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The non{linear properties of order parameter distributions '(x) in the condensed matter without

Lifshitz invariants are considered numerically. It is shown that the analytical approach developed

in [1{4] describes quantitatively the parametric evolution of the order parameter distributions with

the decrease of temperature. The metastable states and possible relaxational features of such a

system are discussed.
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I. INTRODUCTION

The description of phase transitions in the systems

with one{component order parameter is an example of

theoretical approach which can be useful not only for the

investigation of concrete condensed matters (e.g., sodium

nitrite, thiourea, some magnets) but for the considera-

tion of fundamental problems of the phase transition the-

ory and self{organization phenomena, in particular, the

appearance of stable space{nonhomogeneous structures,

as well.

In papers [1{4] the new analytical approach has been

developed in the framework of a model which generalizes

the Landau theory of phase transitions. This approach

allows to �nd the novel approximate solutions for the

spatial distributions of one{component order parameter

in the systems with competitive interactions. The advan-

tage of this approach is, in particular, that it gives an al-

gorithm of constructing essentially non{linear successive

approximations to the exact solution of the variational

equation. In the simplest case these solutions can be ex-

pressed through the elliptic Jacobi functions. These func-

tions are more convenient in the analysis and permit to

get more information about the properties of incommen-

surate distributions of order parameter than the usually

used approximations with the Fourier series which, in

general, can be in�nite [5,6].

However, the variational equation for the considered

problem is a non{linear di�erential equation the exact

analytical solutions of which is not known in general.

This circumstance is the reason why the numerical meth-

ods are used for solving this variational problem [5].

In the present paper, we numerically investigate the

properties of equilibriumdistributions of one{component

order parameter (OP) in the incommensurate phase.

Such a consideration is important to evaluate the pre-

cision of the approximate analytical distributions found

in [1{4] and for the detailed clari�cation of their physical

meaning. Moreover, the obtaining of information about

the structure of thermodynamical potential (TP) in the

vicinity of its absolute minimum is an useful preliminary

stage of the investigation of relaxational properties of the

considered system.

II. THE NUMERICAL SOLUTION OF

VARIATIONAL EQUATION

The incommensurate states of one{component OP can

be described with the help of the following TP [1{4]:
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(2.1)

where '(x) is the order parameter; g; 
; q; p are the

reduced material parameters; '

0

stands for the spatial

derivative; L is the crystal length along the modulation

axis. The phase transitions are assumed to be caused by

the change of temperature T: The e�ective temperature

q has the form q = q

0

� (T � T

0

), where q

0

, T

0

are some

constants. Note that all variables in formula (2.1) are

dimensionless.

The variational equation for the functional (2.1) is the

following non{linear di�erential equation of the forth or-

der:
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The �nite di�erence method (see, for example, [7])

or the method of truncated Fourier series [8,9] are usu-

ally used for the numerical solution of the variational
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equations which describes the OP incommensurate struc-

tures. In the latter case the OP periodic distribution is

expressed through the harmonic series with a �nite num-

ber of harmonics. The wave number b and the expansion

coe�cients of such series are initially assumed to be un-

known.

The application of these methods shows that presum-

ably the �nite di�erence method gives more reliable re-

sults. For example, for the systems with two component

OP it predicts that for the di�erent values of TP param-

eters the transitions from the incommensurate state into

the commensurate phase could be either of the �rst order

or of the second order [5,7]. At the same time the method

of Fourier series predicts the transitions only of the sec-

ond order regardless the values of TP parameters [5,8]

which is in contradiction with the existing experimental

data [6].

We �nd the OP equilibrium distributions for the vari-

ational problem (2.1){(2.2) in three stages. On the �rst

stage the solution of equation (2.2) is found with the help

of 4th order Runge{Kutta method [10] with some set of

initial conditions S

0

= f'(0); '

0

(0); '

00

(0); '

000

(0)g. Then

the TP value (2.1) is calculated. On the last stage the

TP absolute minimum is de�ned for all initial conditions

S

0

used.

The investigation is carried out for di�erent values of

material parameters. The parameter p is always equal

to unity: p = 1: That is not the essential restriction of

generality in the case when the properties of incommen-

surate state are considered [5,9,11]. The parameter g is

assumed to be negative [5,9]. For the given value of g

the e�ective temperature q changes from q

I

(the point

where the disordered phase loses its stability and trans-

forms into the incommensurate state) to the tempera-

ture when the commensurate state becomes energetically

favourable [4].

