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On the basis of Langevin equation the optimal SUSY �eld scheme is formulated to describe

a non{equilibrium thermodynamic system. The cases of two{component Grassmannian �elds are

analysed with the second components being the most probable uctuation and the conjugate �eld.

It is shown that the inherent in self{organized system a four{component SUSY �eld transforms into

a two{component form with the passage to the thermodynamic system.
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I. INTRODUCTION

During the last years signi�cant interest has been

given to the development of the microscopic theory of

non{equilibrium thermodynamic systems that experi-

ence the ergodicity breaking and exhibit memory e�ects.

The most popular examples are known to be systems

type of the spin glass [1] and random heteropolymers

[2]. Usually for their description the replica method is

used that is based on the mathematical trick. However,

it appears that within the framework of the Sherrington{

Kirkpatrick model the replica approach is reduced to the

supersymmetry (SUSY) method [3]. The latter is based

on using Grassmannian variables that represent, roughly

speaking, the square root of the number 0. So, the in-

troduction of the SUSY �eld, that is a combination of

usual and Grassmannian �elds, are represented mathe-

matically as the common transition from real �elds to

complex ones.

For the SUSY scheme formulation it is necessary to

take into account that, being the gauge �eld, the SUSY

�eld can be reduced to irreducible components: analo-

gously as the electromagnetic �eld is split into vector and

scalar components, the 4{component SUSY �eld can be

reduced to the couple of chiral components that consist

of both the ordinal and Grassmannian constituents [4]. In

Sect. III the irreducible SUSY �eld will be constructed as

well, but it turns out that the separated component rep-

resents rather a 2{component Grassmannian �eld than

the proper SUSY �eld. The advantage of the former is

that its components possess the explicit physical mean-

ing such as the order parameter and conjugate �eld (or

its uctuation).

The work is organized as follows. In Sect. II the formu-

lation of the simplest SUSY �eld scheme is ful�lled on

the basis of the 2{component Grassmannian �elds whose

second component is either uctuation or conjugate force

(see subsections A, B respectively). Sect. III is devoted

to the presentation of the above{mentioned scheme of

reduction of the 4{component proper SUSY �eld to dif-

ferent 2{component forms. Appendices contain technical

details of the SUSY formalism.

II. THE SIMPLEST FIELD SCHEMES

Let us start with the Langevin equation [6]

_�(r; t)�Dr

2

� = �@V=@�

�

+ �(r; t); (1)

that de�nes the time{spatial dependence �(r; t) of the

complex order parameter. Here the overpoint denotes dif-

ferentiation on time, r � @=@r, D is the inhomogeneity

parameter type of di�usion coe�cient,  is kinetic coe�-

cient, V (�) is synergetic potential (Landau free energy),

�(r; t) is stochastic source, normalized by conditions of

white noise

h�(r; t)i

0

= 0; (2)

h(�

�

(r; t)�(0; 0) + �(r; t)�

�

(0; 0))i

0

= 2T�(r)�(t):

The angular brackets with index 0 mean averaging over

bare distribution of value �, T is intensity of noise be-

ing the temperature for thermodynamic system. Fur-

ther, it is convenient to introduce the measure units

t

0

� (T )

2

=D

3

, r

0

� T=D, V

0

� T , �

0

� D

3

=(T )

2

for

time t, coordinate r, synergetic potential V , and stochas-

tic variable �, correspondingly. As a result, the motion

equation (1) takes the canonical form

_�(r; t) = ��V=��

�

+ �(r; t); (3)

where short notation is used for the variation derivative

�V=��

�

� �V f�g=��

�

= @V (�)=@�

�

�r

2

�; (4)

V f�g �

Z

V (�)dr:

Moreover, one has to put the coe�cient T = 1 in
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Eq. (3). Then the distribution of variable � acquires the

Gaussian form

P

0

f�g = (2�)

�1=2

exp

�

�

1

2

Z

j�(r; t)j

2

drdt

�

: (5)

The basis for construction of the �eld scheme is the

generating functional [7]

Zfu(r; t)g =

Z

Zf�g exp

�

1

2

Z

(u

�

� + u�

�

)drdt

�

D�; (6)

Zf�(r; t)g =

*

Y

(r;t)

�

�

_� +

�V

��

�

� �

�

det

�

�

�

�

��

��

�

�

�

�

+

0

; (7)

whose variation on an auxiliary �eld u(r; t) gives corre-

lators of observable values. Obviously, Zfug represents

the functional Laplace transformation of the dependence

Zf�g, appearance of �{function reects the condition

(3), the determinant provides transition from continual

integration over � to one over �.

