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A new method of a reduced description of systems with noise is developed. This method is based

on the fact that among distributions of the solution of stochastic di�erential equations there are

ones which may be described as similar to the kinetic description of states in statistical physics. The

problem of the construction of asymptotic evolution operator is resolved by summing up secular

terms of the perturbation series in a random �eld.
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I. REDUCED DESCRIPTION CONCEPT FOR

RANDOM PROCESSES

Let us formulate the concept of reduced description

in application to random processes. The problem lies in

studying the stochastic system the dynamics of which is

given by di�erential equations [1,2,3],

_x

i

= h

(i)

(x; t); i = 1; :::; n; (1.1)

where x

i

(t) are dynamical variables and h(x; t) is a ran-

dom �eld. Otherwise speaking, the problem is to con-

struct the distribution function of the solutions of eqs.

(1.1) and to study its asymptotics at large times.

The random �eld h(x; t) is de�ned with the help of a

stochastic model. We de�ne a stochastic space (
; �; P ),

where 
 is the space of random realizations of the �eld

h(x; t), � is the set of all possible random events for

the �eld h(x; t) (from the formal mathematical point of

view � is the �-algebra of measurable subsets 
, [4])

P (�) is a non negative function such that the equations

P (
) = 1 , P (�) = 0 take place and for any set of A

n

from � fA

n

2 � : A

n

T

A

m

= �; n 6= mg the identity

P (

1

S

n=1

A

n

) =

1

P

n=1

P (A

n

) holds.

For any physical functional G(h) of the random �eld

h(x; t), the average procedure is de�ned by the integral

< G(h) >=

Z

G(h)dP

h

: (1.2)

It is convenient to suppose, that the space 
 is char-

acterized by some parameter !, i.e. h(x; t) � h

!

(x; t).

Thus the solutions of eqs. (1.1) with the initial condi-

tions x

i

j

t=0

= x

i

(0) � x(0) denoted as X

!

i

(t; x(0) de-

pend on !. Let us denote by f(x(0); 0) the distribution

function of the initial data x(0) normalized as follows:

R

dx(0)f(x(0); 0) = 1. The random distribution function

f

!

(x; t) of the values x at the time t is de�ned by

f

!

(x; t) =

Z

dx(0)f(x(0); 0)�(x �X

!

(t; x(0))): (1.3)

Let x = X

�1

(t; y) be the solution of the system of

equations X(t; x) = y. If we pass in eq. (1.3) from x(0)

to y, y = X(t; x(0)), then we obtain

f(x; t) = J(x; t)f(X

�1

(t; x); 0); (1.4)

where J(x; t) = jj@X

�1

(x; t)=@xjj is the Jacobi determi-

nant of transition from the variables X

�1

(t; x) to the

variables x.

We shall consider at �rst the case when the

functions h

i

(x; t) are time independent, h

i

(x; t) =

h

i

(x). As far as, according to eqs. (1.1), we have

(d

n

x

i

=dt

n

)

t=0

= (h

j

@=@x

j

)

n

x

i

j

x=x(0)

it is easy to obtain

X

i

(t; x) =

1

P

n=0

t

n

n!

(h

j

@=@x

j

)

n

x

i

and, hence, X

i

(t; x) =

expft�(x)gx

i

, �(x) = h

j

(x)

@

@x

j

. Besides one can ea-

syly see that X(t;X(t

0

; x)) = X(t + t

0

; x) and, hence,

X(tX(�t; x)) = x. Therefore, we obtain X

�1

(t; x) =

X(�t; x) = expf�t�gx. Using this relation eq. (1.4) can

be written as

f(x; t) = J(x; t) expf�t�gf(x; 0):

Therefore, we have

@f

@t

=

@J

@t

J

�1

f � Jh

j

@

@x

j

J

�1

f: (1.5)

Note that according to eq. (1.3) the condition

R

@f

@t

dx = 0

takes place. So, we have

Z

dxf

�

J

�1

@J

@t

+ J

�1

@

@x

j

Jh

j

�

= 0;
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and for arbitrary f one obtains

@J

@t

+

@

@x

j

Jh

j

= 0; J j

t=0

= 1: (1.6)

It is possible to transform eq. (1.5) as

@f

@t

+

@

@x

j

(h

j

f) = 0: (1.7)

Note that the formal solution of eq. (1.6) is J(x; t) =

expf�t

@

@x

j

h

j

:::g � 1. The Jacobi determinant satis�es the

condition J = 1 which corresponds to the canonical

transformation of classical mechanics.

