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The phase transition properties of the quantum spin{1/2 Ising model in a transverse magnetic

�eld are reconsidered with the help of the mean �eld approximation, the Ginzburg criterion, and the

renormalization group theory. A special attention is paid to the phase transitions whose properties

are determined by variations of the external transverse �eld and to the low{temperature phase

transitions due to temperature variations. The classical{to{quantum crossover is investigated in

details. A new crossover e�ect is established and discussed.
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I. INTRODUCTION

In this report, we shall consider the classical{to{

quantum dimensional crossover (CQC) [1,2] in systems

described by the quantum spin{1/2 Ising model in a

transverse magnetic �eld which is often referred to as

the \transverse Ising model" (TIM). The problem for

the CQC in quantum systems has been recently raised

again in view of the current interest in the properties

of low{dimensional magnetic systems. In the last years

the classical results [1,2] have been reconsidered and new

developments of the theory have been achieved [3]. Us-

ing the preceding mean{�eld (MF) [4,5] and renormaliza-

tion group (RG) [1,2] results here we shall investigate the

CQC within TIM in details. Besides, several new results

for the critical properties of TIM obtained by means of

the MF, the Ginzburg criterion (GC) [2] and the RG of

TIM, are reported. We shall show that the present MF

investigation can be used to introduce another crossover,

namely, the crossover from the high-temperature (HT) to

low{temperature (LT) critical properties of TIM; here-

after this crossover is referred to as HLTC.

The TIM is given by the Hamiltonian

H = �

1

2

X

ij

S

z

i

S

z

j

� �

X

i

S

x

i

; (1)

where S

i

, i = (x; y; z) are the components of the spins

taken to have a magnitude S = 1 (instead of the orig-

inal S = 1=2), J

ij

is the exchange interaction and � is

the magnitude of the transverse �eld. We shall assume

that TIM is de�ned on a D{dimensional regular lattice

with the lattice spacing a and the volume V = (L

1

:::L

D

),

where the L

i

are large (\in�nite") dimensions: L

i

� a;

i = (1; :::; D). The applications of this model to real

magnetic and ferroelectric systems have been thoroughly

enumerated and discussed in Ref. [4]. Previous theoreti-

cal work on TIM has been largely based on the MF [5],

series expansions [6], cumulant expansions [4], and RG

[7,8].

The main conclusion of the preceding investigations

[1,2] is that the asymptotic critical behaviour of the D{

dimensional TIM undergoes a simple dimensional CQC

of the type D ! (D + 1) when the critical tempera-

ture T

c

becomes equal to zero. The critical behaviour of

TIM at T

c

6= 0 belongs to the universality class (n;D)

with n = 1; n is the number of the order parameter

components [2]. This is the usual (\classical") critical

behaviour in a close vicinity of the \�nite" critical point

(T

c

6= 0), where the quantum correlations in the sys-

tem are irrelevant. Within the MF approximation (Sec-

tion III) the classi�cation of the phase transitions in uni-

versality classes becomes senseless because all standard

second{order transitions belong to one and the same uni-

versality class { the MF description, or the \MF univer-

sality class". We shall call the critical behaviour in this

case a \classical MF behaviour".

When T

c

! 0 the quantum correlations in TIM be-

come relevant to the critical behaviour because the ther-

mal wave length �

T

� (1=T ) [2] tends to in�nity. These

quantum correlations are the main reason for the appear-

ance of CQC [1,2].

Within the framework of the MF approximation we

shall show that several HT and LT phase transitions in

TIM exhibit nonuniversal features. The GC will be used

to determine the domains of validity of the MF results

in the (T;�) phase diagram. Besides, a quantum version

of the GC will be derived to demonstrate the CQC at

extremely low temperatures.

The RG recursion method of Wilson and Fisher com-

bined with a generalized �{expansion will be applied to

show that only the true (\quantum") zero{temperature

critical behaviour exhibits a CQC. The onset of CQC can

be observed at extremely LT evaluated in this paper. We

demonstrate that the quantum e�ects are irrelevant for

the bigger part of the HT and LT phase transitions in

TIM. On the basis of this circumstance and owing to
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the substantial di�erence between the HT and LT phase

transition properties, we introduce the HLTC.

II. FIELD COUNTERPART OF THE

TRANSVERSE ISING MODEL

The results in preceding investigations [4,8] can be

used to show that the �eld counterpart of the TIM can be

written in the form of a �

4

{Hamiltonian of the Bose �eld

�(q), where the (D + 1){dimensional vector q = (!

l

;k)

is given by the Matsubara frequency !

l

= 2�lT (for

�h = 1) and the wave vector k = fk

i

; i = 1; :::; Dg. The

�

4

{Hamiltonian (H = H=T , k

B

= 1) is

H =

1

2

X

q

[�

2

l

+ 1�

J(k)

�

th(��)]j�(q)j

2

(2)

+

1

V

X

q

i

U(�; J ; q

i

)�(q

1

)�(q

2

)�(q

3

)�(�q

1

� q

2

� q

3

);

where �

l

= !

l

=2�, V is the volume, and the bare vertex

U is an analytical function of q. For our purposes the

q{dependence of U is irrelevant and we shall present the

value of this quantity for q = 0, namely, u = U(�; J ; q

i

=

0), given by

u =

a

D

J

2

(0)

4!T

2

�u; (3)

where

�u = 3

�

T

�

�

3

�

th

�

�

T

�

�

�

T

+

�

T

th

2

�

�

T

��

: (4)

As is usual, we apply the long wavelength approximation

(LWLA) [9] to the quadratic (�

2

�) part of the model

(2). We shall use the example of the nn interactions in

a simple cubic lattice, but this has no consequences for

the results in this report. Performing standard calcula-

tions in the LWLA and some transformations of the wave

components k

i

we obtain the quadratic part H

2

of the

Hamiltonian (2) in the form

H

2

=

1

2

X

q

G

�1

0

(q)j�(q)j

2

: (5)