A. Fluctuation as Grassmannian component

Further development of the �eld scheme is determined

by the type of connection between stochastic variable �

and order parameter �. For the thermodynamic system

where the thermostat state does not depend on the value

of �, this connection results in a constant value of the de-

terminant in Eq. (7) that can be chosen as unity. Then,

using integral representation of the �{function

�fx(r; t)g =

i1

Z

�i1

exp

�

�

1

2

Z

('

�

x+ 'x

�

) drdt

�

D' (8)

and averaging over distribution (5), we reduce the func-

tional (7) to standard form

Zf�(r; t)g =

Z

exp [�Sf�(r; t); '(r; t)g]D'; (9)

where the action S =

R

Ldrdt is measured in units

S

0

= 

2

(T=D)

3

to be determined by the Lagrangian

L(�; ') =

1

2

�

'

�

_� + ' _�

�

� j'j

2

�

(10)

+

1

2

�

�V

��

'+

�V

��

�

'

�

�

:

To obtain a canonical form of the Lagrangian (10) let

us introduce the Grassmannian �eld

� = � + �'; (11)

where the nilpotent coordinate � possesses the usual

properties

�

2

= 0;

Z

d� = 0;

Z

�d� = 1: (12)

As is shown in Appendix A, the �rst bracket of La-

grangian (10) takes the form

K =

1

2

Z

�

�

D�d� (13a)

inherent of the kinetic energy in the Dirac �eld scheme

[7]. Here the Hermite operator D is de�ned by equality

D = �

@

@�

+

�

1� 2�

@

@�

�

@

@t

(14)

and possesses the property (A.6). On the other hand, the

nilpotent properties (12) of Grassmannian coordinate �

allow to write down the second bracket in Eq. (10) in

standard form of potential energy (see Appendix A)

� =

1

2

Z

V (�)d�: (13b)

As a result, the Lagrangian (10) of the Euclidean �eld

theory is expressed in Grassmannian form

L = K + � =

Z

� d�; (15)

�(�) =

1

2

(�

�

D� + V (�)) :

According to Appendix A, this expression is invari-

ant with respect to Grassmannian transformation (A.7)

given by operator e

i"D

, " ! 0. So, operator D is the

generator of the Grassmannian group.

Giving in�nitesimal increment ��

�

to the �eld �

�

, it

is easy to see, that the action

Sf�(z)g =

Z

�(�(z))dz; z � fr; t; �g (16)

gets the addition �S = 0 if one satis�es the condition

D

��

�D�

�

+

��

��

�

= 0; (17)

playing a role of the Euler equation. Substituting here

the latter expression (16), we �nd the motion equation

D� + �V=��

�

= 0: (18)
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Projecting along the axes the usual and Grassmannian

variables gives a system of equations

_� = ��V=��

�

+ '; (19)

_' =

�

2

V

����

�

'+

�

2

V

��

�

��

�

'

�

; (20)

that determines the kinetic of phase transition. Being

obtained according to the extremum condition for La-

grangian (10) these equations determine the maximum

value of the probability distribution

P f�(r; t); '(r; t)g = Z

�1

exp

�

�

Z

L(�; ')drdt

�

; (21)

that speci�es the partition function Z � Zfu = 0g

in Eq. (6). The comparison of expression (19) with

Langevin equation (3) results in the conclusion that the

quantity ' determines the most probable value of the

uctuation � of the �eld conjugated order parameter. On

the other hand, this means transformation of the initial

one{modal distribution (5) to the �nal two{modal form

(21).

The kinetic equations (19), (20) can be obtained im-

mediately from the Lagrangian (10), but they do not

take into account a dissipation process. Introducing the

latter calls for the insertion of the dissipation function

R = (1=2)

R

j _�j

2

dr into the Euler equation

�

d

dt

�L

� _�

�

+

�L

��

�

=

�R

� _�

�

: (22)

Then the equation (20) takes the form of

_' = �' +

�V

��

�

+

�

�

2

V

����

�

'+

�

2

V

��

�

��

�

'

�

�

: (23)

The system of di�erential equations (19), (23) allows to

analyse the kinetic behaviour of the order parameter �(t)

and most probable uctuation '(t) at given potential

V f�g.