Let us pass now to the consideration of the general

case of h

j

= h

j

(x; t). It is easy to see that eqs. (1.1) can

be rewritten as

~x

i

=

~

h

i

(x; a); _a =

~

h(a); aj

t=0

= a

0

; (1.8)

where we have

~

h

i

(x; a(t; a

0

)) = h

i

(x; t), and a(t; a

0

) is

the solution of the equation for a. An arbitrary solution

of eqs. (1.8) is X

i

(t; x(0); a

0

), A(t; a

0

), (X

i

(0; x(0); a

0

)

= x

i

(0); A(0; a

0

) = a(0) = a

0

). Then according to the

construction we have

X

i

(t; x; a

0

) � X(t; x): (1.9)

So the solutions x and a of the equations X

i

(t; x; a

0

) =

y; A(t; a) = z have the form of x = X(�t; y; z)

and a = A(t; z). Taking into account (1.9) we �nd

X(t;X(�t; y; A(t; a

0

))) = y and hence

X

�1

(t; y) = X(�t; y; A(t; a

0

)): (1.10)

In accordance with eq. (1.4) the function f(x; a; t) of the

values x and a at the time moment t is equal

f(x; a; t) = J(x; a; t)f(X(�t; x; a); 0)�(A(�t; a)� a

0

):

(1.11)

By de�ning f(x; a; 0) = f(x; 0)�(a�a

0

), and taking into

account eq. (1.10) we obtain

J(x; a; t)j

a=h(t;a

0

)

=

@(X(�t; x; a); A(�t; a))

@(x; a)

= J(x; t)

@A(�t; a)

@a

; (1.12)

where J(x; a; t)j

a=h(t;a

0

)

is the Jacobi determinant

of a transformation from the variables X(�t; x; a),

A(�t; a), to the variables x; a. It is easy to see, that

J(x; a; t)�(A(�t; a)� a

0

) = J(x; t)�(a�A(t; a

0

)), where

J(x; t) is the Jacobi determinant in eq. (1.4). Thus, com-

paring eq. (1.4) and eq. (1.11) and, taking into account

eq. (1.12) we obtain

f(x; a; t) = f(x; t)�(a�A(t; a

0

)): (1.13)

On the other hand, eq. (1.7) can now be expressed as

@f(x; a; t)

@t

+

@

@x

j

(

~

h

j

(x; a)f(x; a; t)) (1.14)

+

@

@a

(

~

h

j

(a)f(x; a; t)) = 0:

Substituting eq. (1.13), into that one yields the equation

@f

!

(x; t)

@t

+

@

@x

j

(h

!

j

(x; t)f

!

(x; t)) = 0: (1.15)

It is the equation of motion for the random function

of the distribution of solutions of eqs. (1.1). When eqs.

(1.1) are Hamilton equations for momenta and coordi-

nates (x = p; q) then eq. (1.14) represents the Liouville

equation for the distribution function of particles located

in some random �eld. So, we will record eq. (1.14) in the

general case in the following way

i

@f

!

(x; t)

@t

= �

!

(t)f

!

(x; t); (1.16)

where �

!

(t) is the "Liouville" operator, �

!

(t) �

�i

@

@x

j

h

!

j

(x; t), acting on the variable x of the random

function of the distribution f

!

(x; t).

It should be pointed out that eq. (1.16) is true also in

the quantum case, for the random statistical operator,

�

!

�

!

f

!

� [H

!

; f

!

];

where H

!

is the Hamilton operator of the system located

in the random �eld. Then �

!

is the operator, acting not

in the Hilbert space of state vectors, but in the space of

statistical operators.

We suggest, that the operator �

!

(t) can be presented

as

�

!

(t) = �

(0)

+�

(1)

!

(t); �

(1)

(t) =

Z

dq'

!

(q; t)a(q);

(1.17)

where �

(0)

is the time-independent part of the operator

�

!

(t); '

!

(q; t) is the Fourier-component (see further) of

! | realization of the random �eld ' and a(q) are some

operators which depend on q as on a parameter. Eq.

(1.17) is convenient for the construction of the perturba-

tion series in the random �eld '. Note that a represen-

tation of eq. (1.17) arises, for example, if one considers

the many-particles system located in the external ran-

dom �eld '

!

(x; t) when the Hamiltonian has the form

7
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of H

!

= H

0

+ '

!

(x; t), where H

0

is the Hamiltonian of

free particles. Eq. (1.16), being average over the random

�eld realizations, leads to the equation of motion for the

average (true) distribution function f(x) =< f

!