The (bare) correlation function will be

G

�1

0

(q) = (t

0

+ k

2

+ �

2

l

) (6)

with

t

0

=

�

1�

J

�

th

�

�

T

��

; (7)

where J � J(0) = 2DJ

0

is a product of the number

z = 2D of nearest neighbour nn spins and the constant

J

0

of the single (i � j) nn interaction (J

0

= J

ij

for nn

sites i and j). The assumption for nn interactions does

not restrict the generality of the present consideration,

because it is valid for a large class of short{range interac-

tions [9]. The �

4

{interaction part of the Hamiltonian is

represented again by the corresponding term in Eq. (2),

where we must substitute U with the interaction param-

eter u

0

of the form

u

0

=

J

2

T

8�

3

�

th

�

�

T

�

�

�

T

+

�

T

th

2

�

�

T

��

: (8)

In this variant of the theory, the dimensionless wave com-

ponents k

i

are given by k

i

= 2�an

i

�=L

i

, where

� =

r

Jth(�=T )

2D�

(9)

and n

i

= 0;�1; ::: The upper cuto� � of the magnitude

k(= jk

i

j) of the wave vector components is de�ned by

� = 
�� , where 
 is a small number (
 � 1) [9].

All quantities in the last version of the �eld Hamil-

tonian (H = H=T ) are dimensionless. The volume V =

(L

1

:::L

D

) of the lattice participating in the �

4

{part of

Eq. (2) must be substituted by (V=a

D

) = N { the num-

ber of spins; hereafter we shall set a = 1 and, hence,

V = N . The dimensionless Matsubara frequencies �

l

de-

scribe the quantum e�ects [1,2].

III. MEAN FIELD RESULTS

We shall reconsider the MF results [5] for the TIM be-

cause we want to clarify the properties of this model at

T = 0. Besides, we shall present a detailed comparison

of the MF results for the classical (T

c

= J , �

c

= 0) and

the zero{temperature (T

c

= 0, �

c

= J) critical points.

Within the standard MF approximation we shall con-

sider only the uniform mode �(0) of the �led �. In this

variant of the theory the quantum e�ects are ignored

(�

l

= 0).

It will be more convenient to use the MF free en-

ergy F = TH[�(0)] instead of the dimensionless MF

free energy H[�(0)]. This choice, after a change of the

nonequilibrium order parameter from �(0) to �

0

=

(T=V )

1=2

�(0), will produce an extra factor 1=T in front

of the �

4

0

{term of the free energy F , which makes it possi-

ble to avoid di�culties in our further analysis connected

with the de�nition of the order parameter �

0

at T = 0.

The problem is related to the fact, that the parameter

u

0

is proportional to T , see Eq. (8), and the investiga-

tion within the original parameter �(0) will produce a

result for the equilibrium order parameter of the form

�(0) � (1=T )

1=2

which is divergent for T ! 0. The Gibbs

thermodynamic potential in the form
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F = V [

t

0

2

�

2

0

+

u

0

T

�

4

0

] (10)

allows a correct MF analysis at low temperatures.

The presence of the extra factor 1=T in the second

term of F in (10) cannot be interpreted as a manifes-

tation of the CQC in a primitive MF variant although

the CQC is usually followed by a change of the interac-

tion constant u to v � (u=T ) [1,2]. The reason is that

no quantum e�ects are present in Eq. (10). The above

construction is made rather to avoid a wrong interpreta-

tion of the MF zero{temperature phase transition point

(T

c

= 0) as a tricritical point [2].

The analysis of the free energy (10) can be made in

a straightforward way and we shall not present it in de-

tails. Moreover, a bigger part of the results, which we

mention in our discussion, are known from the preced-

ing papers (see Refs. [4,5]). Our aim is to establish a

detailed picture of the LT behaviour of TIM in the MF

approximation as the basis of RG studies. In order to

demonstrate the speci�c features of the LT critical prop-

erties of TIM we shall compare them with the critical

properties at the HT critical points (T

c

� J).

The MF phase diagram of TIM is given by t

0

(T

c

;�) =

0 or, which is the same by t

0

(T;�

c

) = 0; see the phase

diagram (T;�) given in Fig. 1. The curve of the second

order phase transition is given by

T

c

(�) =

�

Arth(

�

J

)

(11)

or, equivalently by �

c

(T ), which can be determined by

solving the transcendental equation

�

c

J

= th

�

�

c

T

�

: (12)

Despite the simple form of Eq. (10) the critical prop-

erties of the TIM cannot be investigated analytically for

the whole curve T

c

(�) because of the quite complex de-

pendence of the parameters t

0

and u

0

on T and �. Here

we shall consider two limiting cases:

(i) The HT critical behaviour in the vicinity (jT�J j <

J) of the \classical" critical point T

c

(0) = J and near the

neighbouring critical points [T

c

(�) � J;�� J ].

(ii) The LT critical behaviour in the vicinity (j� �

J j < J) of the zero{temperature critical point [T

c

(J) =

0;�

c

(0) = J ] and the neighbouring critical points with

coordinates T

c

� J and �

c

� J .

The four typical ways of crossing of the phase transi-

tion curve in the HT and LT regimes are shown in Fig. 2.

We shall investigate the critical behaviour of the HT crit-

ical point �

c

= 0 along the HT lines 0{J and A{J as well

as the critical behaviour near a neighbour critical point

�

c

� 0 along the HT lines a{a and b{b (Fig. 2). In similar

way, four thermodynamic processes along the LT lines 0{

J,A{J, a{a, and b{b, as shown in Fig. 2, will be discussed

for the zero{temperature critical point (T

c

= 0;�

c

= J)

and for neighbouring LT critical points (T

c

� 0;�

c

� J).