B. Conjugate �eld as Grassmannian component

It follows that expression (11) is not unique two{

component Grassmannian �eld that allows to develop a

consistent �eld scheme. Indeed, let us introduce the �eld

f(r; t) de�ned by the relation

_� = f + ': (24)

Then the Lagrangian (10) takes the form of

L(�; f) =

1

2

�

j _�j

2

� jf j

2

�

�

1

2

�

�V

��

f +

�V

��

�

f

�

�

(25)

+

1

2

�

�V

��

_� +

�V

��

�

_�

�

�

:

Being the total time derivative dV f�g=dt the latter

bracket gives the usual expression

Z =

Z

exp

�

�

V f�

f

g � V f�

i

g

2T

�

D�

i

D�

f

(26)

for the partition function as an integral over both the ini-

tial and �nal �elds �

i

(r; t), �

f

(r; t) (here we return to the

dimensional magnitude of the potential V ). The remain-

der of Lagrangian (25) results in the Euler equations

�� = �

�

�

2

V

��

�

��

f +

�

2

V

��

�

��

�

f

�

�

; (27)

f = ��V=��

�

: (28)

It is easily to show that these equations are equivalent

to the system of Eqs.(19), (20). Indeed, di�erentiation

of Eq. (19) over time gives Eq. (27) if Eqs. (20), (24)

are taken into account. As regards Eq. (28), it is just

a de�nition of the �eld f(r; t) conjugated to the order

parameter �(r; t).

Similarly to de�nition (11) let us introduce now an-

other Grassmannian �eld [8]

� = � + �f; (29)

whose components are the order parameter � and the

force f , Eq. (28). As is shown in Appendix A, the re-

placement of the second component ' in Eq. (11) by f

in Eq. (29) does not change the form of the Lagrangian

(16). However, the generator of the Grassmannian group

takes on quite a di�erent form

D = �

�

@

@�

+ �

@

2

@t

2

�

(30)

and possesses the other properties (A.9) than (A.7).

Within the framework of the presented two{

component �elds using one of expressions (11), (29) is

just equivalent. The mathematical reason is that the

�elds �

'

(�) � �+�', �

f

(�) � �+�f are connected by

the relations

G

2

�

�

'

(�) = �

f

(��); G

2

�

�

f

(�) = �

'

(��); (31)

obtained after the transformation given by the operator

(cf. Eq. (B.1)) G

�

� e

�@

, @ � (�=2)@=@t which shifts

the time t on the value ��=2.
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III. REDUCTION OF PROPER SUSY FIELD TO

THE TWO{COMPONENT FORM

The consideration presented in the foregoing section

is stated on the simplest proposition that in Eq. (7) the

Jacobian of transfer from the stochastic variable � to the

order parameter � is constant. However, in a general case

the analytical representation for arbitrary matrix A

detA =

Z

exp

�

�

�

 A 

�

d

2

 ; d

2

 = d

�

 d (32)

requires to introduce Grassmannian conjugate �elds

 (r; t),

�

 (r; t) that satisfy the conditions type of

Eqs.(12). The physical meaning of the appearance of new

freedom degrees  ,

�

 is that the thermostat state turns

out to be dependent on the order parameter | as it is

inherent of self{organized system [9]. As a result, elon-

gated Lagrangian (25) takes the form of

L =

1

2

�

j _�j

2

� jf j

2

�

�

1

2

�

�V

��

f +

�V

��

�

f

�

�

(33)

+

�

 

�

@

@t

+

�

2

V

��

�

��

�

 ;

where the total time derivative dV=dt is dropped and

Eqs.(3), (7) are taken into account.