(t) >,

@

t

f(t) = �i�

(0)

f(t)� i < �

(1)

!

f

!

(t) >= �i�

(0)

f + L(t):

The value L(t) is connected with the particle-�eld correlation function f

s

(q

1

t

1

; :::; q

s

t

s

; t)

f

s

(q

1

t

1

; :::; q

s

t

s

; t) =< '

!

(q

1

; t

1

+ t):::'

!

(q

s

; t

s

+ t)f(t) > (1.18)

by means of the formula L(t) = �i

R

dqa(q)f

1

(qt

1

; t)j

t

1

=0

.

In section III for the correlation functions f

s

the principle of weakening correlations, i.e. analogy to the principle

of space weakening correlations in the statistical mechanics, is formulated.

One can easily see, that the correlation functions f

s

satisfy a chain of di�erential equations

�

@

@t

�

�

@

@t

1

+ � � �+

@

@t

s

��

f

s

(q

1

t

1

; :::; q

s

t

s

; t) + i�

(0)

f

s

(1.19)

= �i

Z

dq

s+1

a(q

s+1

)f

s+1

(q

1

t

1

; :::; q

s

t

s

; q

s+1

t

s+1

; t)j

t

s+1

= 0:

The functions f

s

(q

1

t

1

; :::; q

s

t

s

; t) are similar to the s-

particles distribution functions of statistical mechanics.

Eq. (1.19) is analogy to the chain of BBGKY equations

for many-particles system with pair interaction [5, 6].

In this work we prove, that at large times (t � �

0

,

where �

0

is the time correlation scale of random �eld or

chaotization time) "one-particle distribution function"

f(t) of the solutions of random di�erential equations

(1.1) can be approximated by some coarse distribution

function

e

f(t),

f(t) �!

t��

0

e

f(t)) = exp(Lt)S

0

f(0);

L(t) �!

t��

0

L(

e

f(t));

where L is the \collision integral" and S

0

is the memory

operator.

These asymptotic relations show the possibility of a ki-

netic description of the random system (1.1) for the time

t � �

0

[4,5] and the existence of a reduced description

mode for such a system.

II. THE AVERAGE EVOLUTION OPERATOR.

THE GAUSS �{CORRELATED FIELD

In this section we will �nd the formal solution of the

Cauchi problem for eq. (1.16). The expression for the av-

erage evolution operator will be obtained. It will be sug-

gested that at the initial moment of time the function

f

!

(t) is independent on !, f

!

(t)j

t=0

= f(0). The repre-

sentation (1.17) of the operator �

!

permits to write the

solution of eq. (1.16) as

f

!

(t) = expf�i�

(0)

tgS

!

(t)f(0); (2.1)

S

!

(t) = T exp

8

<

:

�i

t

Z

0

d�

e

�

!

(�)

9

=

;

;

where T is the time ordering operator and

e

�

!

(�) =

Z

dq'

!

(q; �)a(q; �);

a(q; �) = exp(i�

(0)

�)a(q; 0) exp(�i�

(0)

�):

In the case when the Hamiltonian of the system is de�ned

as follows

H =

N

X

j=1

(

p

2

j

2m

+ '

!

(x

j

; t)

)

;

the operators �

(0)

and �

(1)

!

(t) are given by

�

(0)

= �i

N

X

j=1

p

j

m

@

@x

j

; (2.2)

8
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�

(1)

!

(t) =

Z

dq'

!

(q; t)

N

X

j=1

e

iqx

j

q

@

@p

j

;

where '

!

(q; t) =

1

(2�)

n

R

dxe

�iqx

'

!

(x; t) is the Fourier

component of the random �eld '

!

(x; t) (n is a dimen-

sion of space). Therefore, in the framework of classical

consideration the action of one-particle operator is de-

�ned as follows

a(q; 0)f = e

iqx

j

q

@

@p

j

f: (2.3)

Averaging eq. (2.1) over random �eld realizations, we

obtain

f(t) = e

�i�

(0)

t

S(t)f(0); (2.4)

S(t) =

1

X

n=0

(�i)

n

n!

Z

dq

1

� � � dq

n

T

t

Z

0

d�

1

� � �

t

Z

0

d�

n

�

n

(q

1

�

1

� � � q

n

�

n

)a(q

1

�

1

) � � �a(q

n

�

n

); (2.5)

where

�

n

(q

1

�

1

� � � q

n

�

n

) �< '

!

(q

1

�

1

) � � �'

!

(q

n

�

n

) > (2.6)

is the nth order random �eld moment.