Fig. 1. The graphical representation of Eq. (11) for J = 1.

Fig. 2. The HT and LT regions of the phase diagram. The

notations are explained in the text.

The intermediate critical points, say, (T

c

� �

c

) can be

investigated only by a numerical analysis. There exists

a smooth crossover between the classical (T

c

= J) and

the zero{temperature (T

c

= 0) critical regimes when the

parameter � varies from zero to J .

A. High Temperature Properties

In this regime we consider the part of the phase dia-

gram (Figs. 1 and 2), where T � �.

1. Line 0{J

The critical behaviour along the line � = 0 completely

coincides with that of the classical Ising model in the

MF approximation [2,9]. In this case the parameters t

0

and u

0

in (10) take the usual values t

0

= (T � J)=T and

u

0

= J

2

=12T

2

[2,9].
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2. Line b{b

The shape of the curve T

c

(�) for � � 0 is given by

T

c

(�) � J � �

2

=3T

2

. The magnetic susceptibility �

T

for

� � 0 is

�

T

�

T

c

jT � T

c

j

[1 + 0(�

4

=T

4

c

)]: (13)

The corrections 0(�

2

=T

2

c

) are irrelevant. The su�x \T"

of �

T

denotes that the main dependence of the suscep-

tibility is on the temperature T . The critical exponent




T

of the susceptibility with respect to variations of T is




T

= 1. The order parameter has also a classical (MF)

behaviour, j�j

2

� (T

c

� T ), described by the critical ex-

ponent �

T

= 1=2 and negligible corrections 0(�

2

=T

2

c

) to

the main T{dependence. In general, this is the usual MF

behaviour (x III.A.1) of the classical Ising model (� � 0)

with small �{corrections 0(�

2

=T

2

c

).

3. Line A{J

The critical behaviour along the line A{J given by

T = J is described by

t

0

=

1

3

�

�

J

�

2

+ 0(�

4

=J

4

): (14)

and, hence, the magnetic susceptibility �

(>)

�

in the para-

magnetic phase (�

0

= 0) is �

(>)

T

= t

0

= 3J

2

=�

2

. The

su�x \�" in �

(>)

�

denotes that the susceptibility is calcu-

lated for variations of the parameter � at �xed T and the

superscript \>" denotes that the calculated value of this

quantity is only valid in the para{phase (�

0

= 0). The re-

sult for the susceptibility �

(>)

�

obtained above yields the

critical exponent 


(>)

�

= 2. The value 


(>)

�

= 2 corre-

sponds to the universality class of the three dimensional

(D = 3) spherical model [2].

4. Line aa

Along the HT line a{a, where T � J , u

0

= J

2

=12T

2

�

1=12, we obtain

j�

0

j

2

� �

�1

� jt

0

j; (15)

where

� �

3T

3

c

2J�

c

1

j�� �

c

j

�

3J

2

2�

c

1

j�� �

c

j

; (16)

for (�

c

! 0

+

). This result corresponds to the usual MF

behaviour (


�

= 1, �

�

= 1=2) of the Ising model, but

the scaling amplitudes are very large (�

�1

� 1). For this

reason the critical behaviour along the line aa is quite un-

usual. For �� �

c

and �

c

! 0, this behaviour smoothly

tends to the critical behaviour explained in x III.A.3.

It can be concluded that the behaviour along the HT

lines 0{J and b{b belongs to the usual MF predictions

whereas the MF critical behaviour along the HT lines

A{J and a{a is quite special. The latter has a similar-

ity with the critical behaviour predicted by the spherical

approximation for the Ising model [2].

B. Low Temperature Properties

Here we consider the domain T � � of the phase dia-

gram shown in Figs. 1 and 2.

1. Line 0{J

We obtain t

0

� (��J)=�, �

0

� jt

0

j

1=2

, �

�

� �=j��J j

and, therefore, 


�

= 1 and �

�

= 1=2. There exists a full

coincidence between the standard MF behaviour with re-

spect to variations of T around J at � = 0 (see x III.A.1)

and the present critical behaviour due to variations of �

around J at T = 0. This correspondence can be written

as T $ �.

2. Line bb

The parameter t

0

is

t

0

�

J(� � �

c

)

�

2

c

(1�

4�

c

T

e

�2�

c

=T

+ :::): (17)

Here t

0

tends to the value (� � J)=� when �

c

(T ) ! J

for T ! 0; see x III.B.1. The critical exponents are the

same as those given in x III.B.1.

3. Line A{J

As in x III.A.3 there is no ordering along the line A{J.

However, the other features of the transition along this

line are quite di�erent from those presented in x III.A.3.

The susceptibility above the zero{temperature critical

point (�

c

= J) is

�

(>)

T

=

1

2

e

2J=T

(18)

and, hence, 


(>)

T

= 1. This behaviour is quite di�erent

from that along the HT line A{J (x III.A.3). The reason

is in the di�erent behaviour of the functions t

0

(T;�) and

u

0

(T;�) in the HT and LT regimes.
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4. Line aa

Along the line a{a

t

0

�

4J(T � T

c

)

T

2

c

e

�2�=T

c

(19)

and, therefore, for both T < T

c

and T > T

c

, �

T

�

1=jt

0

j, and 


T

= 1. However, the amplitude �

(0)

�

(TT

c

)exp(2�=T

c

) of the scaling relation �

T

= �

(0)

=(T �

T

c

) exponentially increases at T

c

! 0 and this is the

manifestation of an unusual behaviour that might be of

interest to experiments.