Introducing the four{component SUSY �eld

� = � +

�

� +

�

 � +

�

��f; (34)

by analogy with the above SUSY Lagrangian is obtained

L =

Z

�d

2

�; (35)

�(�) �

1

2

�

�

�

�

D

�

D

+

� + V (�)

�

;

d

2

� � d

�

�d�;

where �,

�

� are Grassmannian conjugate coordinates that

replace �. In comparison with Eq. (16), where the ker-

nel � has the �rst power of the generator (30), here the

product takes place for the Grassmannian conjugate gen-

erators D

+

,

�

D

�

(see Eqs.(B.6)) that are obtained after

the action of operators (B.1) to the original generators

D =

@

@

�

�

+

�

2

@

@t

;

�

D =

@

@�

+

�

�

2

@

@t

: (36)

They possess the properties (A.12) and represent trans-

formations (A.13) of the proper SUSY group. The Euler

SUSY equation reads

(1=2)[

�

D

�

; D

+

]� + �V=��

�

= 0; (37)

where the square brackets denote the commutator. Pro-

jection along the SUSY axes 1,

�

�, �,

�

�� gives the motion

equations

�� = �

�

�

2

V

��

�

��

f +

�

2

V

��

�

��

�

f

�

�

+

�

3

V

j��j

2

���

�

  ; (38a)

f = ��V=��

�

; (38b)

_

 �r

2

 =

@

2

V

@�@�

�

 ; (38c)

_

�

 +r

2

�

 = �

@

2

V

@�@�

�

�

 ; (38d)

that transfer to the form of Eqs.(27), (28) at  =

�

 = 0.

Combining the last couple of these equations, we obtain

the conservation law

_

S +rj = 0 for the quantities

S =

�

  ; j = (r

�

 ) �

�

 (r ): (39)

In inhomogeneous thermodynamical systems S is a den-

sity of sharp boundaries, j is the corresponding current

[5]. In particular, the approach of the four{component

SUSY �eld relates to the strong segregation limit within

the copolymer theory [10]. For a self{organized system

the quantity S gives the entropy, j is the probability

current [9]. So, passing to the thermodynamic system

where the entropy is conserved we may drop the Grass-

mannian �elds  (r; t),

�

 (r; t) = const. As a result, the

four{component SUSY �eld (34) is reduced to the two{

component form (29).

It is easily to see that such a reduction is a consequence

of the SUSY condition

�

�D =

�

D�; (40)

that gives the connection

�

� +

�

 � + 2

�

��f = 0; (41)

reducing the SUSY �eld (34) to the form of

� = � + �

�

�f: (42)

Introducing nilpotent variable � � �

�

� with the di�er-

ential d� � d

�

�d�, one can see that � satis�es proper-

ties (12), but being rather commutating than anticom-

mutating the self{conjugated variable � = �� is not the

strong Grassmannian quantity. Nevertheless, the SUSY

�eld (34) provided that the SUSY condition (40) is sat-

is�ed takes the two{component form (29).

Despite the same number of components, it is neces-

sary to have in mind the di�erent physical meaning of the
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reduced SUSY �eld (42) and a couple of Grassmannian

conjugate chiral SUSY �elds (B.9) whose appearance is

a consequence of SUSY gauge invariance (see Appendix

B). The main distinction is that the �rst �eld contains

the Bose components �, f only, whereas the chiral SUSY

�elds �

+

, �

�

are the combinations of Bose � and Fermi

 ,

�

 components. Formally it is stipulated by the fact

that for the separation of the chiral SUSY �elds the con-

ditions (B.7) of the SUSY gauge invariance are ful�lled

not for the initial SUSY �eld �, satisfying conditions

(40), but for components �

�

, resulting from � by oper-

ators G

�

(see (B.1)).

In order to present visually the di�erence between the

two{component SUSY �elds given by Eqs.(42) and (B.9)

let us represent the SUSY �eld (34) as a vector in a four{

dimensional SUSY space with the axes �

0

=

�

�

0

� 1,

�

�,

�,

�

�� � ��. Then conditions (40) of the SUSY gauge in-

variance mean that the initial SUSY �eld (34) is reduced

to vector (29) belonging to a plane formed by axes 1, �.

Accordingly conditions (B.7) of the SUSY gauge invari-

ance results in splitting a total SUSY space into a couple

of orthogonal subspaces, the �rst of which possesses the

axes 1, � containing the vector �

�

, and second one |

axes 1,

�

� and vector �

+

. Because of the indicated SUSY

subspaces are Grassmannian conjugated (

�

�

�

= �

+

), it

is enough to use one of them, considering either the vec-

tor �

�

, or �

+

(see Appendix B). Such a program was

realized in Ref. [11], whereas the above used SUSY �eld

(29) is derived by projection of the chiral vectors �

�

on

a plane formed by axes 1, �. From this follows that the

approach stated below and theory [11] are equivalent.