The main goal is the �nding of asymptotic at t � �

0

behavior of the function f(t). It should be pointed out that

the problem of constructing the asymptotic evolution operator for eqs. (1.1) was formulated for the �rst time by van

Kampen [7] by means of the cumulant expansion.

The average evolution operator S(t) can be written as follows

S(t) = T

8

<

:

exp

0

@

�i

t

Z

0

d�

Z

dqa(q; �)

�

��(q; �)

1

A

F (�)j

�(q;�)=0

9

=

;

;

where

F (�) =

1

X

m=1

1

m!

Z

dq

1

� � � dq

m

1

Z

�1

d�

1

� � �

1

Z

�1

d�

m

�

m

(q

1

�

1

� � � q

m

�

m

)�(q

1

�

1

) � � ��(q

m

�

m

)

is the generating functional of the moments �

m

(q

1

�

1

� � � q

m

�

m

) connected with the generating functional of the random

�eld cumulants

G(�) =

1

X

n=1

1

n!

Z

dq

1

� � � dq

n

1

Z

�1

d�

1

� � �

1

Z

�1

d�

n

g

n

(q

1

�

1

� � � q

n

�

n

)�(q

1

�

1

) � � ��(q

n

�

n

)

(g

n

(q

1

�

1

� � � q

n

�

n

) is the nth order cumulant) by the relation F (�) = expG(�). Taking into account that

exp

�

�i

t

R

0

d�

R

dqa(q; �)

�

��(q;�)

�

is the operator of shift over �(q; �) on the value �i�

t

(�)a(q; �) , (where one has

�

t

(�) = 1 for 0 < � < 1 and �

t

(�) = 1 for � < 0; � > t), we obtain

S(t) = T expG(�i�

t

(�)a(q; �)): (2.7)

For the random stationary �eld we have g

n

(q

1

�

1

� � � q

n

�

n

) = g

n

(q

1

� � � q

n

)�(�

1

� �

2

) � � � �(�

1

� �

n

). Eq. (2.5) reduces to

S(t) = T exp

0

@

t

Z

0

d�L(�)

1

A

;

9



N. V. LASKIN, S. V. PELETMINSKII, V. I. PRIKHOD'KO

where L(�) = exp(i�

(0)

�)L exp(�i�

(0)

�) and

L =

1

X

n=1

(�i)

n

n!

Z

dq

1

� � � dq

n

g

n

(q

1

� � � q

n

)a(q

1

0) � � �a(q

n

0):

(2.8)

Therefore, one obtains from eq. (2.4)

f(t) =

8

<

:

e

�i�

(0)

t

T exp

t

Z

0

d�L(�)

9

=

;

f(0):

The kinetic equation for f(t) is then

@f

@t

+ i�

(0)

f = Lf; (2.9)

where the \collision integral" is de�ned by eq. (2.8). In

particular, for the Gauss �eld, when g

n

(q

1

�

1

; :::; q

n

�

n

) =0

for n > 2, the \collision integral" L is given by

L = � i

Z

dqg

1

(q)a(q; 0) (2.10)

�

1

2

Z

dq

1

Z

dq

2

g

2

(q

1

q

2

)a(q

1

; 0)a(q

2

; 0):

Using the structure of the operators �

(0)

and �

(1)

!

(t)

and eq. (2.10) for the \collision integral" it is easy to

write eq. (2.9) as the Fokker { Plank equation

@f(t)

@t

+

p

k

m

@f(t)

@x

k

�

@ < '(x) >

@x

k

@f(t)

@p

k

(2.11)

= D

ij

(x)

@

2

@p

i

@p

j

f(t);

where D

ij

(x) =

1

2

@

2

@x

1i

@x

2j

g(x

1

; x

2

)jx

1

= x

2

= x. As

far as for the random �{time correlation �elds one has

�

0

= 0, the evolution of the system starts from the kinetic

stage.

The research of the asymptotic structure of evolution

operator for a non �{correlated random �eld will be done

in the next sections.

III. THE CORRELATION WEAKENING

PRINCIPLE FOR THE RANDOM FIELD

In this section we will study some of the special values

of e� (closely connected with �) which will be necessary

for the construction of the evolution operator for the time

correlated processes.

Let us assume that the moments �

s

(�

1

� � � �

s

) sat-

isfy the correlation weakening principle. Namely, when

� � �

0

! 1, and �

1

� � � �

l

� � , �

l+1

� � � �

s

� �

0

, the mo-

ments are disintegrated as (for simplicity we suppose that

�

i

� (q

i

; �

i

))

�

s

(�

1

� � � �

l

; �

l+1

� � � �

s

)

�!