There exists a smooth transition from this behaviour

to the exponential behaviour mentioned in x III.B.3. In

order to obtain (19) from (18) one should consider that

J jT � T

c

j � T

2

c

. As (u

0

=T ) � J

2

=8�

3

for (� � J � T ),

we have �

0

� jt

0

j

1=2

with t

0

given by (19), which means

that the order parameter exponent has the classical value

�

T

= 1=2, but the scaling amplitude [� T

�1

c

exp(��=T

c

)]

of the order parameter exponentially decreases for

T

c

! 0.

The critical properties along the HT and LT lines a{a

have a similarity because they have equal critical expo-

nents and large amplitudes of the scaling laws. But the

di�erence between these cases is in the form of the large

scaling amplitudes. While the HT scaling amplitudes are

divergent at the critical points by power laws, the same

divergency in the LT case is given by exponential laws.

C. Comparison of High and Low Temperature

Properties. Crossover from the Former to the Latter

In general, there are similarities between the MF crit-

ical properties at HT and LT. The MF behaviour along

the HT and LT lines 0{J are the same. Along the lines

b{b, the critical properties are the same, too apart from

the form of unessential corrections. The critical proper-

ties along the HT and LT lines a{a are di�erent owing to

the form of the scaling amplitudes. While the HT scaling

amplitudes are divergent at the critical points by power

laws, the divergency of the scaling amplitudes in the LT

case is given by exponential laws. The most essential dif-

ference between the critical properties at HT and LT oc-

curs along the lines J{A. The critical properties on these

lines are quite unusual.

The di�erences between the HT and LT properties of

TIM mean that there is a \high{to{low temperature"

crossover (HLTC) in the properties of the phase transi-

tions in TIM. This picture has been outlined within the

MF approximation, in which the quantum e�ects are ne-

glected. As we shall see in the next Section there are large

domains in the LT region of the phase diagramwhere the

quantum e�ects are irrelevant and the classical descrip-

tion is consistent. Besides, we shall show by the GC that

the MF results are valid in broad domains around of the

phase transition curve T

c

(�).

IV. GINZBURG CRITERION

The (T;�) domains of validity of the MF results in

Section III can be investigated by the Ginzburg criterion

(GC) [2]. Here we shall use a standard derivation of this

criterion from the �rst{order perturbation contribution

to the \self{energy" t

0

[2]:

~

t

0

= t

0

+ 12u

0

A

1

(t

0

) (20)

with

A

1

(t

0

) =

Z

d

D

k

(2�)

D

S

1

(t

0

; k); (21)

where

S

1

(t

0

; k) =

� cth(

�

T

p

k

2

+ t

0

)

T

p

k

2

+ t

0

: (22)

The perturbation insertion [12A

1

(0)] to the coordinates

of the critical points (T

c

;�

c

) will be neglected as being

irrelevant to the present discussion. The GC for the va-

lidity of the MF results is given in the general form [2]:

jt

0

j > 12u

0

[A

1

(0)�A

1

(t

0

)]: (23)

The GC (23) is valid for both the paramagnetic (t

0

> 0)

and the ferromagnetic (t

0

< 0) phases; in the ferromag-

netic phase the factor 1=2 should be added to the r.h.s.

of (23).

Because of the di�culties in the analytical treatment

of the integral (21) for any T and �, we shall consider

two limiting cases:

�

T

p

t

0

� 1 (24)

and

�

T

p

t

0

� 1: (25)

As the small wave numbers (k � 0) give the main con-

tribution to the integral (21) near the critical points

(t

0

� 0), the limiting cases (24) and (25) determine the

two main critical regimes: the classical critical regime

corresponding to the case (24) and the quantum critical

regime corresponding to the case (25).

Inequality (24) can be written by the two relevant

lengths in TIM, the correlation length � = 1=jt

0

j

1=2

of the thermal (classical) 
uctuations, and the thermal

wave length �

T

� (�=T ) [2] of the quantum correla-

tions (sometimes referred to as quantum 
uctuations).

Thus the inequality (24) means that �

T

� � and, hence,
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that the quantum e�ects are irrelevant for the quasi-

macroscopic critical behaviour in the corresponding do-

main of the plane (T;�). The inequality (25) means, that

the quantum correlations with the characteristic length

�

T

� � may drastically change the critical behaviour

in certain LT and HT domains of the plane (T;�). An

important di�erence between the classical and the quan-

tum critical properties, namely, the e�ective change of

the spatial dimensionality of the 
uctuation modes �(q),

is described by the CQC mentioned in Section I.

For HT (T � �), the inequality (24) is always ful�lled

(remember, that t

0

< 1). This means that the classical

domain in the (T;�) plane de�ned by (24) covers the

whole HT domain. As we shall see, it covers also a part

of the LT domain (T � �). In the LT domain (T � �)

the critical behaviour can be either a classical behaviour,

namely, corresponding to the inequality (24), or, a quan-

tum behaviour corresponding to (25). This means that

the LT phase transitions in TIM can exhibit both classi-

cal and quantum critical phenomena. The CQC crossover

does not occur for all critical phenomena in the LT do-

main, as it will be demonstrated in the remainder of this

paper.

The classical critical phenomena are considered by the

classical (usual) version of the GC which will be referred

to as CGC. In contrast, the quantum critical phenomena

should be treated by the quantum version of the same

criterion which will be referred to as QGC.

The MF picture of the critical behaviour outlined in

Section III do not include quantum e�ects. It is a product

of classical phenomena only. Having in mind this circum-

stance it seems that the consistent investigation of the

domains of validity of the MF results along all HT and

LT lines considered in Section III should be made by the

CGC, where quantum e�ects are not taken into account,

too. While this is the systematic approach to the prob-

lem, it must be emphasized that the CGC is valid only

under condition (24). Therefore, we must derive and ap-

ply the QGC to the MF behaviour in certain LT cases,

in which the condition (24) is not satis�ed (see x IV.A.2

and Section IV.B). Note, that the wrong choice of the

GC leads to a wrong conclusion about the lack of any

(T;�) domain of validity of the MF results or about im-

proper restrictions on the validity of these results (see

x IV.A.2 and x IV.B.1).

