of partici-

pants. After the initial con�guration has been generated

in this manner, the system is evolved by moving a single,

randomly chosen, molecule (chain). In the 'translational'

move, the entire chain is �rst subjected to a randomly

chosen displacement (uniform on the interval [�a; a], a

is an arbitrary constant chosen approximately between

the monomer diameter and chain length) along each of

the two coordinate axes. Following this, a slightly mod-

i�ed version of the continuum con�gurational bias algo-

rithm [33] was used. At this stage, one of the chain end

monomers is chosen at random, all other participants of

the chain are deleted. Then a chain is regrown by adding

beads sequentially. The parameters of all the moves was

chosen so as to make each of the partial and the total

acceptance ratio to be around 30{40 per cent.

The system has been equilibrated, under di�erent con-

ditions, for at least 10

4

simulation steps. A production

run, during which the averages were obtained, consisted

of at least 10

5

steps. Two criteria were used to determine

when equlibration was reached. These are the symmetry

of the monomer density pro�le with respect to the re-

stricting walls and the stability of the bulk density, i.e.

in the. central part of the box.

The pair distribution functions were obtained from an

analysis of the particle con�gurations in the bulk part

of the simulation cell. We de�ned the bulk part of the

cell from the shape of the monomer density pro�le and

chose its length in x direction to be slightly smaller than

the region where the density pro�le is constant, apart

from uctuations. The desired density of the system was

reached by the choice of the size of the unit cell and the

number of monomers. We have veri�ed carefully that the

results do not depend on the cell dimensions.

IV. RESULTS AND DISCUSSION

Let us proceed with the description of the results ob-

tained. We discuss �rst the pair distribution function

(pdf) of the particles, g(r): They were obtained using

the MC simulations and, theoretically, from eq. (13). The

particles belong either to di�erent chains or are partic-

ipants of a single chain. In that latter case, the parti-

cles can be bonded via site{site association or they can

be unbounded mutually if the next nearest neighbours

are described (note that ring structures have been ne-

glected using the IC approximation). Therefore, the func-

tion h

GG

0

(r) in the right hand side of eq. (13) contains

two terms called the 'inter' and 'intra' chain contribu-

tion. The intermolecular contribution of h

GG

0

(r) is the

function h

GG

(r). Thus, we also will discuss the inter-

molecular function g

inter

(r), obtained using eq. (13) but

with h

GG

0

(r) substituted by h

GG

(r):

We begin our discussion with the case m = 3, i.e. the

'chains' represent molecules that contain three monomers

on average. The bonding length parameter, L, is taken

close to unity, L = 0:9 (�gs. 1 and 2) such that the

trimers are almost completely exible. At low density,

� = 0:227 (�g. 1) the PPY approximation together

with the ICA agrees quite well with the MC data. This

agreement is excellent for the intermolecular function,

g

inter

(r) (�g. 1b). At the higher density, � = 0:543 (�g. 2)

the intermolecular part also agrees well with simulations.

However, the inaccuracies introduced by the PPY{IC
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Fig. 1. The pair distribution function, g(r) (part a) and

the intermolecular pdfs, g

inter

(r) (part b), for a trimer uid

at the density � = 0:227. The bonding length parameter is

L = 0:9. The solid line gives the results of the PPY closure

with the ideal chain approximation. The points are the Monte

Carlo simulation results.

Fig. 2. The same as in �g. 1 but at the density 0.543.

Fig. 3. The same as in �g. 1 but for a trimer uid at the

density 0.23. The bonding length parameter is L = 0:8.

Fig. 4. The same as in �g. 3 but at the density 0.554.

49



YU. DUDA, B. MILLAN{MALO, O. PIZIO, D. HENDERSON

Fig. 5. The same as in �g. 1 but for quadrimer uid at the

density 0.211.

Fig. 6. The same as in �g. 5 but at the density 0.414.

Fig. 7. The density pro�les of monomers belonging to

quadrimers at di�erent uid densities; these follow from the

asymptotic values of the pro�les. The bonding length param-

eter is L = 0:9 (part a) and L = 0:8 (part b).

approximation yield some discrepancies between the re-

sults from both approaches for g(r) at r = 2L (�g. 2a).