���

0

!1

�

l

(�

1

� � � �

l

)�

s�l

(�

l+1

� � � �

s

):

We de�ne the values e�

l

(�

1

� � � �

l

), connected with the

moments �

s

(�

1

� � � �

s

) by means of the relation

�

s

(�

1

� � � �

s

) =

s

X

l=1

e�

l

(�

1

� � � �

l

)�

s�l

(�

l+1

� � � �

s

); (3.1)

s = 1; 2; :::; �

0

= 1:

Let us study the properties of the values e�

l

. We desig-

nate through D

l

such a set of the variables �

1

� � � �

l

, in

which one has �

1

> �

2

> � � � > �

l

. Then the following

theorem is true [1].

Theorem 1. Let �

1

� � � �

l

, be the elements of the set D

l

,

�

1

� � � �

l

2 D

l

, �

1

� � � �

k

� � and �

k+1

� � � �

s

� �

0

. If �

l

sat-

is�es the correlation weakening principle then we have

e�

l

(�

1

� � � �

l

) �!

���

0

!1

0: (3.2)

This theorem shows that in the set D

l

the value

e�

l

(�

1

� � � �

l

) is di�erent from zero only if �

1

; �

2

; :::; �

l

di�er

from each other less than the time correlation scale �

0

.

The values of �

l

do not coincide with the cumulants g

l

.

The proof. Starting from eq. (3.1) the following equa-

tion can be derived

e�

s

(�

1

� � � �

s

) = �

s

(�

1

� � � �

s

) (3.3)

�

s�1

X

l=1

e�

l

(�

1

� � � �

s

)�

s�l

(�

l

+ 1 � � � �

s

);

s = 2; 3; :::; e�

1

= �

1

:

By direct checking it is easy to obtain

e�

2

(�

1

�

2

) �!

���

0

!1

0:

We assume that eq. (3.2) is true at l = 2; 3; :::; s and any

k; 1 � k � l� 1. Let us prove the validity of eq. (3.2) for

l = s + 1. Let �

1

� � � �

k

� � , �

k

+ 1 � � � �

l

� �

0

, then the

correlation weakening principle for the values of �

l

leads

to

e�

s+1

(�

1

� � � �

s+1

) �!

���

0

!1

(

�

k

�

k

X

l=1

e�

l

�

k�l

)

�

s+1�k

:

10
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Using de�nition (3.1) we prove the validity of eq. (3.2)

for l = s+ 1.

It should be pointed out that the moment �

s

(�

1

� � � �

s

)

is symmetrical concerning the rearrangement of the ar-

guments �

1

� � � �

s

, while the value e�

s

(�

1

� � � �

s

) does not

have the mentioned property. The values e�

s

are \ordered

cumulants" of van Kampen. However, van Kampen has

given only the description of procedure for the construc-

tion of the ordered cumulants in Ref. [7]. Unlike van

Kampen we propose the recurrent relation (3.3) which

de�nes the "ordered cumulants". The property of val-

ues e�

l

, established by Theorem 1, is a starting point in

research of the evolution operator asymptotic structure.

As an example we put the expressions of values �

s

and e�

s

for the stationary Gauss process. According to

de�nition (1.2), we have

�

s

(�

1

� � � �

s

) =

Z

dP

'

'(�

1

) � � �'(�

s

);

Where P

'

is the Gauss probability measure which is

given by

dP

'

=

1

(2�)

1=2

p

detg(�

i

� �

j

)

� (3.4)

exp

8

<

:

�

1

2

s

X

i;j=1

g

�1

(�

i

� �

j

)'(�

i

)'(�

j

)

9

=

;

d'(�

1

) � � � d'(�

s

):

Hence, we have

�

2l+1

(�

1

� � � �

2l+1

) = 0;

�

2l

(�

1

� � � �

2l

) =

0

X

g(�

1

� �

2

) � � � g(�

2l�1

� �

2l

); (3.5)

l = 0; 1; 2; :::

The sum in eq. (3.5) is distributed on every possible split

�

1

� � � �

2l

on the pairs. The number of splits, obviously, is

presented as (2l�1)!! =

(2l)!

2

l

l!

. The function g(�) is appre-

ciably di�erent from zero only at � � �

0

. This property

of the function g(�) provides the feasibility of the corre-

lation weakening principle for the values �

2l

determined

by eq. (3.5).