A. Classical Ginzburg Criterion

Using the inequality (24) and performing standard cal-

culations with the help of Eqs. (21){(23) we obtain the

CGC

jt

0

j

(4�D)=2

> 12u

0

C

D

; (26)

where 2 < D < 4, C

D

= K

D

�(1 � D=2)�(2 � D=2)

with K

D

= 1=2

D�1

�

D=2

�(D=2). The only integer di-

mensionality D between the upper critical dimensional-

ity D

U

= 4 and the lower critical dimensionalityD

L

= 2

is D = 3. For the sake of simplicity we shall consider 3D

systems, i.e. systems of dimensionality D = 3.

For D = 3, the CGC (26) becomes

jt

0

j >

�

6

�

�

2

u

2

0

: (27)

For HT, this CGC takes the form

jt

0

j >

J

4

4�

2

T

4

; (28)

where we have used the HT value u

0

= (J

2

=12T

2

). For

LT the CGC (27) reads

jt

0

j >

�

3

4�

�

2

J

4

T

2

�

6

; (29)

where the LT value u

0

= J

2

T=8�

3

has been used; see Eq.

(8) for T � �.We shall neglect terms of order 0(jT�T

c

j

2

)

and 0(j�� �

c

j

2

). Moreover, factors of type (J=T ) in the

r.h.s. of inequalities corresponding to HT will be often set

equal to unity. The same will be done for factors of type

(�=J) and (�

c

=J) in the r.h.s. of inequalities correspond-

ing to LT. For example, in (28) we can set (J=T )

4

� 1,

and in (29) the factor (J=�)

4

can also be equalized to

unity. All these approximations are consistent with the

scope of validity of the Landau expansion in powers of

the order parameter.

1. Classical Ginzburg Criterion for High Temperatures

Using Eqs. (13) and (28) we obtain that the MF results

along the HT line b{b are valid for

jT � T

c

j > 0:025(J=T )

4

T

c

: (30)

One should add to this condition the requirement for

the validity of the Landau expansion in powers of the

order parameter � [2], namely jT � T

c

j < T

c

. By setting

T

c

= J in (30) one obtains the CGC along the HT line

0{J (x III.A.1).

In the same way one may use Eqs. (14) and (28) in

order to show that the CGC along the HT line A{J will

be: � > 0:3J . The latter yields quite a strong restriction

in view of the fact that the HT condition is �� J . For

the HT line a{a we have the criterion

j�� �

c

j > 0:04J

3

=�

c

T; (31)

where (J

3

=�

c

T ) � (J

2

=�

c

). In this case the applicability

of the MF results is also quite restricted because of the

additional conditions J � �� �

c

� �.

It can be concluded that the MF results for the HT

critical behaviour produced by T{variations around the

value T � J at �xed � � J have a well established
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broad region of validity outside the Ginzburg critical re-

gion. However, the validity of the HT MF results related

with variations of the parameter � at �xed T (� J) is

quite restricted.

2. Classical Ginzburg Criterion for Low Temperatures

Along the line 0{J, the temperature is equal to zero

and, hence, condition (24) cannot be ful�lled. Therefore,

the CGC cannot be applied to this case. The critical

behaviour along the line 0{J does not belong to the

classical domain and the region of validity of the MF

results in x III.B.1 should be determined by the QGC

(Section IV.B).

For the critical behaviour along the LT line b{b condi-

tion (24) is ful�lled for

j�� �

c

j �

�

�

c

�

�

2

T

2

J

; (32)

where �

c

� � � J , and J � T . The criterion (29) yields

j�� �

c

j > 0:06

J

3

T

2

�

4

: (33)

Conditions (32) and (33) can be satis�ed only for � �

(J=2), which is a very strong restriction. The latter sim-

ply means that the criterion (33) does not work for LT

critical points (� � �

c

� J). The correct criterion is

deduced in x IV.B.1 with the help of the QGC.

The MF critical behaviour shown by the LT line A{J

is valid for

J

T

> 0:17e

J=T

; (34)

whereas the CGC for the LT line a{a is

jT � T

c

j > 0:01

�

T

4

c

J

3

�

e

2J=T

c

: (35)

Conditions (34) and (35) present quite restricted regions

of validity of the corresponding MF results.

B. Quantum Ginzburg Criterion

If condition (25) is ful�lled, Eqs. (21) and (22) will

yield

A

1

(t

0

) =

�

T

Z

d

D

k

(2�)

D

1

p

k

2

+ t

0

: (36)

Criterion (23) takes the form

jt

0

j > 12u

0

K

D

Z

dk:k

D�1

�

1

k

�

1

p

k

2

+ t

0

�

; (37)

where 1 < D < 3 and v

0

= (�=T )u

0

. As the quantum

correlations are taken into account in criterion (37), we

obtain that the quantum lower critical dimensionality is

D

(q)

L

= 1 = (D

L

� 1) and that the quantum upper crit-

ical dimensionality is D

(q)

U

= 3 = (D

U

� 1). The last

relationships between the critical dimensionalities in the

classical and the quantum regimes is a manifestation of

the CQC: D ! (D + 1).

1. D = 2

In order to avoid an unnecessary complexity in our

analysis we shall focus our attention in the case of 2D

systems (D = 2). We calculate integral (37) for � = 1

at D = 2 and obtain the QGC in the form

jt

0

j >

�

6

�

�

2

v

2

0

; (38)

c.f. Eq. (27). Having in mind that for LT v

0

= J

2

=8�

2

,

we obtain

jt

0

j >

�

3

4�

�

2

�

J

�

�

4

: (39)

The criterion (39) cannot be applied to the behaviour

along the LT line J{A, where inequality (25) is not valid

for J � T . Along the LT line a{a, inequality (25) yields

jT � T

c

j �

T

4

c

4J

3

e

2J=T

c

: (40)

This condition combined with the Landau condition

jT � T

c

j < T

c

and the LT condition (T � �) yields

that there is not any (T;�) domain of applicability of

the QGC to the critical behaviour along the LT line a{a.