The SUSY method presented in book [12] is based on

the usage of the chiral SUSY �elds too, however used

there de�nitions �

�

= ' � i

�

 �, �

+

= � +

�

� (compare

with (B.9)) contain, besides trivial introduction of the

imaginary unit, the uctuation ' as the Bose compo-

nent in the SUSY �eld �

�

and the order parameter � in

the SUSY �eld �

+

.
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APPENDIX A

For SUSY presentation let us rewrite the Lagrangian

(10) in the form of Euclidian �eld theory [7]

L = K +�; (A.1)

where the kinetic K and potential � energies are

K = '

�

_� + ' _�

�

� j'j

2

; (A.2)

� =

@V

@�

'+

@V

@�

�

'

�

: (A.3)

In order to obtain the SUSY form (13a) of kinetic energy

in the Lagrangian (10) one ought to determine the opera-

tor D. General form of the dependence on Grassmannian

coordinate � is presented by the expression

D = a+ b(@=@�) + c�+ d�(@=@�); (A.4)

where the coe�cients a, b, c, d are any functions of the

time derivative operator. Taking into account properties

(12), substitution of Eqs.(11), (A.4) into Eqs.(13a) re-

sults in relevant expression (A.2) if coe�cients are as

follows:

a = @=@t; b = �1; c = 0; d = �2@=@t: (A.5)

As a result the operator (A.4) takes the form (14).

Taking into account de�nitions (11), (12), (14) it is

easy to see that the operator D possesses the Hermite

properties. Analogously one obtains

D

2n

� = @

2n

�=@t

2n

; n = 1; 2::: (A.6)

The in�nitesimal operator � � e

�i"D

� 1 ' �i"D with

parameter "! 0 acts to the values t, � and � to results

in the addings

�t = �i"; �� = i";

�� = �i" ( _� � ') ; �' = i" _': (A.7)

Accordingly, the SUSY transformation gives for time and

Grassmannian coordinates the imagine additions of an

opposite sign, whereas the change of the order param-

eter is proportional to a di�erence between uctuation

and speed of change of the order parameter, whereas

change of the uctuation is proportional to its speed.

To prove the equivalence of the term (A.3) in La-

grangian (A.1) and the SUSY potential energy (13b) let

us carry out the formal expansion of thermodynamic po-

tential over powers of the component �' in Eq. (11):

� =

Z

�

V (�; �

�

) +

�

�V

��

' +

�V

��

�

'

�

�

�

�

d�: (A.8)

Here all terms of powers more then 1 are dropped ac-

cording to the nilpotent condition. Using the integration

properties (12), we obtain immediately Eq. (A.3) as it

needs.

In the case of SUSY �eld (29) the consideration is ful-

�lled in analogous manner. For shortness, let us point out

the di�erence with above{considered case (11) only. The

corresponding in�nitesimal transformation � ' �i"D re-

sults in the additions (cf. Eqs.(A.7))

�t = �i"; �� = i";

�� = �i"f; �f = i"

�

f: (A.9)
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Within frequency representation the variation of the ki-

netic energy being the �rst bracket in Eq. (25) is given

by expression

�K = !

2

(�

�

�� + ���

�

) � (f

�

�f + f�f

�

); (A.10)

! is frequency. Inserting here two last equations (A.9) we

obtain at once �K = 0. Correspondingly, the potential

energy in the Lagrangian (25) has variation

�� = �i"

�

�� +

@

2

V

@�

�

@�

f +

@

2

V

@�

�2

f

�

�

f

�

+ i"

�

��

�

+

@

2

V

@�@�

�

f

�

+

@

2

V

@�

2

f

�

f; (A.11)

where Eqs.(A.9), (28) are taken into account. From this,

according to the motion equation (27) we obtain �� = 0.

So, the transformation e

�i"D

with generator (30) belongs

to SUSY group. It is important, that parameter i" of this

transformation is pure imaginary.