For system (2.1) the OP distribution in the incommen-

surate phase must not depend on the direction of axis

OX of the OP spatial modulation and on the direction

of axis OY along which the ordering appears. Moreover,

the distributions which di�er only by the value of the

phase x

0

are physically equivalent because the TP is in-

variant in respect to the phase shift x! x+x

0

[5,12].We

also assume that the function '(x) is a smooth periodic

one. The consequence of the mentioned properties is that

there always exists such a coordinate framework in which

solutions describing the OP distributions in the incom-

mensurate state are even or odd functions of the space

coordinate and, moreover, the translation x ! x+ P=4

(P is the modulation period) changes the function even-

ness to the opposite one.

Such \even{odd" symmetry [13] allows to set two

out of four initial conditions equal to zero, i.e. we can

consider only the sets S

01

= f0:0; '

0

(0); 0:0; '

000

(0)g or

S

02

= f'(0); 0:0; '

00

(0); 0:0g. The application of sets S

01

and S

02

must give physically equivalent states when the

periodic distributions are investigated. However, the OP

space{homogeneous distribution in the commensurate

phase can be obtained only for the set S

02

. The last cir-

cumstance makes the application of the set S

02

more

favorable.

The potential (2.1) and the equation (2.2) are invari-

ant in respect to the re
ection ' ! �'. It means that

if '(x) is the solution of equation (2.2) then �'(x) is

the solution of (2.2) as well. This property also allows to

make the volume of S

0

{space twice as little.

III. RESULTS AND DISCUSSION

Some results obtained with the help of the considered

numerical procedure are shown in the table. In this table

the TP values calculated in the one{harmonic approxi-

mation [9]

'(x) = a � sin[b(x+ x

0

)] (3.3)

and for the distribution [1{4]

'(x) = a � sn[b(x+ x

0

); k] (3.4)

(sn(x; k) is the elliptic Jacobi sinus) are also presented.

It follows from the table that model (3.4) is a good

approximation for the description of OP equilibrium dis-

tributions in the incommensurate phase, in particular, in

the vicinity of the point of transition into the commen-

surate state. It should be especially noted that the equi-

librium value of '

00

(0) predicted by model (3.4) is closer

to the numerical values of '

00

(0) then the '

00

(0) values

calculated in approximation (3.3). This discrepancy has

the principal character and is caused by the di�erence

between the mechanisms of change of the wave number b

and, consequently, of the OP modulation period P � b

�1

in the approaches (3.3) [9] and [1{4]. In the model (3.3)

the growth of modulation period P = 2�=b with decreas-

ing the temperature is described by taking into account

the non{linear invariant (�g � '

2

'

02

) in TP, which leads

to the following dependence of wave number on the tem-

perature T

b

2

=




2

+

1

8

ga

2

; (3.5)

where a = a(T ) is the OP amplitude [9].

In the approach in [1{4] the alteration of modulation

period P = 4K(k)=b (K(k) being the complete elliptic

integral of the �rst order) is caused by the non{linear

properties of distribution (3.4) and can take place also

in the absence of the invariant (�g �'

2

'

02

). This property

of distribution (3.4) enlarges the abilities of model (2.1)

in the description of space{inhomogeneous states of the

systems of di�erent nature which can be characterized

by the varying values of '

2

'

02

{interaction.

The OP dependence on the coordinate x for three val-

ues of e�ective temperature q is shown in Fig. 1. It obvi-

ously demonstrates the basic features of OP parametric

evolution in the incommensurate phase with decreasing

temperature, namely: a) the growth of OP amplitude,
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b) the increase of the modulation period, c) the rise

q � � � '(0) '(0) '(0) '

00

(0) '

00

(0) '

00

(0)

(3) (4) n (3) (4) n (3) (4) n

.2 -1.95e-4 -1.96e-4 -2.01e-4 .126 .126 .126 -.060 -.059 -.058

0 -5.24e-3 -5.41e-3 -5.40e-3 .297 .298 .299 -.116 -.097 -.096

-.2 -1.88e-2 -2.09e-2 -2.11e-2 .437 .457 .460 -.114 -.031 -.021

Table. The results of numerical investigation of order parameter distributions in the incommensurate phase. Here q stands

for the e�ective temperature, � is the reduced thermodymanical potential, '(0); '

00

(0) are initial conditions for the S

02

{set of

initial conditions. The notation '(3)' stands for the 'model (3)', '(4)' means 'model(4)', 'n' denotes 'numerical'. The material

parameters are equal to g = �10; p = 1.

Fig. 1. The order parameter dependence on the coordinate

x. The solid curve corresponds to the case when the e�ective

temperature is equal to q = 0:2, the dashed curve depicts the

case q = 0:0, the dotted curve is for q = �0:2: All calculations

are carried out for g = �10.

Fig. 2. The typical non{equilibrium distribution of order

parameter '(x). The material parameters and initial con-

ditions are equal respectively to q = 0:0, g = �10: and

'(0) = 0:222, '

00

(0) = �0:149; '

0

(0) = '

000

(0) = 0.