Along the line b{b we obtain the QGC in the form

j�� �

c

j > 0:06�

c

�

J

�

c

�

3

� 10

�2

�

c

: (41)

Setting �

c

= J in this criterion we �nd the QGC along

the LT line 0{J. Because of the very sharp slope of the

transition curve T

c

(�) near � = J , the QG criterions

along the lines b{b and 0{J are practically the same.

The Ginzburg critical region (� 10

�2

�

c

) given by (41) is

relatively large; c.f. (30).

The quantum condition (25) along the LT line b{b can

be written in the simple form J(j���

c

j)� T

2

provided

one sets (�=�

c

)

2

� 1. As J � T , the condition becomes

j�� �

c

j > T; (42)

187



L. DE CESARE, L. I. RABUFFO, D. I. UZUNOV

which is obviously consistent with (41). Condition (42)

shows that the quantum region approaches the critical

point �

c

when T decreases to zero [1]. On the one hand,

the whole surrounding of the zero{temperature critical

point (�

c

= J) is in
uenced by the quantum e�ects

which produce the CQC. On the other hand, however,

criterion (41) shows that the size of the critical region

does not tend to zero for T ! 0. Therefore, the \quan-

tum" critical behaviour (T = 0) is a result of the usual

classical 
uctuations which, owing to the quantum e�ect

of the dimensional crossover, act in (D+1) rather than in

D spatial dimensionalities. There are no new (quantum)

critical modes but rather (D + 1){dimensional classical

(thermal) 
uctuations. The latter exist as strongly inter-

acting modes for any T � 0 provided �

c

� J > 0; see

(41).

C. Discussion

The application of the CGC to HT has been shortly

discussed in the end of x IV.A.1. It has been shown in

x IV.A.2 that the CGC cannot be applied to the phase

transitions along the lines LT 0{J and b{b because these

transitions belong to the quantum regime, where the

CGC is not valid. The quantum e�ects manifest them-

selves in the properties of the phase transitions along the

mentioned lines and this is the single case of a quantum

critical behaviour in TIM. The latter is a pure classical

behaviour in (D + 1) rather than D spatial dimension-

alities. The same classical behaviour has been investi-

gated within the MF approximation (Section III), where

quantum e�ects are not present. Therefore, in x IV.B.1

we have tested the classical MF results for the phase

transitions in the quantum regime by the QGC and we

have con�rmed that these results have a region of valid-

ity near the LT phase transition points. The investigation

has been based on the fact that the MF results do not

include quantum e�ects and that they should be tested

with those versions of the GC which are valid in the cor-

responding domains of the (T;�) plane. In this way we

have obtained well established regions of validity of the

MF behaviour predicted for the \quantum transitions"

along the LT lines 0{J and b{b.

Alternatively, the QGC cannot be applied to the phase

transitions along the LT lines J{A and a{a, because these

transitions belong to the classical region. Although the

line a{a can be situated very near to the line J{A and,

hence, the phase transition temperature T

c

can be very

near to zero, the transition along this line remains in the

classical domain because of the very sharp slope of the

phase transition curve T

c

(�) in a close vicinity of �

c

= J .

Finally, we note, that the MF results for the proper-

ties of the HT transitions driven by �{variations and of

the LT transitions driven by T{variations (lines A{J and

a{a) have more narrow regions of validity than the MF

results for the corresponding phase transitions along the

lines 0{J and b{b.

V. RENORMALIZATION GROUP ARGUMENTS

The RG recursion relation [2] for the interaction pa-

rameter u

0

in the one{loop approximation is

u

0

0

= b

4�D

u

0

[1� 36u

0

A

2

(0; b)]; (43)

where b > 1 is the RG rescaling factor and

A

2

(t

0

; b) = �

@A

1

(t

0

; b)

@t

0

: (44)

In Eq. (44) A

1

(t

0

; b) is the integral (21) with lower

(0 < b

�1

< 1) and upper (� = 1) cuto�s of the wave

number k.

The other recursion relations are

t

0

0

= b

4�D

[t

0

+ 12u

0

A

1

(t

0

; b)]; (45)

and

�

�

T

�

0

= b

z

�

�

T

�

; (46)

where the dynamical critical exponent z is equal to unity

in this order of the theory (z = 1).

A. Classical Renormalization Group

If condition (24) of the classical behaviour is valid, the

integral A

2

(0; b) has a logarithmic infrared divergence at

the upper critical dimensionality D

U

= 4. For D = 4,

A

2

(0; b) = K

D

lnb. Further, using the standard RG anal-

ysis [1] one reveals the usual universality class of the crit-

ical behaviour of the classical Ising model (� = 0). Thus

one can prove that the asymptotic critical behaviour in

the Ginzburg critical region along the HT lines 0{J and

b{b will belong to the nontrivial Ising class of universality

(1; D) rather than to the simple MF behaviour. The crit-

ical behaviour is described by the familiar � = (4�D){

corrections to the MF critical exponents [2].