The values e�

2l

could be found from recurrent relation

(3.3) with the use of eq. (3.5). It is easy to see that the

following relations take place

e�

2

(�

1

; �

2

) = g(�

1

� �

2

);

e�

4

(�

1

; �

2

; �

3

; �

4

)

= g(�

1

� �

3

)g(�

2

� �

4

) + g(�

1

� �

4

)g(�

2

� �

3

):

In the general case one has

e�

2l

(�

1

� � � �

2l

) =

0

X

g(�

1

� �

k

) � � � g(�

k�1

� �

2l

); (3.6)

where the summation is distributed only on such rear-

rangements of �

1

� � � �

2l

for which the restriction �

1

>

�

2

> � � � > �

2l

takes place. The number of members P

l

in

eq. (3.6) can be determined by a recurrent relation

P

l

= (2l� 1)!!�

l�1

X

j=1

P

j

[2(l � j)� 1]!!;

(P

1

= 1; P

2

= 2; P

3

= 10; P

4

= 74; :::):

Expression (3.6), on the one hand, satis�es the relation

(3.1), due to the condition that g(�

i

��

j

) is di�erent from

zero only for j�

i

� �

j

j � �

0

and, on the other hand, pro-

vides the feasibility of Theorem 1.

For the study of correlation functions we introduce the

values e�

l;s

, which are de�ned by

�

n+s

(�

1

� � � �

s

; �

s+1

� � � �

s+n

) (3.7)

=

n

X

l=0

e�

l;s

(�

1

� � � �

l+s

)�

n�l

(�

l+s+1

� � � �

s+n

);

e�

l;0

= e�

l

; s = 0; 1; 2; :::; n = 0; 1; 2; ::::

We denote by

e

D

l;s

such a set of variables �

1

� � � �

l+s

, in

which �

1

� � � � � �

s

> �

s+1

> � � � �

l+s

. Then we have [1].

Theorem 2. Let �

1

� � � � � �

l+1

be the elements of

the set

e

D

l;s

, �

1

� � � � � �

l+1

2

e

D

l;s

, �

s+1

� � � �

p

� � and

�

p+1

� � � �

l+s

� �

0

. If �

l

satis�es the correlation weakening

principle then we obtain

e�

l;s

(�

1

� � � �

l+s

) �!

���

0

!1

0: (3.8)

This theorem shows that in the set

e

D

l;s

the values

e�

l;s

(�

1

� � � �

l+s

) di�er from zero only if �

1

� � � �

l+s

di�er

from each other less than time correlation scale �

0

.

The proof. Let us rewrite eq. (3.7) as follows

e�

n;s

(�

1

� � � �

n+s

) = �

n;s

(�

1

� � � �

n+s

) (3.9)

�

n�1

X

l=0

e�

l;s

(�

1

� � � �

l+s

)�

n�l

(�

l+s+1

� � � �

s+n

):

The proof is conducted by the method of mathemat-

ical induction. By direct checking one can see that

e�

l;s

(�

1

� � � �

s

; �

s+1

) �!

���

s+1

!1

0. Let eq. (3.8) be true for

l = 1; 2; :::; n�1 and any p, s+1 � p � s+l�1. We prove

the validity of this relation for l = n. Let �

s+1

� � � �

p

� � ,

�

p+1

� � � �

l+s

� �

0

, then taking into account the correla-

tion weakening principle for the values �

l

, we �nd

11
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e�

n;s

(�

1

� � � �

n+s

) �!

���

0

!1

f�

s+p

(3.10)

� �

s

�

p

�

p

X

l=1

e�

l;s

�

p�l

)

�

n�p

:

Using eq. (3.7) we prove the relation (3.8) for l = n.

At least, we intend to obtain a useful relation for e�

l;s

.

It is easy to see that eq. (3.7) leads to

n

X

l=0

e�

l;s

(�

1

� � � �

l+s

)�

n�l

(�

l+s+1

� � � �

s+n

) (3.11)

=

n�1

X

l=0

e�

l;s+1

(�

1

� � � �

l+s

�

l+s+1

)�

n�l�1

(�

l+s+2

� � � �

s+n

):

Let us treat this relation as identity. We present the iden-

tity as

e�

0;s

�

n

+

n�1

X

l=0

e�

l+1;s

�

n�l�1

=

n�1

X

l=0

e�

l;s+1

�

n�l�1

:

Using the de�nition (3.1), we have

e�

0;s

�

n

+

n�1

X

l=0

fe�

0;s

e�

l+1

+ e�

l+1;s

� e�

l;s+1

g�

n�l�1

= 0:

As far as the expression in brackets does not depend on

the index n it should be equal to zero. Thus, we come to

the following relation

e�

0;s

e�

l+1

+ e�

l+1;s

� e�

l;s+1

: (3.12)

We should point out that eq. (3.12) permits to express

the two-index value e�

l;s

through the one-index values

e�

s

; �

l

as follows

e�

l;s

= �

l+s

�

l�1

X

k=0

�

s+k

e�

l�k

; l = 0; 1; 2; :::; s = 0; 1; 2; ::: :

IV. SUMMING UP OF SECULAR TERMS

The procedure of summarizing the asymptotical main

terms at t ! 1 of the perturbation series for the sta-

tistical operator of many particles systems with pair in-

teraction is well known. In this section the procedure of

summarizing secular members will be applied to some

systems in random �eld.

In eq. (2.4) we unite for simpli�cation the integrals

over q

i

and t

i

in the integrals over �

i

. Then eq. (2.4) can

be written as

S(t) =

1

X

n=0

S

(n)

(t); S

(n)

(t) = (�i)

n

t

Z

0

d�

1

� � �

�

n

�1

Z

0

d�

n

�

n

(�

1

� � � �

n

)a(�

1

) � � � a(�

n

): (4.1)

Substituting �

n

from eq. (3.1) into (4.1) yields the equation

S

(n)

(t) =

n

X

k=1

(�i)

k

t

Z

0

d�

1

� � �

�

k

�1

Z

0

d�

k

e�

k

(�

1

� �

2

; :::; �

1

� �

k

)a(�

1

) � � � a(�

k

)S

(n�k)

(�

k

); (4.2)

S

(0)

= 1; n = 1; 2; ::: :

The value e�

k

contained in eq. (3.2) depends on the di�erence of time arguments due to the stationary random

�eld. This equation will serve us as the base for the summing of secular members at the t!1 in the expression for

S(t).

The value a(�

1

) � � � a(�

n

)f(0) in S

(n)

(t)f(0) is commutative with the momentum operator in the homogeneous case.

So we have

a(�

1

) � � � a(�

n

)f(0) = e

�i�

(0)

�

a(�

1

) � � � a(�

n

)e

+i�

(0)

�

f(0) = a(�

1

� �) � � � a(�

n

� �)f(0):

Thus, the operator a(�

1

) � � � a(�

n

) in eq. (4.2) actually depends only on the di�erences �

i

� �

j

, since this operator

always acts on the space-uniform initial state f(0). Hence it is natural to present the asymptotic expression at t!1

for S

(n)

(t) in the polynomial form

12
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S

(n)

(t) �!

t!1

S

(n)

(t) =

n

X

i=0

�

(n)

i

t

i

: (4.3)

Since the function e�

k

(�

1

��

2

; � � � ; �

1

��

k

) is di�erent from zero only at �

1

� �

2

� � � � � �

k

, in the set �

1

> �

2

> � � � > �

k

we obtain

S

(n)

(t) �!

t!1

n

X

k=1

(�i)

k

t

Z

0

d�

1

� � �

�

k

�1

Z

0

d�

k

e�

k

(�

1

� �

2

; :::; �

1

� �

k

)a(�

1

) � � � a(�

k

)S

(n�k)

(�

k

) +

n

X

k=1

d

(n)

k

; (4.4)

d

(n)

k

= (�i)

k

1

Z

0

d�

1

� � �

�

k

�1

Z

0

d�

k

e�

k

(�

1

� �

2

; :::; �

1

� �

k

)a(�

1

) � � � a(�

k

)(S

(n�k)

(�

k

)�

e

S

(n�k)

(�

k

)):

Substituting in eq. (4.4) the polynomial representation (4.3) for

e

S

(n�k)

(�

k

) and taking into account that �

l

k

=

l

P

i=0

�

l

i

�

�

l�i

1

(�

k

� �

1

)

i

we obtain

S

(n)

(t) �!

t!1

n

X

k=1

n�k

X

l=0

l

X

i=0

t

Z

0

d�

1

a

(n�k)

l

�

l

i

�

�

l�i

1

�

(i)

k

(�

1

) +

n

X

k=1

d

(n)

k

(4.5)

where

�

(i)

k

(�

1

) = (�i)

k

�

1

Z

0

d�

2

� � �

�

k

�1

Z

0

d�

k

e�

k

(�

1

� �

2

; :::; �

1

� �

k

)a(�

1

) � � � a(�

k

)(�

k

� �

1

)

i

(4.6)

= (�i)

k

�

1

Z

��

1

d�

2

� � �

�

k

�1

Z

��

1

d�

k

e�

k

(��

2

; � � � ;��

k

)a(�

2

) � � � a(�

k

)�

i

:

In order to �nd the asymptotic of the �rst term in the right hand of eq. (4.5) at t!1 we need the following lemma.