Fig. 3. The characteristic dependence of thermodynamical

potential � on the initial conditions. The material parameters

are equal to q = 0:2, g = �10.

of contribution of higher harmonics (i.e. the tendency to

transform into the domain walls lattice).

The characteristic feature of the investigated numer-

ical distributions, regardless of their correspondence to

the TP minima, is that, in general, they can be presented

as the superposition of two oscillations with di�erent am-

plitudes and di�erent periods (Fig. 2). From the mathe-

matical point of view such a behaviour is obvious. Really,

the characteristic equation for the linearized variant of

equation (2.2) is biquadratic. Hence, in general, the peri-

odic solution of linearized variational equation (2.2) has

the form of the sum of two harmonic oscillations with

di�erent wave numbers b

1

, b

2

:

'(x) = a

1

� cos[b

1

(x+ x

01

)] + a

2

� cos[b

2

(x+ x

02

)];

b

1;2

=

1

2

h

1�

p

1� 4q

i

: (3.6)

As it follows from (3.6), the relation b

1

=b

2

continuously

changes with the alteration of q and, in general, is arbi-

trary.

The two{frequency structures also exist far from the

point q

I

in the vicinity of which the linear approximation

for equation (2.2) is correct.
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At the same time, the equilibrium OP distributions

obtained in models (3.3) and (3.4) are single{wave non{

harmonic oscillations which can be characterized by the

only one wave number b

1

. The Fourier series for the dis-

tribution (3.4) contains harmonics for which the relation

b

2

= (2n+ 1) � b

1

; n = 0; 1; 2:::; (3.7)

is correct (b

1

is the wave number of the main harmonic

(3.3)). Only for the functions for which the relation (3.7)

holds the TP value can be deeper than that one for the

one{harmonic distribution (3.3) [14]. On the other hand,

if the expression for the OP distribution contains an ad-

ditional harmonic which does not satisfy relation (3.7)

then the TP value increases. Hence, the solution which

corresponds to the TP absolute minimumhas the form of

single non{linear wave but not of the superposition of two

or more oscillations with arbitrary wave numbers b

1

, b

2

...

However, even for the ideal crystal some factors always

exist due to which a \mono{frequent" distribution is not

realized and, in fact, the structures like the one plotted

in Fig. 2 arises (as our calculations show, such states

are always characterized by a higher TP value than the

equilibriumdistributions). Really, in experiments, the or-

dered state of system is usually obtained after the system

hardening from the mono{phase disordered state. As a

consequence, some metastable states can appear. These

metastable states, as a rule, have the non{exponential

law of relaxation [11,15].

The considered additional oscillations (Fig. 2) take

place against the background of space{periodic waves

of the ground state. Such oscillations play the role of

static perturbations of the equilibrium OP distribution

and have the character of periodic structure of the non{

topological dark solitons [16]. It should be noted, that

the solution of Fig. 2 type are more numerically stable

than the single{wave distributions which correspond to

the TP minimum.

The typical TP dependence on the initial conditions is

shown in Fig. 3. To simplify the analysis in Fig. 3 we set

� = 0 for the solutions which give positive TP values.

As Fig. 3 shows, the region of TP minimum is not a

single narrow \well" on the TP surface in the space of ini-

tial conditions. It has both the lines of sharp and smooth

change of the TP value. Keeping in mind this fact we can

suggest that if the system has been prepared in the in-

equilibrium state which is close to the equilibrium one

then it would relax to the static state in two stages. On

the �rst stage the system quite quickly comes running to

some \valley" of minima. The second stage corresponds

to the slow relaxation along the lines of a smooth change.

Such a behaviour (the phenomena of \large river{bed")

is rather an ordinary one for the non{linear relaxational

equations [17]. It should be noted that the description of

space{inhomogeneous states on the basis of model (2.1)

weakly depends on the microscopic details of the consid-

ered system and has a unique character for the di�erent

condensed matters (ferroelectrics, magnetics, binary al-

loys and so on). Hence, the mentioned relaxational be-

haviour can be considered as yet another manifestation

of the phase transition universality [17,18]. But the de-

tailed discussion of this problem calls for the approaches

which explicitly take into account the kinetic processes.

Therefore, the numerical investigation of the varia-

tional problem (2.1){(2.2) shows that the approach in

[1{4] quantitatively describes the OP distribution in the

incommensurate phase, in particular, in the vicinity of

\lock{in" transition point. The weak perturbation of

equilibrium OP distribution has the form of periodic

structures of the type of dark solitons on the background

of space{periodic waves of the ground state. The relax-

ation to the equilibrium state is suggested to proceed in

the two stages | \fast" and \slow".
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