Under the same classical condition (24), the RG yields

a nontrivial critical behaviour for all HT phase transi-

tions. The behaviour along the HT lines 0{J and b{b be-

longs to the Ising universality class (1; D), but the other

HT transitions exhibit new unusual properties. In or-

der to clarify this point it is more convenient to de�ne

the distance from any critical point (T

c

;�

c

) by the pa-

rameter t

0

rather than by the di�erences jT � T

c

j and

j� � �

c

j. In this way the critical exponents will be de-

�ned as exponents describing scaling laws with respect

to the quantity t

0

. Under this stipulation, the classical

condition (24) and the corresponding RG analysis lead

to the familiar critical exponents of the universality class

(1; D) for all phase transitions for which the HT condi-

tion (T � �) is also satis�ed. The scaling laws in powers
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of t

0

will have the � = (4 � D){corrections correspond-

ing to the universality class (1; D). The real critical be-

haviour in terms of jT�T

c

j or j���

c

j will be determined

by the latter result and the MF prediction for the func-

tion t

0

(T;�). For example, the values the MF spherical

exponents deduced for the behaviour along the HT line

A{J will acquire standard �{corrections. This is a quite

unexpected prediction about the critical behaviour along

the HT line A{J. Along the HT line b{b we obtain a stan-

dard (1; D){behaviour with large scaling amplitudes.

The LT behaviour along the LT lines A{J and a{a

satis�es the classical condition (24). In this case we must

use the classical RG equations with the upper dimen-

sionality D

U

= 4, but the (bare) parameters t

0

and u

0

should be taken with their LT values. In particular we

must use the value u

0

= v

0

(T=�), where v

0

= J

2

=8�

2

.

Although u

0

! 0 for T ! 0, the formal solution of the

RG equations will yield again the universality class (1; D)

for all dimensionalities 2 < D < 4 and T > 0. Therefore,

the exponential dependence explained in x III.B.3 will be

modi�ed by �{corrections to the numerical exponential

factor (�2) in t

0

. The �{corrections can be easily found

by using t

0

= 2exp(�2J=T ) and performing the stan-

dard RG calculation of the critical exponent 
 [2]. In the

same way one may perform the RG treatment along the

LT line a{a, where the universality class (1; D) is char-

acterized with anomalously large scaling amplitudes. In

this case, the critical behaviour remains within the uni-

versality class (1; D).

B. Quantum variant of Renormalization Group

The critical behaviour along the LT lines 0{J and b{b

is described by the quantum version of the RG. The rea-

son is that the quantum condition (25) should be applied

for this case. It is not di�cult to show that the RG Eq.

(43) should be transformed to [1,2]

v

0

0

= b

3�D

v

0

[1� 36v

0

K

3

lnb]: (47)

Now the RG equations are written in terms of parameters

t

0

and v

0

. The upper quantum critical dimensionality is

D

(q)

U

= 3 and the asymptotic critical behaviour for di-

mensionalities D < 3 belongs to the Ising universality

class (1; D + 1). This is the RG proof of the CQC [1].

The proof is valid in that LT region of the phase dia-

gram (T;�), where both the LT condition (T � �) and

the quantum condition (25) are ful�lled.

Remember inequality (42). It means that, in a strict

mathematical sense, the CQC occurs only along the zero

temperature line 0-J which is practically inaccessible

for experiments. This phenomenon is valid only for the

phase transition at the zero{temperature critical point

(T

c

= 0;�

c

= J), provided the latter is crossed by �{

variations at T = 0. The Ginzburg region (� 10

�2

J)

around the quantum critical point remains �nite and

even relatively large; see (41). This means that the CQC

describes classical 
uctuations at T = 0 for all values

J > 0 of the exchange parameter. At T = 0, owing to

the inequality (41) which leads to the CQC, these well

known classical 
uctuations are e�ectively described in a

\classical" (D+1){dimensional system. The same picture

has been shown with the help of the GC (Section III).

Along the LT line b{b there is a narrow region around

the critical point (T

c

� 0;�

c

� J), where the condition

(25) breaks down; see inequality (42). In this narrow re-

gion (� T ) the behaviour is given by the standard Ising

class (1; D) and the CQC does not occur. However, the

onset of the CQC could be observed by experiments at

extremely low temperatures. These temperatures can be

evaluated by the conditions (41) and (42):

T � 10

�2

�

c

� 10

�2

J: (48)

1. Notes

The application of the classical variant of RG to the

zero{temperature quantum critical point T

c

= 0 will give

a trivial (Gaussian) critical behaviour for all dimension-

alities D > D

L

= 2. The reason is that within this classi-

cal variant of the theory, the LT condition T � � yields

u

0

� T and, simultaneously, because of the classical con-

dition (24), the resulting RG Eq. (43) for u

0

cannot be

transformed to an equation for v

0

. For T ! 0, the initial

(bare) Hamiltonian parameters will be located on the line

u

0

= 0 in the parameter space (t

0

; u

0

). Therefore, the RG

trajectories with such initial coordinates will not tend to

the nontrivial Ising �xed point (t

I

6= 0; u

I

6= 0) but will

be rather attracted by the trivial Gaussian �xed point

(t

G

= u

G

= 0) [2]. This leads to a prediction for a valid-

ity of the MF approximation for the zero{temperature

critical behaviour (x III.B.1) for dimensionalities D > 2.

Our consideration shows that the application of the

classical variant of RG to the zero{temperature critical

point is wrong in principle but, as we see, it gives a cor-

rect prediction for 3D systems. In fact, the CQC means

that at T = 0, the 3D TIM exhibits a behaviour equiv-

alent to that of the (3 + 1){dimensional classical Ising

model. The latter is exactly the MF behaviour (apart

from logarithmic corrections to the MF scaling) [2]. For

2D magnets, the above classical version of RG gives com-

pletely wrong results.