In any case, for distances other than r = 1 + L the pdf

from the theory agrees well with simulation data.

Consider now the model with a slightly smaller bond-

ing distance, L = 0:8 (Figs. 3 and 4). In this case,

the trimers that are formed due to association become

less exible in comparison with the previously discussed

model, where L = 0:9: At a low density, � = 0:23 (�g. 3),

the intermolecular part of the pdf is reproduced well by

the PPY+IC approximation. The pdf g(r) is less accu-

rate, especially in the region 2L < r < 1 + 2L. However,

this function remains qualitatively correct in comparison

with the computer simulation data. At a high density,

� = 0:554 (�g. 4), the inaccuracies of both functions g(r)

and g

inter

(r), increase in magnitude. Qualitative agree-

ment between the theory and simulations still remains,

however.

In the case of a quadrimer uid (m = 4), we also ob-

serve that the PPY+IC approximation works better at

lower density, � = 0:211 (�g. 5), than at a higher density,

� = 0:414 (�g. 6). At this higher density, � = 0:414; only

the trends of the behaviour of the pdf for quadrimer uid

remain similar in the theory and simulations.

We have obtained the density pro�les of particles in

the associating uid near a hard line as a by-product of

our simulations. These are shown for di�erent densities

in �g. 7. It is of interest to mention that for both models

in question, L = 0:9 and L = 0:8, we observe depletion
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of the pro�les at low densities whereas at high density

the contact value of the pro�le is larger than at the bulk

density. At low and intermediate densities, an absence

of oscillations in the pro�les of the chains is the charac-

teristic feature of the pro�les; only at high densities do

the oscillations develop, similarly to the pro�le of a hard

sphere uid near a hard wall. In the high density region,

chains with a larger degree of overlap between monomeric

units usually exhibit a maximum value of the pro�le, not

exactly at the surface line but at some small separation

from it. These trends have been observed by Costa et

al. [34] in computer simulations of hard alkane models

near a hard wall. Our results for the pro�les may serve

as a background to study the behavior of chain molecules

near extended line-type defects on the surface.

Finally, in Tables 1 and 2 we present some of the pa-

rameters of simulations together with our calculations of

the values of the compressibility factor of the chains, Z

ch

,

Z = �Pm=�, m is the number of particles in the chain.

We present the values for Z which follow from our sim-

ulations as well as from the theory proposed recently by

Zhou et al. [27] for 2D systems. In our computer simu-

lations, we obtain the pressure from the contact value of

the density pro�le of chains; the chain density has been

evaluated in the bulk part of the simulation cell. In these

theoretical approaches, which focus on the description of

chains made of overlapping spheres, it is important to

use the parameter of e�ective chain length, m

ef

. In this

work on 2D systems we apply the equation of state pro-

posed by Zhou et al. [27] with two di�erent choices of

the e�ective chain length. Namely, we use the recipe pro-

posed in [27] as well as the recipe of Jackson and Gubbins

[35]. Those are denoted by m

Zh

ef

and m

J

ef

, respectively.

It appears that for the 2D systems in question with a

restriction to the trimer and quadrimer cases, the the-

ory based on the choice of Jackson and Gubbins works

better than does m

Zh

ef

. Longer chains must be studied

separately. However, the agreement between computer

simulation data for short chains with two di�erent length

parameters is quite good.

V. CONCLUSIONS

We have presented the solution of Wertheim's

Ornstein{Zernike equation for polymerizing fused hard

discs supplemented by the ideal chain approximation.

The results for the pair distribution functions are com-

pared with Monte Carlo simulation data for uid of

trimers and quadrimers. It is shown that the theory

agrees well with simulation data in the region of low den-

sities, especially that the intermolecular part of the pdf

agrees very well with the simulations. At high densities

the agreement deteriorates. Further, we conclude that for

a better description of the structure a more sophisticated

closure (than the PPY) must be applied, in conjunction

with the ideal chain approximation. If the ideal chain

approximation is not used, then for the moment there is

no means to determine the average chain length. Some

modi�cation of the ideal chain approximation is required.