Lemma.

t

Z

0

d�

1

�

l�i

1

�

(i)

k

(�

1

) �!

t!1

t

l�i+1

l � i+ 1

b

(i)

k

+ c

(l�i)

k;i

; (4.7)

where

b

(i)

k

= lim

�!1

�

(i)

k

(�); c

(m)

k;i

=

1

Z

0

d�

1

�

m

1

(�

(i)

k

(�

1

)� b

k

(i)):

The proof. As far as the function e�

k

(��

2

; � � � ;��

k

) in the set 0 > �

2

> � � � > �

k

is di�erent from zero only at �

i

� �

0

,

eq. (4.5) has the limit �

1

!1. Hence we get eq. (4.7) and the expressions for b

(i)

k

and c

(m)

k;j

.

Using lemma and eqs. (4.1), (4.5) it is easy to obtain the following equation

n

X

i=0

�

(n)

i

t

i

=

n�1

X

k=1

"

d

(n�k)

k

+

n�k

X

l=0

l

X

m=0

�

l

m

�

 

t

l�m+1

(l �m+ 1)b

(m)

k

+ c

(l�m)

k;i

!

�

(n�k)

i

#

+ c

(0)

0;n

+ tb

(0)

n

:

With the help of this equation we �nd the equations for �

(n)

i

13
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�

(n)

0

=

n�1

X

k=1

"

d

(n�k)

k

+

n�k

X

l=0

l

X

m=0

�

l

m

�

c

(l�m)

k;l

�

n�k

i

#

+ c

(0)

0;n

; (4.8)

�

(n)

i

=

n�1

X

k=1

n�k

X

l=0

l

X

m=0

�

l

m

�

1

i

�

i;l�m+1

b

m

k

�

n�k

i

; i = 1; 2; :::; n: (4.9)

The asymptotic evolution operator

e

S(t) in accordance with eq. (4.3) is given by

e

S(t) =

1

X

n=0

n

X

i=0

�

(n)

i

t

i

=

n

X

i=0

�

i

t

i

; �

i

=

1

X

n=i

�

(n)

i

:

It is easy to �nd from eqs. (4.8), (4.9) the recurrent relations for the operators �

i

�

0

=

1

X

n=0

n�1

X

k=1

d

(n�k)

k

+

1

X

k=1

1

X

l=0
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X
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: (4.12)

The solution of eq. (4.11) for �

i

we will �nd in the form

�

i

=

L

i
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�

0

: (4.13)

Substituting �

i

from eq. (4.13) into eq. (4.10) leads to equation for the de�nition of �
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: (4.14)

Substituting eq. (4.13) into eq. (4.11), yields the de�ni-

tion of the "collisions integral" L

L =

1

X

m=0

1

m!

b

(m)

L

m

: (4.15)

Thus, the asymptotic structure of the evolution oper-

ator S(t) at t!1 is given by

S(t) = �!

t!1

e

S(t) = e

Lt

e

S

0

[1,2,8,9], where the values

e

S

0

and L are de�ned by eqs.

(4.14) and (4.15).

So, for the distribution function we have

f(t) �!

t!1

e

f(t)) = exp(Lt)S

0

f(0)

and, as a consequence, the evolution kinetic equation

_

e

f(t) = Lf

e

f(t)g takes place, where Lf

e

f(t)g = L

e

f(t). The

function

e

f(t) is the reduced distribution function which

approximates the exact distribution function f(t). It is

14
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seen from these equations that \the initial distribution

function" which corresponds to the kinetic stage of the

evolution is the function

e

S

0

f(0). The existence of mem-

ory operator

e

S

0

is due to the time correlation scale �

0

of

the random �eld. For the �-correlated �eld when �

0

= 0,

we have

e

S

0

= 1. The time �

0

is called the chaotization

time. Note that for the time independent random �eld

the chaotization time scale will be induced by the par-

ticle dynamics in this �eld. Such a situation takes place

when one investigates the kinetic phenomena to probe

the particle moving in the �eld of randomly located im-

purities.

Thus, it is proved that for the distributions of stochas-

tic equations solutions the reduced description method

which is similar to the kinetic description of states in

statistical mechanics takes place. Due to the extraction

and summation of secular terms appearing in the per-

turbation series in the random �eld the asymptotic evo-

lution operator for the reduced distribution function is

constructed.
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