Finally, four{component SUSY �eld (34) corresponds

to the couple of generators (36) that satisfy to conditions:

f

�

D;Dg = @=@t; [

�

D;D]

2

= @

2

=@t

2

; (A.12)

where curly and square brackets denote anticommutator

and commutator respectively. Transformations � ' �"D,

�

� ' "

�

D give

�� = 0; ��� = �"; �t = �"�=2;

�

�� = ";

�

��� = 0;

�

�t = "��=2; (A.13)

�� = �" ; � = 0; �

�

 = �"( _�=2 + f); �f = ��"

_

 =2;

�

�� = �"

�

 ;

�

� = "( _�=2� f);

�

�

�

 = 0;

�

�f = �"

_

�

 =2:

The variation of Lagrangian (34) results in zero if this

transformations and motion equations (38) take into ac-

count. The SUSY transformations bring to the Ward

identity [7]




�

  

�

= h�'

�

i : (A.14)

To prove it let us take into account that the left{

hand side is equal to

�

�

2

V=��

�

��

�

�1

in accordance with

Eqs.(21), (34). On the other hand, using the uctuation{

dissipation theorem and Eqs.(24), (28) we have h�'

�

i =

��=�' = (�'=��)

�1

= (�

2

V=��

�

��)

�1

, that needs prov-

ing. Lastly, the equation

Z

V (�)d

2

� = �

�

�V

��

f +

�V

��

�

f

�

�

+

�

 

�

2

V

����

�

 (A.15)

is obtained in analogy with Eq. (A.8) to represent in

SUSY form the terms in Eq. (34) that contain the po-

tential V f�g. It is worthwhile to mention that contrary

to the two{component case the transformation operators

e

�"D

, e

"

�

D

of the genuine SUSY group possess the param-

eters ", �" that are Grassmannian conjugated, but can be

chosen pure real.

APPENDIX B

Following standard �eld scheme [4], let us show how

the four-component SUSY �eld (34) is split into a couple

of chiral two{component �elds �

�

being Grassmannian

conjugated. These SUSY �elds are obtained from the ini-

tial SUSY �eld � as follows:

�

�

= G

�

�; G

�

� e

�@

; @ � (1=2)�

�

�(@=@t): (B.1)

Accordingly, the generators (36) of the SUSY group take

the form

D

�

= G

�

DG

�

;

�

D

�

= G

�

�

DG

�

: (B.2)

Taking into account the Grassmannian nature of the pa-

rameter @ in operators G

�

, it is convenient to rewrite

(B.2) in the following form:

D

�

= D � [@;D] ;

�

D

�

=

�

D �

�

@;

�

D

�

; (B.3)

where square brackets denote commutator.

According to Eq. (34) de�nitions (B.1) give

�

�

= � +

�

� +

�

 � +

�

�� (f � _�=2) ; (B.4)

where the point denotes the time derivative. Action of

the operators (B.3) on this equation gets

D

�

�

�

=  + � (f + _�=2)�

�

��

_

 ;

�

�

D

�

�

�

=

�

 +

�

� (f � _�=2) +

�

��

_

�

 ; (B.5)

where underlined terms concern only the upper indices

of the left{hand parts. Taking into account Eq. (B.4), we

obtain obvious expressions for the operators (B.3)

D

+

= @=@

�

� + �(@=@t); D

�

= @=@

�

�;

�

D

+

= @=@�;

�

D

�

= @=@� +

�

�(@=@t): (B.6)

Comparison with the initial generators (36) shows that

the action of the operator G

+

(G

�

) leads to the addi-

tion (subtraction) of the term (�=2)@=@t to the genera-

tor D. With transfer to the conjugate generator

�

D, the

operators G

+

, G

�

are replaced with respect to the addi-

tion (

�

�=2)@=@t. According to Eqs.(B.6) the transforma-

tion G

�

allows to reduce generator D to the derivative
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D

�

on Grassmannian coordinate

�

�, whereas conjugate

generator

�

D is reduced to derivative

�

D

+

= @=@� under

action of the operator G

�

(see Eqs.(B.2)).

By de�nition, the chiral SUSY �elds are �xed by the

gauge conditions [4]

D

�

�

�

= 0;

�

D

+

�

+

= 0; (B.7)

which in accordance with de�nitions (B.6) mean that �

�

does not depend on

�

�, and �

+

on �. On the other hand,

taking into account Eqs.(B.5), the gauge (B.7) results in

equations

 + � (f + _�=2) = 0;

�

 +

�

� (f � _�=2) = 0: (B.8)

Substituting them into Eq. (B.4), the �nal expressions

for the chiral SUSY �eld are obtained:

�

�

= � +

�

 �;

�

+

= � +

�

� : (B.9)

These equations give non{reducible representations of

the SUSY �eld (34) provided that gauge (B.7) holds true.
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