C. A generalization

The e�ective change of the dimensionality of TIM in

the quantum critical regime is given by the dynami-

cal exponent z = 1 [1]. One may write the CQC as

D ! (D + z). This result is produced in the classical

and quantum limits of Eq. (22). Instead of performing

the summation over the Matsubara frequencies �

l

in the

sum
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S

1

(t

0

; k) =

X

�

l

1

t

0

+ k

2

+ �

2

l

; (49)

we may substitute this summation in an approximate

way by an integration in dimensionalities � 2 [0; 1]. The

idea has been proposed in preceding papers on thin �lms

[10] and disordered Bose systems (see A. M. J. Schakel

(1997) in Ref. [3]). Following this idea we shall substitute

sum (49) with the integral

~

S

1

(t

0

; k) =

�

2�

T

�

�

Z

d

�

�

(2�)

�

1

t

0

+ k

2

+ �

2

: (50)

The factor (2�=T )

�

is introduced because the frequency

� is proportional to the ratio (T=2�). The straightfor-

ward calculation of the integral

~

S

1

yields

~

S

1

(t

0

; k) =

�(1� �=2)

(2

p

�)

�

�

2�

T

�

�

: (51)

For � ! 0 (the classical limit) and � ! 1 (the quantum

limit)

~

S

1

coincides with the exact sum S

1

from Eq. (22).

The correspondence

~

S

1

$ S

1

for the intermediate cases

(0 < � < 1) of a \partial quantum e�ect" is approximate

[10].

With the help of this construction one may repeat the

RG calculations and show that the CQC can be de�ned

by the generalized rule D ! (D + �), where the par-

tial dimensionality � varies from zero to unity. The RG

results for the critical behaviour are given by a single

~� = [4 � (D + �)]{expansion instead of two expansions

in: � = (4�D) (for the classical case) and �

0

= (3 �D)

(for the quantum case). The critical behaviour for any �

is described by the usual critical exponents for the Ising

universality class provided the parameter � = 4 � D is

changed with ~� = 4� (D + �).

Certainly, there is a fundamental dependence of � on

(�

T

=�) such that the function �(�

T

=�) smoothly varies

from zero to unity for variations of the ratio (�

T

=�) from

zero to in�nity, respectively. A similar dependence has

been discussed in connection with the problem for the

�nite{size crossover in pure and impure thin �lms [10].

Within the framework of this new treatment one may de-

scribe the dimensional CQC as a smooth change of the

e�ective dimensionalityD

e�

= (D+�) fromD to (D+1)

when the ratio (�

T

=�) changes from zero to in�nity.

The above scheme substitutes the integration (21) of

the sum S

1

(t

0

; k) by a double integral: a D{dimensional

integral over the wave vector k and a �(� 1){integration

over the frequency �. The RG investigations within this

scheme are quite clumsy and one may meet di�culties in

higher orders of the loop expansion. The RG approach

can be rationalized by substituting the double (D; �) in-

tegration with a single (D + �){dimensional integration.

This change does not introduce any e�ect on the results

[10].

Finally, we shall note that the same RG results can

be obtained by the formal replacement of the dynamical

critical exponent z = 1 in Eq. (46) by �.

VI. CONCLUDING REMARKS

Although the MF properties of TIM are known in

many respects, we have been able to obtain several new

properties of the phase transitions along the HT and LT

lines A{J and a{a. The classical and quantum versions of

the Ginzburg criterion have been derived and applied to

TIM. The critical regions of the phase transitions have

been determined. It has been shown that the critical re-

gions along the HT and LT lines A{J and a{a are larger

than the usual critical regions along the lines 0{J and

b{b. Besides, it has been demonstrated that a critical

region of classical (thermal) 
uctuations of the order pa-

rameter at zero temperatures exists and is even larger

than it might be expected.

Further, we have con�rmed within both the MF ap-

proximation and the RG that there is a complete cor-

respondence (T $ �) between the HT and LT phase

transitions only along the lines 0{J and b{b. However,

the same correspondence T $ � is valid only for these

cases. The HT properties of the phase transitions along

the lines A{J and a{a are quite di�erent from those of

the phase transitions along the LT lines A{J and a{a.

All these properties have been obtained in domains of

the phase diagram (T;�) where the quantum e�ects are

irrelevant. Therefore, there exists a high{to{low temper-

ature crossover (HLTC) of the critical properties of TIM.

The HLTC does not produce any e�ective change of the

spatial dimensionality but it exhibits a signi�cant di�er-

ence between the HT and LT critical properties along

the lines A{J and a{a.

The HLTC has been treated by the MF, GC and RG.

The GC shows well established regions of validity of the

classical (MF) transitions including large parts of the LT

domain of the phase diagram. The RG reveals a conven-

tional behaviour of a single classical phase transition,

namely, the phase transition corresponding to the usual

Ising model (� = 0). The other phase transitions in the

classical HT and LT domains of the phase diagram ex-

hibit quite unusual properties.

The CQC is a result of two reasons. One of them is

the widely discussed quantum e�ects. The second rea-

son, which has not been established up to now, consists

in the linear LT dependence of the interaction parameter

u

0

on the temperature. The linear dependence u

0

� T at

LT has no quantum origin. A small deviation from the

linearity (u

0

� T ) could re
ect in a break down of the

CQC in its present form. For example, if u

0

� T

�

with

� > 1, the CQC will be a crossover from the universal-

ity class (1; D) at �nite temperatures and D > 2 to the

universal MF behaviour at T = 0. One may speculate

that a more precise derivation of the �eld counterpart

(2) of TIM may lead to a non{linear dependence u

0

(T ).

It should be emphasized that this can hardly happen.

A simple dimensional analysis shows that the relation

u

0

� T � �

T

should be valid irrespectively of the accu-

racy in the derivation of the �

4

{model (2).
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Besides, the RG has been applied to demonstrate that

the dimensional CQC due to the quantum correlations of

the system occurs only for a very speci�c case, namely,

for the phase transition at the zero{temperature critical

point. The onset of an e�ective occurrence of the dimen-

sional CQC can be observed in experiments at extremely

low temperatures under the conditions determined in

this paper.
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