We expect to investigate these issues in a separate work

using extensive simulation data.

L = 0:8 L = 0:9

�

bulk

ch

(10

�5

) 767 1413 1847 757 1380 1810

N

MC

ch

66 40 54 65 40 53

Z

MC

ch

1.701 2.696 3.899 1.771 2.884 4.475

Z

1

ch

1.538 2.40 3.40 1.605 2.58 3.79

m

Zh

ef

1.703 2.011

Z

2

ch

1.651 2.742 4.064 1.71 2.901 4.43

m

J

ef

2.6 2.8

< L

ee

> 1.484 1.487 1.491 1.625 1.618 1.612

Table 1. The MC simulation results for polymerizing disks: the density of the trimers, m = 3, in the bulk region of the cell

�

bulk

ch

, the number of chains in the simulation cell N

MC

ch

, the compressibility factors from the simulations and from the theory

with two choices of the e�ective chain length parameter. The average end to end distance is given in the last line of the table.
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L = 0:51 L = 0:8 L = 0:9

�

bulk

ch

(10

�5

) 527 1040 1557 388 699 1041 1541 530 1037 1533

N

MC

ch

45 30 45 30 45 30 45 45 30 45

Z

MC

ch

1.66 2.135 3.052 1.61 2.074 2.885 5.331 1.859 3.262 6.569

Z

1

ch

1.32 1.81 2.58 1.40 1.90 2.76 5.29 1.61 2.79 5.34

m

Zh

ef

1.43 2.46 2.53

Z

2

ch

1.41 2.05 3.16 1.45 2.00 2.90 5.65 1.75 3.26 6.66

m

J

ef

2.53 3.4 3.7

< L

ee

> 1.594 1.592 1.589 2.081 2.070 2.058 2.045 2.338 2.203 2.168

Table 2. The MC simulation results for polymerizing disks yielding a quadrimer uid, m = 4. The other quantities are the

same as in table 1.

On the other hand, we have shown that the equation

of state of Zhou et al. [27] yields a compressibility factor

that agrees well with simulations for both the trimer and

quadrimer uid. Future applications of this equation will

become possible after performing simulations for longer

chains in the framework of 2D model. It is of interest

to extend this theoretical procedure for uids with at-

tractive interactions; these would yield two-dimensional

phase transitions. However, an integral equation method

may not be the most appropriate tool for this purpose.

A density functional theory should be developed. This

problem is now under study in our laboratory.
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DVOVIM�RNA MODEL^ FL�ÕDU Z POL�MERIZAC��� QASTINOK DL�

ADSORBOVANOGO MONOXARU LANC��K�V MOLEKUL.

�NTE�RAL^N� R�VN�NN� � SIMUL�C�� MONTE KARLO

�. Duda
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, B. M�llan{Malo

2
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3

1

�nstitut hem�Ý UNAM, Ko�oakan, 04510, Meh�ko, Meksika
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Post��na adresa: �nstitut f�ziki kondensovanih sistem NAN UkraÝni,

vul. Svnc�c~kogo, 1, L~v�v, 290011, UkraÝna

U robot� rozgl�nuto problemu opisu monoxaru adsorbovanih molekul. Vivqeno vlastivost� fl�Ýdu

tverdih disk�v, ko�en z �kih ma dva prit�gal~n� centri, tak wo fl�Ýd pol�merizut~s�. Zastosovano

r�vn�nn� Ornxta�na{Cern�ke{Vertga�ma u nabli�enn� Perkusa{�v�ka. Rezul~tati dl� parnih funkc��

rozpod�lu z�stavleno z danimi komp'�ternogo eksperimentu � otrimano dobru zgodu pri malih gustinah.

Pri viwih gustinah zgoda teor�Ý � eksperimentu pog�rxut~s�. Obqislenn� tisku fl�Ýdu por�vn�no z

rezul~tatami �nxih teor��.
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